Cohort
The Cohort computes a cohort of individuals based on specified entry criteria, inclusions, exclusions, and computes baseline characteristics and outcomes from the extracted index dates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
A descriptive name for the cohort. |
required |
entry_criterion
|
Phenotype
|
The phenotype used to define index date for the cohort. |
required |
inclusions
|
Optional[List[Phenotype]]
|
A list of phenotypes that must evaluate to True for patients to be included in the cohort. |
None
|
exclusions
|
Optional[List[Phenotype]]
|
A list of phenotypes that must evaluate to False for patients to be included in the cohort. |
None
|
characteristics
|
Optional[List[Phenotype]]
|
A list of phenotypes representing baseline characteristics of the cohort to be computed for all patients passing the inclusion and exclusion criteria. |
None
|
outcomes
|
Optional[List[Phenotype]]
|
A list of phenotypes representing outcomes of the cohort. |
None
|
description
|
Optional[str]
|
A plain text description of the cohort. |
None
|
data_period
|
DateFilter
|
Restrict all input data to a specific date range. The input data will be modified to look as if data outside the data_period was never recorded before any phenotypes are computed. See DataPeriodFilterNode for details on how the input data are affected by this parameter. |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
table |
PhenotypeTable
|
The resulting index table after filtering (None until execute is called) |
inclusions_table |
Table
|
The patient-level result of all inclusion criteria calculations (None until execute is called) |
exclusions_table |
Table
|
The patient-level result of all exclusion criteria calculations (None until execute is called) |
characteristics_table |
Table
|
The patient-level result of all baseline characteristics caclulations. (None until execute is called) |
outcomes_table |
Table
|
The patient-level result of all outcomes caclulations. (None until execute is called) |
subset_tables_entry |
Dict[str, PhenexTable]
|
Tables that have been subset by those patients satisfying the entry criterion. |
subset_tables_index |
Dict[str, PhenexTable]
|
Tables that have been subset by those patients satisfying the entry, inclusion and exclusion criteria. |
Source code in phenex/phenotypes/cohort.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | |
build_stages(tables)
Build the computational stages for cohort execution.
This method constructs the directed acyclic graph (DAG) of computational stages required to execute the cohort. The stages are built in dependency order and include:
- Derived Tables Stage (optional): Executes any derived table computations
- Entry Stage: Computes entry phenotype and subsets tables filtered by the entry criterion phenotype
- Index Stage: Applies inclusion/exclusion criteria and creates the final index table
- Reporting Stage (optional): Computes characteristics and outcomes tables
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tables
|
Dict[str, PhenexTable]
|
Dictionary mapping domain names to PhenexTable objects containing the source data tables required for phenotype computation. |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If required domains are missing from the input tables. |
Side Effects
Sets the following instance attributes: - self.entry_stage: NodeGroup for entry criterion processing - self.derived_tables_stage: NodeGroup for derived tables (if any) - self.index_stage: NodeGroup for inclusion/exclusion processing - self.reporting_stage: NodeGroup for characteristics/outcomes (if any) - Various table nodes for accessing intermediate results
Note
This method must be called before execute() to initialize the computation graph. Node uniqueness is validated across all stages to prevent naming conflicts.
Source code in phenex/phenotypes/cohort.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | |
execute(tables, con=None, overwrite=False, n_threads=1, lazy_execution=False)
The execute method executes the full cohort in order of computation. The order is data period filter -> derived tables -> entry criterion -> inclusion -> exclusion -> baseline characteristics. Tables are subset at two points, after entry criterion and after full inclusion/exclusion calculation to result in subset_entry data (contains all source data for patients that fulfill the entry criterion, with a possible index date) and subset_index data (contains all source data for patients that fulfill all in/ex criteria, with a set index date). Additionally, default reporters are executed such as table 1 for baseline characteristics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tables
|
Dict[str, PhenexTable]
|
A dictionary mapping domains to Table objects |
required |
con
|
Optional[SnowflakeConnector]
|
Database connector for materializing outputs |
None
|
overwrite
|
Optional[bool]
|
Whether to overwrite existing tables |
False
|
lazy_execution
|
Optional[bool]
|
Whether to use lazy execution with change detection |
False
|
n_threads
|
Optional[int]
|
Max number of jobs to run simultaneously. |
1
|
Returns:
| Name | Type | Description |
|---|---|---|
PhenotypeTable |
The index table corresponding the cohort. |
Source code in phenex/phenotypes/cohort.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | |
get_subset_tables_entry(tables)
Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given entry_phenotype.
Source code in phenex/phenotypes/cohort.py
get_subset_tables_index(tables)
Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given index_phenotype.
Source code in phenex/phenotypes/cohort.py
to_dict()
Return a dictionary representation of the Node. The dictionary must contain all dependencies of the Node such that if anything in self.to_dict() changes, the Node must be recomputed.