LogicPhenotype
Bases: ComputationGraphPhenotype
LogicPhenotype is a composite phenotype that performs boolean operations using the boolean column of its component phenotypes and populations the boolean column of the resulting phenotype table. It should be used in any instance where multiple phenotypes are logically combined, for example, does a patient have diabetes AND hypertension, etc.
--> See the comparison table of CompositePhenotype classes
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expression
|
ComputationGraph
|
The logical expression to be evaluated composed of phenotypes combined by python arithmetic operations. |
required |
return_date
|
Union[str, Phenotype]
|
The date to be returned for the phenotype. Can be "first", "last", or a Phenotype object. |
'first'
|
name
|
str
|
The name of the phenotype. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
table |
PhenotypeTable
|
The resulting phenotype table after filtering (None until execute is called) |
Source code in phenex/phenotypes/computation_graph_phenotypes.py
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
dependencies
property
Recursively collect all dependencies of a node (including dependencies of dependencies).
Returns:
Type | Description |
---|---|
Set[Node]
|
List[Node]: A list of Node objects on which this Node depends. |
dependency_graph
property
namespaced_table
property
A PhenotypeTable has generic column names 'person_id', 'boolean', 'event_date', and 'value'. The namespaced_table prepends the phenotype name to all of these columns. This is useful when joining multiple phenotype tables together.
Returns:
Name | Type | Description |
---|---|---|
table |
Table
|
The namespaced table for the current phenotype. |
reverse_dependency_graph
property
execute(tables=None, con=None, overwrite=False, lazy_execution=False, n_threads=1)
Executes the Node computation for the current node and its dependencies. Supports lazy execution using hash-based change detection to avoid recomputing Node's that have already executed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tables
|
Dict[str, Table]
|
A dictionary mapping domains to Table objects. |
None
|
con
|
Optional[object]
|
Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. |
None
|
overwrite
|
bool
|
If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. |
False
|
lazy_execution
|
bool
|
If True, only re-executes if the node's definition has changed. Defaults to False. You should pass overwrite=True with lazy_execution as lazy_execution is intended precisely for iterative updates to a node definition. You must pass a connector (to cache results) for lazy_execution to work. |
False
|
n_threads
|
int
|
Max number of Node's to execute simultaneously when this node has multiple children. |
1
|
Returns:
Name | Type | Description |
---|---|---|
Table |
Table
|
The resulting table for this node. Also accessible through self.table after calling self.execute(). |
Source code in phenex/node.py
visualize_dependencies()
Create a text visualization of the dependency graph for this node and its dependencies.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A text representation of the dependency graph |