TimeRangeCountPhenotype
Bases: Phenotype
TimeRangeCountPhenotype works with time range tables i.e. the input table must have a START_DATE and END_DATE column (in addition to PERSON_ID). It counts the number of distinct time ranges for each person, either total or within a specified date range (relative or absolute). If no relative_time_range defined, it returns the number of time periods per person. If relative_time_range is defined, it counts the number of time periods before or after (depending on when keyword argument of relative_time_range), NOT including the time period defined by the relative_time_range anchor.
If min_days or max_days of the relative_time_range are defined, the entire time period must be included in the relative time range i.e. if before, the start date of all time periods must be contained within the time range.
This can be used : - given an admission discharge table, to count the number of hospitalizations that occurred e.g. in the post index period - given a drug exposure table, to count the number of times a person has taken a medication
DATE: Date is always null VALUE: Number of distinct time periods in the specified time range.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
domain
|
str
|
The domain of the phenotype. |
required |
name
|
Optional[str]
|
The name of the phenotype. Optional. If not passed the name will be TimeRangeCountPhenotype. |
None
|
relative_time_range
|
Union[RelativeTimeRangeFilter, List[RelativeTimeRangeFilter]]
|
A relative time range filter or a list of filters to apply. |
None
|
value_filter
|
Optional[ValueFilter]
|
Filter persons by number of time ranges determined |
None
|
allow_null_end_date
|
bool
|
If True, allows time ranges with null END_DATE (ongoing periods). If False, removes such rows. Default is True. |
True
|
Attributes:
| Name | Type | Description |
|---|---|---|
table |
PhenotypeTable
|
The resulting phenotype table after filtering (None until execute is called) |
Examples:
Count hospitalizations in post-index period (OMOP)
from phenex.phenotypes import CodelistPhenotype, TimeRangeCountPhenotype
from phenex.filters import RelativeTimeRangeFilter
from phenex.filters.value import GreaterThanOrEqualTo, LessThanOrEqualTo
# Define entry phenotype (index date)
entry_phenotype = CodelistPhenotype(
domain='CONDITION_OCCURRENCE',
codelist=atrial_fibrillation_codes,
return_date='first',
)
# Count hospitalizations in the 365 days after index
post_index_hospitalizations = TimeRangeCountPhenotype(
domain='VISIT_OCCURRENCE', # or admission-discharge table
relative_time_range=RelativeTimeRangeFilter(
anchor_phenotype=entry_phenotype,
when='after',
min_days=GreaterThanOrEqualTo(1),
max_days=LessThanOrEqualTo(365)
),
value_filter=ValueFilter(min_value=GreaterThanOrEqualTo(1)) # At least 1 hospitalization
)
result = post_index_hospitalizations.execute(tables)
Source code in phenex/phenotypes/time_range_count_phenotype.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | |
dependencies
property
Recursively collect all dependencies of a node (including dependencies of dependencies).
Returns:
| Type | Description |
|---|---|
Set[Node]
|
List[Node]: A list of Node objects on which this Node depends. |
dependency_graph
property
execution_metadata
property
Retrieve the full execution metadata row for this node from the local DuckDB database.
Returns:
| Type | Description |
|---|---|
|
pandas.Series: A series containing NODE_NAME, LAST_HASH, NODE_PARAMS, and LAST_EXECUTED for this node, or None if the node has never been executed. |
namespaced_table
property
A PhenotypeTable has generic column names 'person_id', 'boolean', 'event_date', and 'value'. The namespaced_table prepends the phenotype name to all of these columns. This is useful when joining multiple phenotype tables together.
Returns:
| Name | Type | Description |
|---|---|---|
table |
Table
|
The namespaced table for the current phenotype. |
reverse_dependency_graph
property
clear_cache(con=None, recursive=False)
Clear the cached state for this node, forcing re-execution on the next call to execute().
This method removes the node's hash from the node states table and optionally drops the materialized table from the database. After calling this method, the node will be treated as if it has never been executed before.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
con
|
Optional[object]
|
Database connector. If provided, will also drop the materialized table from the database. |
None
|
recursive
|
bool
|
If True, also clear the cache for all child nodes recursively. Defaults to False. |
False
|
Example
Source code in phenex/node.py
execute(tables=None, con=None, overwrite=False, lazy_execution=False, n_threads=1)
Executes the Node computation for the current node and its dependencies. Supports lazy execution using hash-based change detection to avoid recomputing Node's that have already executed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tables
|
Dict[str, Table]
|
A dictionary mapping domains to Table objects. |
None
|
con
|
Optional[object]
|
Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. |
None
|
overwrite
|
bool
|
If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. |
False
|
lazy_execution
|
bool
|
If True, only re-executes if the node's definition has changed. Defaults to False. You should pass overwrite=True with lazy_execution as lazy_execution is intended precisely for iterative updates to a node definition. You must pass a connector (to cache results) for lazy_execution to work. |
False
|
n_threads
|
int
|
Max number of Node's to execute simultaneously when this node has multiple children. |
1
|
Returns:
| Name | Type | Description |
|---|---|---|
Table |
Table
|
The resulting table for this node. Also accessible through self.table after calling self.execute(). |
Source code in phenex/node.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | |
visualize_dependencies()
Create a text visualization of the dependency graph for this node and its dependencies.
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
A text representation of the dependency graph |