Skip to content

TimeRangeCountPhenotype

Bases: Phenotype

TimeRangeCountPhenotype works with time range tables i.e. the input table must have a START_DATE and END_DATE column (in addition to PERSON_ID). It counts the number of distinct time ranges for each person, either total or within a specified date range (relative or absolute). If no relative_time_range defined, it returns the number of time periods per person. If relative_time_range is defined, it counts the number of time periods before or after (depending on when keyword argument of relative_time_range), NOT including the time period defined by the relative_time_range anchor.

If min_days or max_days of the relative_time_range are defined, the entire time period must be included in the relative time range i.e. if before, the start date of all time periods must be contained within the time range.

This can be used : - given an admission discharge table, to count the number of hospitalizations that occurred e.g. in the post index period - given a drug exposure table, to count the number of times a person has taken a medication

DATE: Date is always null VALUE: Number of distinct time periods in the specified time range.

Parameters:

Name Type Description Default
domain str

The domain of the phenotype.

required
name Optional[str]

The name of the phenotype. Optional. If not passed the name will be TimeRangeCountPhenotype.

None
relative_time_range Union[RelativeTimeRangeFilter, List[RelativeTimeRangeFilter]]

A relative time range filter or a list of filters to apply.

None
value_filter Optional[ValueFilter]

Filter persons by number of time ranges determined

None
allow_null_end_date bool

If True, allows time ranges with null END_DATE (ongoing periods). If False, removes such rows. Default is True.

True

Attributes:

Name Type Description
table PhenotypeTable

The resulting phenotype table after filtering (None until execute is called)

Examples:

Count hospitalizations in post-index period (OMOP)
from phenex.phenotypes import CodelistPhenotype, TimeRangeCountPhenotype
from phenex.filters import RelativeTimeRangeFilter
from phenex.filters.value import GreaterThanOrEqualTo, LessThanOrEqualTo

# Define entry phenotype (index date)
entry_phenotype = CodelistPhenotype(
    domain='CONDITION_OCCURRENCE',
    codelist=atrial_fibrillation_codes,
    return_date='first',
)

# Count hospitalizations in the 365 days after index
post_index_hospitalizations = TimeRangeCountPhenotype(
    domain='VISIT_OCCURRENCE',  # or admission-discharge table
    relative_time_range=RelativeTimeRangeFilter(
        anchor_phenotype=entry_phenotype,
        when='after',
        min_days=GreaterThanOrEqualTo(1),
        max_days=LessThanOrEqualTo(365)
    ),
    value_filter=ValueFilter(min_value=GreaterThanOrEqualTo(1))  # At least 1 hospitalization
)

result = post_index_hospitalizations.execute(tables)
Source code in phenex/phenotypes/time_range_count_phenotype.py
class TimeRangeCountPhenotype(Phenotype):
    """
    TimeRangeCountPhenotype works with time range tables i.e. the input table must have a START_DATE and END_DATE column (in addition to PERSON_ID). It counts the number of distinct time ranges for each person, either total or within a specified date range (relative or absolute). If no relative_time_range defined, it returns the number of time periods per person. If relative_time_range is defined, it counts the number of time periods before or after (depending on when keyword argument of relative_time_range), NOT including the time period defined by the relative_time_range anchor.

    If min_days or max_days of the relative_time_range are defined, the entire time period must be included in the relative time range i.e. if before, the start date of all time periods must be contained within the time range.

    This can be used :
    - given an admission discharge table, to count the number of hospitalizations that occurred e.g. in the post index period
    - given a drug exposure table, to count the number of times a person has taken a medication

    DATE: Date is always null
    VALUE: Number of distinct time periods in the specified time range.

    Parameters:
        domain: The domain of the phenotype.
        name: The name of the phenotype. Optional. If not passed the name will be TimeRangeCountPhenotype.
        relative_time_range: A relative time range filter or a list of filters to apply.
        value_filter: Filter persons by number of time ranges determined
        allow_null_end_date: If True, allows time ranges with null END_DATE (ongoing periods). If False, removes such rows. Default is True.

    Attributes:
        table (PhenotypeTable): The resulting phenotype table after filtering (None until execute is called)

    Examples:

    Example: Count hospitalizations in post-index period (OMOP)
        ```python
        from phenex.phenotypes import CodelistPhenotype, TimeRangeCountPhenotype
        from phenex.filters import RelativeTimeRangeFilter
        from phenex.filters.value import GreaterThanOrEqualTo, LessThanOrEqualTo

        # Define entry phenotype (index date)
        entry_phenotype = CodelistPhenotype(
            domain='CONDITION_OCCURRENCE',
            codelist=atrial_fibrillation_codes,
            return_date='first',
        )

        # Count hospitalizations in the 365 days after index
        post_index_hospitalizations = TimeRangeCountPhenotype(
            domain='VISIT_OCCURRENCE',  # or admission-discharge table
            relative_time_range=RelativeTimeRangeFilter(
                anchor_phenotype=entry_phenotype,
                when='after',
                min_days=GreaterThanOrEqualTo(1),
                max_days=LessThanOrEqualTo(365)
            ),
            value_filter=ValueFilter(min_value=GreaterThanOrEqualTo(1))  # At least 1 hospitalization
        )

        result = post_index_hospitalizations.execute(tables)
        ```
    """

    def __init__(
        self,
        domain: str,
        name: Optional[str] = None,
        date_range: DateFilter = None,  # TODO implement date_range
        relative_time_range: Union[
            RelativeTimeRangeFilter, List[RelativeTimeRangeFilter]
        ] = None,
        value_filter: Optional[ValueFilter] = None,
        allow_null_end_date: bool = True,
        **kwargs,
    ):
        if name is None:
            name = "TimeRangeCountPhenotype"
        super(TimeRangeCountPhenotype, self).__init__(name=name, **kwargs)

        self.date_range = date_range
        self.value_filter = value_filter
        self.domain = domain
        self.allow_null_end_date = allow_null_end_date
        if isinstance(relative_time_range, RelativeTimeRangeFilter):
            relative_time_range = [relative_time_range]

        self.relative_time_range = relative_time_range
        if self.relative_time_range is not None:
            for rtr in self.relative_time_range:
                if rtr.anchor_phenotype is not None:
                    self.add_children(rtr.anchor_phenotype)

    def _execute(self, tables: Dict[str, Table]) -> PhenotypeTable:
        table = tables[self.domain]

        # Filter out null values in START_DATE and END_DATE based on allow_null_end_date setting
        # Always remove rows with null START_DATE
        table = table.filter(table.START_DATE.notnull())

        # Remove rows with null END_DATE only if allow_null_end_date is False
        if not self.allow_null_end_date:
            table = table.filter(table.END_DATE.notnull())

        # Apply time filtering first if we have relative time ranges
        if self.relative_time_range is not None:
            time_filter = TimeRangeFilter(
                relative_time_range=self.relative_time_range,
                include_clipped_periods=False,  # Exclude periods that cross boundaries
                clip_periods=False,
            )
            table = time_filter.filter(table)

        # Count distinct time ranges per person
        # Each row represents a distinct time range (START_DATE, END_DATE combination)
        count_table = table.select(["PERSON_ID", "START_DATE", "END_DATE"]).distinct()
        count_table = count_table.group_by("PERSON_ID").aggregate(VALUE=_.count())

        # Apply value filtering if specified
        if self.value_filter is not None:
            count_table = self.value_filter.filter(count_table)

        # Create the final phenotype table with DATE as null (as specified in docstring)
        result_table = count_table.mutate(EVENT_DATE=ibis.null(date), BOOLEAN=True)

        # Select only the required phenotype columns
        result_table = select_phenotype_columns(result_table)

        if (
            self.value_filter is None
        ):  # only join on PERSON table if value filter is None
            # if persons table exist, join to get the persons with 0 time ranges
            if "PERSON" in tables.keys():
                table_persons = tables["PERSON"].select("PERSON_ID").distinct()
                result_table = table_persons.join(
                    result_table,
                    table_persons.PERSON_ID == result_table.PERSON_ID,
                    how="left",
                ).drop("PERSON_ID_right")
                # fill null VALUES with 0 for persons with no time ranges
                result_table = result_table.mutate(VALUE=result_table.VALUE.fillna(0))
        return self._perform_final_processing(result_table)

dependencies property

Recursively collect all dependencies of a node (including dependencies of dependencies).

Returns:

Type Description
Set[Node]

List[Node]: A list of Node objects on which this Node depends.

dependency_graph property

Build a dependency graph where each node maps to its direct dependencies (children).

Returns:

Type Description
Dict[Node, Set[Node]]

Dict[Node, Set[Node]: A mapping of Node's to their children Node's.

execution_metadata property

Retrieve the full execution metadata row for this node from the local DuckDB database.

Returns:

Type Description

pandas.DataFrame: A table containing NODE_NAME, NODE_HASH, NODE_PARAMS, EXECUTION_PARAMS, EXECUTION_START_TIME, EXECUTION_END_TIME, and EXECUTION_DURATION for execution of this node, or None if the node has never been executed.

namespaced_table property

A PhenotypeTable has generic column names 'person_id', 'boolean', 'event_date', and 'value'. The namespaced_table prepends the phenotype name to all of these columns. This is useful when joining multiple phenotype tables together.

Returns:

Name Type Description
table Table

The namespaced table for the current phenotype.

reverse_dependency_graph property

Build a reverse dependency graph where each node maps to nodes that depend on it (parents).

Returns:

Type Description
Dict[Node, Set[Node]]

Dict[Node, List[Node]: A mapping of Node's to their parent Node's.

clear_cache(con=None, recursive=False)

Clear the cached state for this node, forcing re-execution on the next call to execute().

This method removes the node's hash from the node states table and optionally drops the materialized table from the database. After calling this method, the node will be treated as if it has never been executed before.

Parameters:

Name Type Description Default
con Optional[object]

Database connector. If provided, clears only runs with matching execution context and drops the materialized table. If None, clears all runs for the node.

None
recursive bool

If True, also clear the cache for all child nodes recursively. Defaults to False.

False
Example
# Clear all cached runs for a single node
my_node.clear_cache()

# Clear runs with specific execution context and drop materialized table
my_node.clear_cache(con=my_connector)

# Clear cache for node and all its dependencies
my_node.clear_cache(recursive=True)
Source code in phenex/node.py
def clear_cache(self, con: Optional[object] = None, recursive: bool = False):
    """
    Clear the cached state for this node, forcing re-execution on the next call to execute().

    This method removes the node's hash from the node states table and optionally drops the materialized table from the database. After calling this method, the node will be treated as if it has never been executed before.

    Parameters:
        con: Database connector. If provided, clears only runs with matching execution context and drops the materialized table. If None, clears all runs for the node.
        recursive: If True, also clear the cache for all child nodes recursively. Defaults to False.

    Example:
        ```python
        # Clear all cached runs for a single node
        my_node.clear_cache()

        # Clear runs with specific execution context and drop materialized table
        my_node.clear_cache(con=my_connector)

        # Clear cache for node and all its dependencies
        my_node.clear_cache(recursive=True)
        ```
    """
    # Delegate all logic to NodeManager
    return Node._node_manager.clear_cache(self, con=con, recursive=recursive)

execute(tables=None, con=None, overwrite=False, lazy_execution=False, n_threads=1)

Executes the Node computation for the current node and its dependencies.

Lazy Execution

When lazy_execution=True, nodes are only recomputed if changes are detected. The system tracks: 1. Node definition changes: Detected by hashing the node's parameters (from to_dict()) and class name 2. Execution environment changes: Detected by tracking source/destination database configurations

A node will be rerun if either: - The node's defining parameters have changed (different hash than last execution) - The database connector's source or destination databases have changed - The node has never been executed before

If no changes are detected, the node uses its cached result from the database instead of recomputing.

Requirements for lazy execution: - A database connector (con) must be provided to store and retrieve cached results - overwrite=True must be set to allow updating existing cached tables

State tracking is maintained in a local DuckDB database (__PHENEX_META__NODE_STATES table) that stores: - Node hashes, parameters, and execution metadata - Database connector configuration used during execution - Execution timing information

Parameters:

Name Type Description Default
tables Dict[str, Table]

A dictionary mapping domains to Table objects.

None
con Optional[object]

Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. Required for lazy_execution.

None
overwrite bool

If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. Must be True when using lazy_execution.

False
lazy_execution bool

If True, only re-executes nodes when changes are detected in either the node definition or execution environment. Defaults to False. Requires con to be provided.

False
n_threads int

Max number of Node's to execute simultaneously when this node has multiple children.

1

Returns:

Name Type Description
Table Table

The resulting table for this node. Also accessible through self.table after calling self.execute().

Raises:

Type Description
ValueError

If lazy_execution=True but overwrite=False or con=None.

Source code in phenex/node.py
def execute(
    self,
    tables: Dict[str, Table] = None,
    con: Optional[object] = None,
    overwrite: bool = False,
    lazy_execution: bool = False,
    n_threads: int = 1,
) -> Table:
    """
    Executes the Node computation for the current node and its dependencies.

    Lazy Execution:
        When lazy_execution=True, nodes are only recomputed if changes are detected. The system tracks:
        1. Node definition changes: Detected by hashing the node's parameters (from to_dict()) and class name
        2. Execution environment changes: Detected by tracking source/destination database configurations

        A node will be rerun if either:
        - The node's defining parameters have changed (different hash than last execution)
        - The database connector's source or destination databases have changed
        - The node has never been executed before

        If no changes are detected, the node uses its cached result from the database instead of recomputing.

        Requirements for lazy execution:
        - A database connector (con) must be provided to store and retrieve cached results
        - overwrite=True must be set to allow updating existing cached tables

        State tracking is maintained in a local DuckDB database (__PHENEX_META__NODE_STATES table) that stores:
        - Node hashes, parameters, and execution metadata
        - Database connector configuration used during execution
        - Execution timing information

    Parameters:
        tables: A dictionary mapping domains to Table objects.
        con: Connection to database for materializing outputs. If provided, outputs from the node and all children nodes will be materialized (written) to the database using the connector. Required for lazy_execution.
        overwrite: If True, will overwrite any existing tables found in the database while writing. If False, will throw an error when an existing table is found. Has no effect if con is not passed. Must be True when using lazy_execution.
        lazy_execution: If True, only re-executes nodes when changes are detected in either the node definition or execution environment. Defaults to False. Requires con to be provided.
        n_threads: Max number of Node's to execute simultaneously when this node has multiple children.

    Returns:
        Table: The resulting table for this node. Also accessible through self.table after calling self.execute().

    Raises:
        ValueError: If lazy_execution=True but overwrite=False or con=None.
    """
    # Handle None tables
    if tables is None:
        tables = {}

    # Build dependency graph for all dependencies
    all_deps = self.dependencies
    nodes = {node.name: node for node in all_deps}
    nodes[self.name] = self  # Add self to the nodes

    # Build dependency and reverse graphs
    dependency_graph = self._build_dependency_graph(nodes)
    reverse_graph = self._build_reverse_graph(dependency_graph)

    # Track completion status and results
    completed = set()
    completion_lock = threading.Lock()
    worker_exceptions = []  # Track exceptions from worker threads
    stop_all_workers = (
        threading.Event()
    )  # Signal to stop all workers on first error

    # Track in-degree for scheduling
    in_degree = {}
    for node_name, dependencies in dependency_graph.items():
        in_degree[node_name] = len(dependencies)
    for node_name in nodes:
        if node_name not in in_degree:
            in_degree[node_name] = 0

    # Queue for nodes ready to execute
    ready_queue = queue.Queue()

    # Add nodes with no dependencies to ready queue
    for node_name, degree in in_degree.items():
        if degree == 0:
            ready_queue.put(node_name)

    def worker():
        """Worker function for thread pool"""
        while not stop_all_workers.is_set():
            try:
                node_name = ready_queue.get(timeout=1)
                # timeout forces to wait 1 second to avoid busy waiting
                if node_name is None:  # Sentinel value to stop worker
                    break
            except queue.Empty:
                continue

            try:
                logger.info(
                    f"Thread {threading.current_thread().name}: executing node '{node_name}'"
                )
                node = nodes[node_name]

                # Execute the node (without recursive child execution since we handle dependencies here)
                if lazy_execution:
                    if not overwrite:
                        raise ValueError(
                            "lazy_execution only works with overwrite=True."
                        )
                    if con is None:
                        raise ValueError(
                            "A DatabaseConnector is required for lazy execution."
                        )

                    if Node._node_manager.should_rerun(node, con):
                        # Time the execution
                        node.lastexecution_start_time = datetime.now()
                        table = node._execute(tables)

                        if (
                            table is not None
                        ):  # Only create table if _execute returns something
                            con.create_table(table, node_name, overwrite=overwrite)
                            table = con.get_dest_table(node_name)

                        node.lastexecution_end_time = datetime.now()
                        node.lastexecution_duration = (
                            node.lastexecution_end_time
                            - node.lastexecution_start_time
                        ).total_seconds()

                        Node._node_manager.update_run_params(node, con)
                    else:
                        table = con.get_dest_table(node_name)
                else:
                    # Time the execution
                    node.lastexecution_start_time = datetime.now()
                    table = node._execute(tables)

                    if (
                        con and table is not None
                    ):  # Only create table if _execute returns something
                        con.create_table(table, node_name, overwrite=overwrite)
                        table = con.get_dest_table(node_name)

                    node.lastexecution_end_time = datetime.now()
                    node.lastexecution_duration = (
                        node.lastexecution_end_time - node.lastexecution_start_time
                    ).total_seconds()

                node.table = table

                with completion_lock:
                    completed.add(node_name)

                    # Update in-degree for dependent nodes and add ready ones to queue
                    for dependent in reverse_graph.get(node_name, set()):
                        in_degree[dependent] -= 1
                        if in_degree[dependent] == 0:
                            # Check if all dependencies are completed
                            deps_completed = all(
                                dep in completed
                                for dep in dependency_graph.get(dependent, set())
                            )
                            if deps_completed:
                                ready_queue.put(dependent)

                # Log completion with timing info
                if node.lastexecution_duration is not None:
                    logger.info(
                        f"Thread {threading.current_thread().name}: completed node '{node_name}' "
                        f"in {node.lastexecution_duration:.3f} seconds"
                    )
                else:
                    logger.info(
                        f"Thread {threading.current_thread().name}: completed node '{node_name}' (cached)"
                    )

            except Exception as e:
                logger.error(f"Error executing node '{node_name}': {str(e)}")
                with completion_lock:
                    # Store exception for main thread
                    worker_exceptions.append(e)
                    # Signal all workers to stop immediately and exit worker loop
                    stop_all_workers.set()
                    break
            finally:
                ready_queue.task_done()

    # Start worker threads
    threads = []
    for i in range(min(n_threads, len(nodes))):
        thread = threading.Thread(target=worker, name=f"PhenexWorker-{i}")
        thread.daemon = True
        thread.start()
        threads.append(thread)

    # Wait for all nodes to complete or for an error to occur
    while (
        len(completed) < len(nodes)
        and not worker_exceptions
        and not stop_all_workers.is_set()
    ):
        threading.Event().wait(0.1)  # Small delay to prevent busy waiting

    if not stop_all_workers.is_set():
        # Time to stop workers and cleanup
        stop_all_workers.set()

    # Check if any worker thread had an exception
    if worker_exceptions:
        # Signal workers to stop
        for _ in threads:
            ready_queue.put(None)
        # Wait for threads to finish
        for thread in threads:
            thread.join(timeout=1)
        # Re-raise the first exception
        raise worker_exceptions[0]

    # Signal workers to stop and wait for them
    for _ in threads:
        ready_queue.put(None)  # Sentinel value to stop workers

    for thread in threads:
        thread.join(timeout=1)

    logger.info(
        f"Node '{self.name}': completed multithreaded execution of {len(nodes)} nodes"
    )
    return self.table

visualize_dependencies()

Create a text visualization of the dependency graph for this node and its dependencies.

Returns:

Name Type Description
str str

A text representation of the dependency graph

Source code in phenex/node.py
def visualize_dependencies(self) -> str:
    """
    Create a text visualization of the dependency graph for this node and its dependencies.

    Returns:
        str: A text representation of the dependency graph
    """
    lines = [f"Dependencies for Node '{self.name}':"]

    # Get all dependencies
    all_deps = self.dependencies
    nodes = {node.name: node for node in all_deps}
    nodes[self.name] = self  # Add self to the nodes

    # Build dependency graph
    dependency_graph = self._build_dependency_graph(nodes)

    for node_name in sorted(nodes.keys()):
        dependencies = dependency_graph.get(node_name, set())
        if dependencies:
            deps_str = ", ".join(sorted(dependencies))
            lines.append(f"  {node_name} depends on: {deps_str}")
        else:
            lines.append(f"  {node_name} (no dependencies)")

    return "\n".join(lines)