CodelistPhenotype
Bases: Phenotype
CodelistPhenotype extracts patients from a CodeTable based on a specified codelist and other optional filters such as date range, relative time range and categorical filters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
domain
|
str
|
The domain of the phenotype. |
required |
codelist
|
Codelist
|
The codelist used for filtering. |
required |
name
|
Optional[str]
|
The name of the phenotype. Optional. If not passed, name will be derived from the name of the codelist. |
None
|
date_range
|
DateFilter
|
A date range filter to apply. |
None
|
relative_time_range
|
Union[RelativeTimeRangeFilter, List[RelativeTimeRangeFilter]]
|
A relative time range filter or a list of filters to apply. |
None
|
return_date
|
Specifies whether to return the 'first', 'last', or 'nearest' event date. Default is 'first'. |
'first'
|
|
categorical_filter
|
Optional[CategoricalFilter]
|
Additional categorical filters to apply. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
table |
PhenotypeTable
|
The resulting phenotype table after filtering (None until execute is called) |
Examples:
Inpatient Atrial Fibrillation (OMOP)
from phenex.phenotypes import CodelistPhenotype
from phenex.codelists import Codelist
from phenex.mappers import OMOPDomains
from phenex.filters import DateFilter, CategoricalFilter, Value
from phenex.ibis_connect import SnowflakeConnector
con = SnowflakeConnector() # requires some configuration
mapped_tables = OMOPDomains.get_mapped_tables(con)
af_codelist = Codelist([313217]) # list of concept ids
date_range = DateFilter(
min_date=After("2020-01-01"),
max_date=Before("2020-12-31")
)
inpatient = CategoricalFilter(
column_name='VISIT_DETAIL_CONCEPT_ID',
allowed_values=[9201],
domain='VISIT_DETAIL'
)
af_phenotype = CodelistPhenotype(
name="af",
domain='CONDITION_OCCURRENCE',
codelist=af_codelist,
date_range=date_range,
return_date='first',
categorical_filter=inpatient
)
af = af_phenotype.execute(mapped_tables)
af.head()
Myocardial Infarction One Year Pre-index (OMOP)
from phenex.filters import RelativeTimeRangeFilter, Value
af_phenotype = (...) # take from above example
oneyear_preindex = RelativeTimeRangeFilter(
min_days=Value('>', 0), # exclude index date
max_days=Value('<', 365),
anchor_phenotype=af_phenotype # use af phenotype above as reference date
)
mi_codelist = Codelist([49601007]) # list of concept ids
mi_phenotype = CodelistPhenotype(
name='mi',
domain='CONDITION_OCCURRENCE',
codelist=mi_codelist,
return_date='first',
relative_time_range=oneyear_preindex
)
mi = mi_phenotype.execute(mapped_tables)
mi.head()
Source code in phenex/phenotypes/codelist_phenotype.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
dependencies
property
Recursively collect all dependencies of a node (including dependencies of dependencies).
Returns:
Type | Description |
---|---|
Set[Node]
|
List[Node]: A list of Node objects on which this Node depends. |
dependency_graph
property
namespaced_table
property
A PhenotypeTable has generic column names 'person_id', 'boolean', 'event_date', and 'value'. The namespaced_table prepends the phenotype name to all of these columns. This is useful when joining multiple phenotype tables together.
Returns:
Name | Type | Description |
---|---|---|
table |
Table
|
The namespaced table for the current phenotype. |
reverse_dependency_graph
property
execute(tables=None, con=None, overwrite=False, lazy_execution=False, n_threads=1)
Executes the Node computation for the current node and its dependencies. Supports lazy execution using hash-based change detection to avoid recomputing Node's that have already executed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tables
|
Dict[str, Table]
|
A dictionary mapping domains to Table objects. |
None
|
con
|
Optional[object]
|
Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. |
None
|
overwrite
|
bool
|
If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. |
False
|
lazy_execution
|
bool
|
If True, only re-executes if the node's definition has changed. Defaults to False. You should pass overwrite=True with lazy_execution as lazy_execution is intended precisely for iterative updates to a node definition. You must pass a connector (to cache results) for lazy_execution to work. |
False
|
n_threads
|
int
|
Max number of Node's to execute simultaneously when this node has multiple children. |
1
|
Returns:
Name | Type | Description |
---|---|---|
Table |
Table
|
The resulting table for this node. Also accessible through self.table after calling self.execute(). |
Source code in phenex/node.py
get_codelists()
Get all codelists used in the phenotype definition, including all children / dependent phenotypes.
Returns:
Name | Type | Description |
---|---|---|
codeslist |
List[Codelist]
|
A list of codelists used in the cohort definition. |
Source code in phenex/phenotypes/codelist_phenotype.py
visualize_dependencies()
Create a text visualization of the dependency graph for this node and its dependencies.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A text representation of the dependency graph |