CodelistPhenotype
Bases: Phenotype
CodelistPhenotype extracts patients from a CodeTable based on a specified codelist and other optional filters such as date range, relative time range and categorical filters.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
domain
|
str
|
The domain of the phenotype. |
required |
codelist
|
Codelist
|
The codelist used for filtering. |
required |
name
|
Optional[str]
|
The name of the phenotype. Optional. If not passed, name will be derived from the name of the codelist. |
None
|
date_range
|
DateFilter
|
A date range filter to apply. |
None
|
relative_time_range
|
Union[RelativeTimeRangeFilter, List[RelativeTimeRangeFilter]]
|
A relative time range filter or a list of filters to apply. |
None
|
return_date
|
Specifies whether to return the 'first', 'last', 'nearest', or 'all' event date(s). Default is 'first'. |
'first'
|
|
return_value
|
Specifies which values to return. None for no return value or 'all' for all return values on the selected date(s). Default is None. |
None
|
|
categorical_filter
|
Optional[CategoricalFilter]
|
Additional categorical filters to apply. |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
table |
PhenotypeTable
|
The resulting phenotype table after filtering (None until execute is called) |
Examples:
Inpatient Atrial Fibrillation (OMOP)
from phenex.phenotypes import CodelistPhenotype
from phenex.codelists import Codelist
from phenex.mappers import OMOPDomains
from phenex.filters import DateFilter, CategoricalFilter, Value
from phenex.ibis_connect import SnowflakeConnector
con = SnowflakeConnector() # requires some configuration
mapped_tables = OMOPDomains.get_mapped_tables(con)
af_codelist = Codelist([313217]) # list of concept ids
date_range = DateFilter(
min_date=After("2020-01-01"),
max_date=Before("2020-12-31")
)
inpatient = CategoricalFilter(
column_name='VISIT_DETAIL_CONCEPT_ID',
allowed_values=[9201],
domain='VISIT_DETAIL'
)
af_phenotype = CodelistPhenotype(
name="af",
domain='CONDITION_OCCURRENCE',
codelist=af_codelist,
date_range=date_range,
return_date='first',
categorical_filter=inpatient
)
af = af_phenotype.execute(mapped_tables)
af.head()
Myocardial Infarction One Year Pre-index (OMOP)
from phenex.filters import RelativeTimeRangeFilter, Value
af_phenotype = (...) # take from above example
oneyear_preindex = RelativeTimeRangeFilter(
min_days=Value('>', 0), # exclude index date
max_days=Value('<', 365),
anchor_phenotype=af_phenotype # use af phenotype above as reference date
)
mi_codelist = Codelist([49601007]) # list of concept ids
mi_phenotype = CodelistPhenotype(
name='mi',
domain='CONDITION_OCCURRENCE',
codelist=mi_codelist,
return_date='first',
relative_time_range=oneyear_preindex
)
mi = mi_phenotype.execute(mapped_tables)
mi.head()
Source code in phenex/phenotypes/codelist_phenotype.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | |
dependencies
property
Recursively collect all dependencies of a node (including dependencies of dependencies).
Returns:
| Type | Description |
|---|---|
Set[Node]
|
List[Node]: A list of Node objects on which this Node depends. |
dependency_graph
property
execution_metadata
property
Retrieve the full execution metadata row for this node from the local DuckDB database.
Returns:
| Type | Description |
|---|---|
|
pandas.DataFrame: A table containing NODE_NAME, NODE_HASH, NODE_PARAMS, EXECUTION_PARAMS, EXECUTION_START_TIME, EXECUTION_END_TIME, and EXECUTION_DURATION for execution of this node, or None if the node has never been executed. |
namespaced_table
property
A PhenotypeTable has generic column names 'person_id', 'boolean', 'event_date', and 'value'. The namespaced_table prepends the phenotype name to all of these columns. This is useful when joining multiple phenotype tables together.
Returns:
| Name | Type | Description |
|---|---|---|
table |
Table
|
The namespaced table for the current phenotype. |
reverse_dependency_graph
property
clear_cache(con=None, recursive=False)
Clear the cached state for this node, forcing re-execution on the next call to execute().
This method removes the node's hash from the node states table and optionally drops the materialized table from the database. After calling this method, the node will be treated as if it has never been executed before.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
con
|
Optional[object]
|
Database connector. If provided, clears only runs with matching execution context and drops the materialized table. If None, clears all runs for the node. |
None
|
recursive
|
bool
|
If True, also clear the cache for all child nodes recursively. Defaults to False. |
False
|
Example
Source code in phenex/node.py
execute(tables=None, con=None, overwrite=False, lazy_execution=False, n_threads=1)
Executes the Node computation for the current node and its dependencies.
Lazy Execution
When lazy_execution=True, nodes are only recomputed if changes are detected. The system tracks: 1. Node definition changes: Detected by hashing the node's parameters (from to_dict()) and class name 2. Execution environment changes: Detected by tracking source/destination database configurations
A node will be rerun if either: - The node's defining parameters have changed (different hash than last execution) - The database connector's source or destination databases have changed - The node has never been executed before
If no changes are detected, the node uses its cached result from the database instead of recomputing.
Requirements for lazy execution: - A database connector (con) must be provided to store and retrieve cached results - overwrite=True must be set to allow updating existing cached tables
State tracking is maintained in a local DuckDB database (__PHENEX_META__NODE_STATES table) that stores: - Node hashes, parameters, and execution metadata - Database connector configuration used during execution - Execution timing information
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tables
|
Dict[str, Table]
|
A dictionary mapping domains to Table objects. |
None
|
con
|
Optional[object]
|
Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. Required for lazy_execution. |
None
|
overwrite
|
bool
|
If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. Must be True when using lazy_execution. |
False
|
lazy_execution
|
bool
|
If True, only re-executes nodes when changes are detected in either the node definition or execution environment. Defaults to False. Requires con to be provided. |
False
|
n_threads
|
int
|
Max number of Node's to execute simultaneously when this node has multiple children. |
1
|
Returns:
| Name | Type | Description |
|---|---|---|
Table |
Table
|
The resulting table for this node. Also accessible through self.table after calling self.execute(). |
Raises:
| Type | Description |
|---|---|
ValueError
|
If lazy_execution=True but overwrite=False or con=None. |
Source code in phenex/node.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | |
get_codelists()
Get all codelists used in the phenotype definition, including all children / dependent phenotypes.
Returns:
| Name | Type | Description |
|---|---|---|
codeslist |
List[Codelist]
|
A list of codelists used in the cohort definition. |
Source code in phenex/phenotypes/codelist_phenotype.py
visualize_dependencies()
Create a text visualization of the dependency graph for this node and its dependencies.
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
A text representation of the dependency graph |