Skip to content

Cohort

The Cohort computes a cohort of individuals based on specified entry criteria, inclusions, exclusions, and computes baseline characteristics and outcomes from the extracted index dates.

Parameters:

Name Type Description Default
name str

A descriptive name for the cohort.

required
entry_criterion Phenotype

The phenotype used to define index date for the cohort.

required
inclusions Optional[List[Phenotype]]

A list of phenotypes that must evaluate to True for patients to be included in the cohort.

None
exclusions Optional[List[Phenotype]]

A list of phenotypes that must evaluate to False for patients to be included in the cohort.

None
characteristics Optional[List[Phenotype]]

A list of phenotypes representing baseline characteristics of the cohort to be computed for all patients passing the inclusion and exclusion criteria.

None
outcomes Optional[List[Phenotype]]

A list of phenotypes representing outcomes of the cohort.

None
description Optional[str]

A plain text description of the cohort.

None
data_period DateFilter

Restrict all input data to a specific date range. The input data will be modified to look as if data outside the data_period was never recorded before any phenotypes are computed. See DataPeriodFilterNode for details on how the input data are affected by this parameter.

None

Attributes:

Name Type Description
table PhenotypeTable

The resulting index table after filtering (None until execute is called)

inclusions_table Table

The patient-level result of all inclusion criteria calculations (None until execute is called)

exclusions_table Table

The patient-level result of all exclusion criteria calculations (None until execute is called)

characteristics_table Table

The patient-level result of all baseline characteristics caclulations. (None until execute is called)

outcomes_table Table

The patient-level result of all outcomes caclulations. (None until execute is called)

subset_tables_entry Dict[str, PhenexTable]

Tables that have been subset by those patients satisfying the entry criterion.

subset_tables_index Dict[str, PhenexTable]

Tables that have been subset by those patients satisfying the entry, inclusion and exclusion criteria.

Source code in phenex/phenotypes/cohort.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
class Cohort:
    """
    The Cohort computes a cohort of individuals based on specified entry criteria, inclusions, exclusions, and computes baseline characteristics and outcomes from the extracted index dates.

    Parameters:
        name: A descriptive name for the cohort.
        entry_criterion: The phenotype used to define index date for the cohort.
        inclusions: A list of phenotypes that must evaluate to True for patients to be included in the cohort.
        exclusions: A list of phenotypes that must evaluate to False for patients to be included in the cohort.
        characteristics: A list of phenotypes representing baseline characteristics of the cohort to be computed for all patients passing the inclusion and exclusion criteria.
        outcomes: A list of phenotypes representing outcomes of the cohort.
        description: A plain text description of the cohort.
        data_period: Restrict all input data to a specific date range. The input data will be modified to look as if data outside the data_period was never recorded before any phenotypes are computed. See DataPeriodFilterNode for details on how the input data are affected by this parameter.

    Attributes:
        table (PhenotypeTable): The resulting index table after filtering (None until execute is called)
        inclusions_table (Table): The patient-level result of all inclusion criteria calculations (None until execute is called)
        exclusions_table (Table): The patient-level result of all exclusion criteria calculations (None until execute is called)
        characteristics_table (Table): The patient-level result of all baseline characteristics caclulations. (None until execute is called)
        outcomes_table (Table): The patient-level result of all outcomes caclulations. (None until execute is called)
        subset_tables_entry (Dict[str, PhenexTable]): Tables that have been subset by those patients satisfying the entry criterion.
        subset_tables_index (Dict[str, PhenexTable]): Tables that have been subset by those patients satisfying the entry, inclusion and exclusion criteria.
    """

    def __init__(
        self,
        name: str,
        entry_criterion: Phenotype,
        inclusions: Optional[List[Phenotype]] = None,
        exclusions: Optional[List[Phenotype]] = None,
        characteristics: Optional[List[Phenotype]] = None,
        derived_tables: Optional[List["DerivedTable"]] = None,
        outcomes: Optional[List[Phenotype]] = None,
        data_period: DateFilter = None,
        description: Optional[str] = None,
    ):
        self.name = name
        self.description = description
        self.table = None  # Will be set during execution to index table
        self.subset_tables_entry = None  # Will be set during execution
        self.subset_tables_index = None  # Will be set during execution
        self.entry_criterion = entry_criterion
        self.inclusions = inclusions or []
        self.exclusions = exclusions or []
        self.characteristics = characteristics or []
        self.derived_tables = derived_tables or []
        self.outcomes = outcomes or []
        self.data_period = data_period

        self.phenotypes = (
            [self.entry_criterion]
            + self.inclusions
            + self.exclusions
            + self.characteristics
            + self.outcomes
        )
        self._validate_node_uniqueness()

        # stages: set at execute() time
        self.derived_tables_stage = None
        self.entry_stage = None
        self.index_stage = None
        self.reporting_stage = None

        # special Nodes that Cohort builds (later, in build_stages())
        # need to be able to refer to later to get outputs
        self.inclusions_table_node = None
        self.exclusions_table_node = None
        self.characteristics_table_node = None
        self.outcomes_table_node = None
        self.index_table_node = None
        self.subset_tables_entry_nodes = None
        self.subset_tables_index_nodes = None
        self._table1 = None

        logger.info(
            f"Cohort '{self.name}' initialized with entry criterion '{self.entry_criterion.name}'"
        )

    def build_stages(self, tables: Dict[str, PhenexTable]):
        """
        Build the computational stages for cohort execution.

        This method constructs the directed acyclic graph (DAG) of computational stages required to execute the cohort. The stages are built in dependency order and include:

        1. **Derived Tables Stage** (optional): Executes any derived table computations
        2. **Entry Stage**: Computes entry phenotype and subsets tables filtered by the entry criterion phenotype
        3. **Index Stage**: Applies inclusion/exclusion criteria and creates the final index table
        4. **Reporting Stage** (optional): Computes characteristics and outcomes tables

        Parameters:
            tables: Dictionary mapping domain names to PhenexTable objects containing the source data tables required for phenotype computation.

        Raises:
            ValueError: If required domains are missing from the input tables.

        Side Effects:
            Sets the following instance attributes:
            - self.entry_stage: NodeGroup for entry criterion processing
            - self.derived_tables_stage: NodeGroup for derived tables (if any)
            - self.index_stage: NodeGroup for inclusion/exclusion processing
            - self.reporting_stage: NodeGroup for characteristics/outcomes (if any)
            - Various table nodes for accessing intermediate results

        Note:
            This method must be called before execute() to initialize the computation graph.
            Node uniqueness is validated across all stages to prevent naming conflicts.
        """
        # Check required domains are present to fail early (note this check is not perfect as _get_domains() doesn't catch everything, e.g., intermediate tables in autojoins, but this is better than nothing)
        domains = list(tables.keys()) + [x.name for x in self.derived_tables]
        required_domains = self._get_domains()
        for d in required_domains:
            if d not in domains:
                raise ValueError(f"Required domain {d} not present in input tables!")

        #
        # Data period filter stage: OPTIONAL
        #
        self.data_period_filter_stage = None
        if self.data_period:
            data_period_filter_nodes = [
                DataPeriodFilterNode(
                    name=f"{self.name}__data_period_filter_{domain}".upper(),
                    domain=domain,
                    date_filter=self.data_period,
                )
                for domain in domains
            ]
            self.data_period_filter_stage = NodeGroup(
                name="data_period_filter", nodes=data_period_filter_nodes
            )

        #
        # Derived tables stage: OPTIONAL
        #
        if self.derived_tables:
            self.derived_tables_stage = NodeGroup(
                name="derived_tables_stage", nodes=self.derived_tables
            )

        #
        # Entry stage: REQUIRED
        #
        self.subset_tables_entry_nodes = self._get_subset_tables_nodes(
            stage="subset_entry", domains=domains, index_phenotype=self.entry_criterion
        )
        self.entry_stage = NodeGroup(
            name="entry_stage", nodes=self.subset_tables_entry_nodes
        )

        #
        # Index stage: REQUIRED
        #
        index_nodes = []
        if self.inclusions:
            self.inclusions_table_node = InclusionsTableNode(
                name=f"{self.name}__inclusions".upper(),
                index_phenotype=self.entry_criterion,
                phenotypes=self.inclusions,
            )
            index_nodes.append(self.inclusions_table_node)
        if self.exclusions:
            self.exclusions_table_node = ExclusionsTableNode(
                name=f"{self.name}__exclusions".upper(),
                index_phenotype=self.entry_criterion,
                phenotypes=self.exclusions,
            )
            index_nodes.append(self.exclusions_table_node)

        self.index_table_node = IndexPhenotype(
            f"{self.name}__index".upper(),
            entry_phenotype=self.entry_criterion,
            inclusion_table_node=self.inclusions_table_node,
            exclusion_table_node=self.exclusions_table_node,
        )
        index_nodes.append(self.index_table_node)
        self.subset_tables_index_nodes = self._get_subset_tables_nodes(
            stage="subset_index", domains=domains, index_phenotype=self.index_table_node
        )
        self.index_stage = NodeGroup(
            name="index_stage",
            nodes=self.subset_tables_index_nodes + index_nodes,
        )

        #
        # Post-index / reporting stage: OPTIONAL
        #
        reporting_nodes = []
        if self.characteristics:
            self.characteristics_table_node = HStackNode(
                name=f"{self.name}__characteristics".upper(),
                phenotypes=self.characteristics,
            )
            reporting_nodes.append(self.characteristics_table_node)
        if self.outcomes:
            self.outcomes_table_node = HStackNode(
                name=f"{self.name}__outcomes".upper(), phenotypes=self.outcomes
            )
            reporting_nodes.append(self.outcomes_table_node)
        if reporting_nodes:
            self.reporting_stage = NodeGroup(
                name="reporting_stage", nodes=reporting_nodes
            )

        self._table1 = None

    def _get_domains(self):
        """
        Get a list of all domains used by any phenotype in this cohort.
        """
        top_level_nodes = (
            [self.entry_criterion]
            + self.inclusions
            + self.exclusions
            + self.characteristics
            + self.outcomes
        )
        all_nodes = top_level_nodes + sum([t.dependencies for t in top_level_nodes], [])

        # FIXME Person domain should not be HARD CODED; however, it IS hardcoded in SCORE phenotype. Remove hardcoding!
        domains = ["PERSON"] + [
            getattr(pt, "domain", None)
            for pt in all_nodes
            if getattr(pt, "domain", None) is not None
        ]

        domains += [
            getattr(getattr(pt, "categorical_filter", None), "domain", None)
            for pt in all_nodes
            if getattr(getattr(pt, "categorical_filter", None), "domain", None)
            is not None
        ]
        domains = list(set(domains))
        return domains

    def _get_subset_tables_nodes(
        self, stage: str, domains: List[str], index_phenotype: Phenotype
    ):
        """
        Get the nodes for subsetting tables for all domains in this cohort subsetting by the given index_phenotype.

        stage: A string for naming the nodes.
        domains: List of domains to subset.
        index_phenotype: The phenotype to use for subsetting patients.
        """
        return [
            SubsetTable(
                name=f"{self.name}__{stage}_{domain}".upper(),
                domain=domain,
                index_phenotype=index_phenotype,
            )
            for domain in domains
        ]

    @property
    def inclusions_table(self):
        if self.inclusions_table_node:
            return self.inclusions_table_node.table

    @property
    def exclusions_table(self):
        if self.exclusions_table_node:
            return self.exclusions_table_node.table

    @property
    def index_table(self):
        return self.index_table_node.table

    @property
    def characteristics_table(self):
        if self.characteristics_table_node:
            return self.characteristics_table_node.table

    @property
    def outcomes_table(self):
        if self.outcomes_table_node:
            return self.outcomes_table_node.table

    def get_subset_tables_entry(self, tables):
        """
        Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given entry_phenotype.
        """
        subset_tables_entry = {}
        for node in self.subset_tables_entry_nodes:
            subset_tables_entry[node.domain] = type(tables[node.domain])(node.table)
        return subset_tables_entry

    def get_subset_tables_index(self, tables):
        """
        Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given index_phenotype.
        """
        subset_tables_index = {}
        for node in self.subset_tables_index_nodes:
            subset_tables_index[node.domain] = type(tables[node.domain])(node.table)
        return subset_tables_index

    def execute(
        self,
        tables: Dict[str, PhenexTable],
        con: Optional["SnowflakeConnector"] = None,
        overwrite: Optional[bool] = False,
        n_threads: Optional[int] = 1,
        lazy_execution: Optional[bool] = False,
    ):
        """
        The execute method executes the full cohort in order of computation. The order is data period filter -> derived tables -> entry criterion -> inclusion -> exclusion -> baseline characteristics. Tables are subset at two points, after entry criterion and after full inclusion/exclusion calculation to result in subset_entry data (contains all source data for patients that fulfill the entry criterion, with a possible index date) and subset_index data (contains all source data for patients that fulfill all in/ex criteria, with a set index date). Additionally, default reporters are executed such as table 1 for baseline characteristics.

        Parameters:
            tables: A dictionary mapping domains to Table objects
            con: Database connector for materializing outputs
            overwrite: Whether to overwrite existing tables
            lazy_execution: Whether to use lazy execution with change detection
            n_threads: Max number of jobs to run simultaneously.

        Returns:
            PhenotypeTable: The index table corresponding the cohort.
        """
        self.build_stages(tables)

        # Apply data period filter first if specified
        if self.data_period_filter_stage:
            logger.info(f"Cohort '{self.name}': executing data period filter stage ...")
            self.data_period_filter_stage.execute(
                tables=tables,
                con=con,
                overwrite=overwrite,
                n_threads=n_threads,
                lazy_execution=lazy_execution,
            )
            # Update tables with filtered versions
            for node in self.data_period_filter_stage.nodes:
                tables[node.domain] = PhenexTable(node.table)
            logger.info(f"Cohort '{self.name}': completed data period filter stage.")

        if self.derived_tables_stage:
            logger.info(f"Cohort '{self.name}': executing derived tables stage ...")
            self.derived_tables_stage.execute(
                tables=tables,
                con=con,
                overwrite=overwrite,
                n_threads=n_threads,
                lazy_execution=lazy_execution,
            )
            logger.info(f"Cohort '{self.name}': completed derived tables stage.")
            for node in self.derived_tables:
                tables[node.name] = PhenexTable(node.table)

        logger.info(f"Cohort '{self.name}': executing entry stage ...")

        self.entry_stage.execute(
            tables=tables,
            con=con,
            overwrite=overwrite,
            n_threads=n_threads,
            lazy_execution=lazy_execution,
        )
        self.subset_tables_entry = tables = self.get_subset_tables_entry(tables)

        logger.info(f"Cohort '{self.name}': completed entry stage.")
        logger.info(f"Cohort '{self.name}': executing index stage ...")

        self.index_stage.execute(
            tables=self.subset_tables_entry,
            con=con,
            overwrite=overwrite,
            n_threads=n_threads,
            lazy_execution=lazy_execution,
        )
        self.table = self.index_table_node.table

        logger.info(f"Cohort '{self.name}': completed index stage.")
        logger.info(f"Cohort '{self.name}': executing reporting stage ...")

        self.subset_tables_index = self.get_subset_tables_index(tables)
        if self.reporting_stage:
            self.reporting_stage.execute(
                tables=self.subset_tables_index,
                con=con,
                overwrite=overwrite,
                n_threads=n_threads,
                lazy_execution=lazy_execution,
            )

        return self.index_table

    # FIXME this should be implmemented as a ComputeNode and added to the graph
    @property
    def table1(self):
        if self._table1 is None:
            logger.debug("Generating Table1 report ...")
            reporter = Table1()
            self._table1 = reporter.execute(self)
            logger.debug("Table1 report generated.")
        return self._table1

    def to_dict(self):
        """
        Return a dictionary representation of the Node. The dictionary must contain all dependencies of the Node such that if anything in self.to_dict() changes, the Node must be recomputed.
        """
        return to_dict(self)

    def _validate_node_uniqueness(self):
        # Use Node's capability to check for node uniqueness rather than reimplementing it here
        Node().add_children(self.phenotypes)

build_stages(tables)

Build the computational stages for cohort execution.

This method constructs the directed acyclic graph (DAG) of computational stages required to execute the cohort. The stages are built in dependency order and include:

  1. Derived Tables Stage (optional): Executes any derived table computations
  2. Entry Stage: Computes entry phenotype and subsets tables filtered by the entry criterion phenotype
  3. Index Stage: Applies inclusion/exclusion criteria and creates the final index table
  4. Reporting Stage (optional): Computes characteristics and outcomes tables

Parameters:

Name Type Description Default
tables Dict[str, PhenexTable]

Dictionary mapping domain names to PhenexTable objects containing the source data tables required for phenotype computation.

required

Raises:

Type Description
ValueError

If required domains are missing from the input tables.

Side Effects

Sets the following instance attributes: - self.entry_stage: NodeGroup for entry criterion processing - self.derived_tables_stage: NodeGroup for derived tables (if any) - self.index_stage: NodeGroup for inclusion/exclusion processing - self.reporting_stage: NodeGroup for characteristics/outcomes (if any) - Various table nodes for accessing intermediate results

Note

This method must be called before execute() to initialize the computation graph. Node uniqueness is validated across all stages to prevent naming conflicts.

Source code in phenex/phenotypes/cohort.py
def build_stages(self, tables: Dict[str, PhenexTable]):
    """
    Build the computational stages for cohort execution.

    This method constructs the directed acyclic graph (DAG) of computational stages required to execute the cohort. The stages are built in dependency order and include:

    1. **Derived Tables Stage** (optional): Executes any derived table computations
    2. **Entry Stage**: Computes entry phenotype and subsets tables filtered by the entry criterion phenotype
    3. **Index Stage**: Applies inclusion/exclusion criteria and creates the final index table
    4. **Reporting Stage** (optional): Computes characteristics and outcomes tables

    Parameters:
        tables: Dictionary mapping domain names to PhenexTable objects containing the source data tables required for phenotype computation.

    Raises:
        ValueError: If required domains are missing from the input tables.

    Side Effects:
        Sets the following instance attributes:
        - self.entry_stage: NodeGroup for entry criterion processing
        - self.derived_tables_stage: NodeGroup for derived tables (if any)
        - self.index_stage: NodeGroup for inclusion/exclusion processing
        - self.reporting_stage: NodeGroup for characteristics/outcomes (if any)
        - Various table nodes for accessing intermediate results

    Note:
        This method must be called before execute() to initialize the computation graph.
        Node uniqueness is validated across all stages to prevent naming conflicts.
    """
    # Check required domains are present to fail early (note this check is not perfect as _get_domains() doesn't catch everything, e.g., intermediate tables in autojoins, but this is better than nothing)
    domains = list(tables.keys()) + [x.name for x in self.derived_tables]
    required_domains = self._get_domains()
    for d in required_domains:
        if d not in domains:
            raise ValueError(f"Required domain {d} not present in input tables!")

    #
    # Data period filter stage: OPTIONAL
    #
    self.data_period_filter_stage = None
    if self.data_period:
        data_period_filter_nodes = [
            DataPeriodFilterNode(
                name=f"{self.name}__data_period_filter_{domain}".upper(),
                domain=domain,
                date_filter=self.data_period,
            )
            for domain in domains
        ]
        self.data_period_filter_stage = NodeGroup(
            name="data_period_filter", nodes=data_period_filter_nodes
        )

    #
    # Derived tables stage: OPTIONAL
    #
    if self.derived_tables:
        self.derived_tables_stage = NodeGroup(
            name="derived_tables_stage", nodes=self.derived_tables
        )

    #
    # Entry stage: REQUIRED
    #
    self.subset_tables_entry_nodes = self._get_subset_tables_nodes(
        stage="subset_entry", domains=domains, index_phenotype=self.entry_criterion
    )
    self.entry_stage = NodeGroup(
        name="entry_stage", nodes=self.subset_tables_entry_nodes
    )

    #
    # Index stage: REQUIRED
    #
    index_nodes = []
    if self.inclusions:
        self.inclusions_table_node = InclusionsTableNode(
            name=f"{self.name}__inclusions".upper(),
            index_phenotype=self.entry_criterion,
            phenotypes=self.inclusions,
        )
        index_nodes.append(self.inclusions_table_node)
    if self.exclusions:
        self.exclusions_table_node = ExclusionsTableNode(
            name=f"{self.name}__exclusions".upper(),
            index_phenotype=self.entry_criterion,
            phenotypes=self.exclusions,
        )
        index_nodes.append(self.exclusions_table_node)

    self.index_table_node = IndexPhenotype(
        f"{self.name}__index".upper(),
        entry_phenotype=self.entry_criterion,
        inclusion_table_node=self.inclusions_table_node,
        exclusion_table_node=self.exclusions_table_node,
    )
    index_nodes.append(self.index_table_node)
    self.subset_tables_index_nodes = self._get_subset_tables_nodes(
        stage="subset_index", domains=domains, index_phenotype=self.index_table_node
    )
    self.index_stage = NodeGroup(
        name="index_stage",
        nodes=self.subset_tables_index_nodes + index_nodes,
    )

    #
    # Post-index / reporting stage: OPTIONAL
    #
    reporting_nodes = []
    if self.characteristics:
        self.characteristics_table_node = HStackNode(
            name=f"{self.name}__characteristics".upper(),
            phenotypes=self.characteristics,
        )
        reporting_nodes.append(self.characteristics_table_node)
    if self.outcomes:
        self.outcomes_table_node = HStackNode(
            name=f"{self.name}__outcomes".upper(), phenotypes=self.outcomes
        )
        reporting_nodes.append(self.outcomes_table_node)
    if reporting_nodes:
        self.reporting_stage = NodeGroup(
            name="reporting_stage", nodes=reporting_nodes
        )

    self._table1 = None

execute(tables, con=None, overwrite=False, n_threads=1, lazy_execution=False)

The execute method executes the full cohort in order of computation. The order is data period filter -> derived tables -> entry criterion -> inclusion -> exclusion -> baseline characteristics. Tables are subset at two points, after entry criterion and after full inclusion/exclusion calculation to result in subset_entry data (contains all source data for patients that fulfill the entry criterion, with a possible index date) and subset_index data (contains all source data for patients that fulfill all in/ex criteria, with a set index date). Additionally, default reporters are executed such as table 1 for baseline characteristics.

Parameters:

Name Type Description Default
tables Dict[str, PhenexTable]

A dictionary mapping domains to Table objects

required
con Optional[SnowflakeConnector]

Database connector for materializing outputs

None
overwrite Optional[bool]

Whether to overwrite existing tables

False
lazy_execution Optional[bool]

Whether to use lazy execution with change detection

False
n_threads Optional[int]

Max number of jobs to run simultaneously.

1

Returns:

Name Type Description
PhenotypeTable

The index table corresponding the cohort.

Source code in phenex/phenotypes/cohort.py
def execute(
    self,
    tables: Dict[str, PhenexTable],
    con: Optional["SnowflakeConnector"] = None,
    overwrite: Optional[bool] = False,
    n_threads: Optional[int] = 1,
    lazy_execution: Optional[bool] = False,
):
    """
    The execute method executes the full cohort in order of computation. The order is data period filter -> derived tables -> entry criterion -> inclusion -> exclusion -> baseline characteristics. Tables are subset at two points, after entry criterion and after full inclusion/exclusion calculation to result in subset_entry data (contains all source data for patients that fulfill the entry criterion, with a possible index date) and subset_index data (contains all source data for patients that fulfill all in/ex criteria, with a set index date). Additionally, default reporters are executed such as table 1 for baseline characteristics.

    Parameters:
        tables: A dictionary mapping domains to Table objects
        con: Database connector for materializing outputs
        overwrite: Whether to overwrite existing tables
        lazy_execution: Whether to use lazy execution with change detection
        n_threads: Max number of jobs to run simultaneously.

    Returns:
        PhenotypeTable: The index table corresponding the cohort.
    """
    self.build_stages(tables)

    # Apply data period filter first if specified
    if self.data_period_filter_stage:
        logger.info(f"Cohort '{self.name}': executing data period filter stage ...")
        self.data_period_filter_stage.execute(
            tables=tables,
            con=con,
            overwrite=overwrite,
            n_threads=n_threads,
            lazy_execution=lazy_execution,
        )
        # Update tables with filtered versions
        for node in self.data_period_filter_stage.nodes:
            tables[node.domain] = PhenexTable(node.table)
        logger.info(f"Cohort '{self.name}': completed data period filter stage.")

    if self.derived_tables_stage:
        logger.info(f"Cohort '{self.name}': executing derived tables stage ...")
        self.derived_tables_stage.execute(
            tables=tables,
            con=con,
            overwrite=overwrite,
            n_threads=n_threads,
            lazy_execution=lazy_execution,
        )
        logger.info(f"Cohort '{self.name}': completed derived tables stage.")
        for node in self.derived_tables:
            tables[node.name] = PhenexTable(node.table)

    logger.info(f"Cohort '{self.name}': executing entry stage ...")

    self.entry_stage.execute(
        tables=tables,
        con=con,
        overwrite=overwrite,
        n_threads=n_threads,
        lazy_execution=lazy_execution,
    )
    self.subset_tables_entry = tables = self.get_subset_tables_entry(tables)

    logger.info(f"Cohort '{self.name}': completed entry stage.")
    logger.info(f"Cohort '{self.name}': executing index stage ...")

    self.index_stage.execute(
        tables=self.subset_tables_entry,
        con=con,
        overwrite=overwrite,
        n_threads=n_threads,
        lazy_execution=lazy_execution,
    )
    self.table = self.index_table_node.table

    logger.info(f"Cohort '{self.name}': completed index stage.")
    logger.info(f"Cohort '{self.name}': executing reporting stage ...")

    self.subset_tables_index = self.get_subset_tables_index(tables)
    if self.reporting_stage:
        self.reporting_stage.execute(
            tables=self.subset_tables_index,
            con=con,
            overwrite=overwrite,
            n_threads=n_threads,
            lazy_execution=lazy_execution,
        )

    return self.index_table

get_subset_tables_entry(tables)

Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given entry_phenotype.

Source code in phenex/phenotypes/cohort.py
def get_subset_tables_entry(self, tables):
    """
    Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given entry_phenotype.
    """
    subset_tables_entry = {}
    for node in self.subset_tables_entry_nodes:
        subset_tables_entry[node.domain] = type(tables[node.domain])(node.table)
    return subset_tables_entry

get_subset_tables_index(tables)

Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given index_phenotype.

Source code in phenex/phenotypes/cohort.py
def get_subset_tables_index(self, tables):
    """
    Get the PhenexTable from the ibis Table for subsetting tables for all domains in this cohort subsetting by the given index_phenotype.
    """
    subset_tables_index = {}
    for node in self.subset_tables_index_nodes:
        subset_tables_index[node.domain] = type(tables[node.domain])(node.table)
    return subset_tables_index

to_dict()

Return a dictionary representation of the Node. The dictionary must contain all dependencies of the Node such that if anything in self.to_dict() changes, the Node must be recomputed.

Source code in phenex/phenotypes/cohort.py
def to_dict(self):
    """
    Return a dictionary representation of the Node. The dictionary must contain all dependencies of the Node such that if anything in self.to_dict() changes, the Node must be recomputed.
    """
    return to_dict(self)