Skip to content

Waterfall

Bases: Reporter

A waterfall diagram, also known as an attrition table, shows how inclusion/exclusion criteria contribute to a final population size. Each inclusion/exclusion criteria is a row in the table, and the number of patients remaining after applying that criteria are shown on that row.

Column name Description
Type The type of the phenotype, either entry, inclusion or exclusion
Name The name of entry, inclusion or exclusion criteria
N The absolute number of patients that fulfill that phenotype. For the entry criterium this is the absolute number in the dataset. For inclusion/exclusion criteria this is the number of patients that fulfill the entry criterium AND the phenotype and that row.
Remaining The number of patients remaining in the cohort after sequentially applying the inclusion/exclusion criteria in the order that they are listed in this table.
% The percentage of patients who fulfill the entry criterion who are remaining in the cohort after application of the phenotype on that row
Delta The change in number of patients that occurs by applying the phenotype on that row.
Source code in phenex/reporting/waterfall.py
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
class Waterfall(Reporter):
    """
    A waterfall diagram, also known as an attrition table, shows how inclusion/exclusion criteria contribute to a final population size. Each inclusion/exclusion criteria is a row in the table, and the number of patients remaining after applying that criteria are shown on that row.

    | Column name | Description |
    | --- | --- |
    | Type | The type of the phenotype, either entry, inclusion or exclusion |
    | Name | The name of entry, inclusion or exclusion criteria |
    | N | The absolute number of patients that fulfill that phenotype. For the entry criterium this is the absolute number in the dataset. For inclusion/exclusion criteria this is the number of patients that fulfill the entry criterium AND the phenotype and that row. |
    | Remaining | The number of patients remaining in the cohort after sequentially applying the inclusion/exclusion criteria in the order that they are listed in this table. |
    | % | The percentage of patients who fulfill the entry criterion who are remaining in the cohort after application of the phenotype on that row |
    | Delta | The change in number of patients that occurs by applying the phenotype on that row. |

    """

    def execute(self, cohort: "Cohort") -> pd.DataFrame:
        self.cohort = cohort
        logger.debug(f"Beginning execution of waterfall. Calculating N patents")
        N = (
            cohort.index_table.filter(cohort.index_table.BOOLEAN == True)
            .select("PERSON_ID")
            .distinct()
            .count()
            .execute()
        )
        logger.debug(f"Cohort has {N} patients")
        # create info dictionaries for each phenotype containing counts
        self.ds = []
        table = cohort.entry_criterion.table
        N_entry = table.count().execute()
        index = 1
        self.ds.append(
            {
                "Type": "entry",
                "Level": 0,
                "Index": str(index),
                "Name": (
                    cohort.entry_criterion.display_name
                    if self.pretty_display
                    else cohort.entry_criterion.name
                ),
                "N": N_entry,
                "Remaining": table.count().execute(),
            }
        )

        if self.include_component_phenotypes_level is not None:
            self._append_components_recursively(
                cohort.entry_criterion, table, parent_index=str(index)
            )

        for inclusion in cohort.inclusions:
            index += 1
            table = self.append_phenotype_to_waterfall(
                table, inclusion, "inclusion", level=0, index=index
            )
            if self.include_component_phenotypes_level is not None:
                self._append_components_recursively(
                    inclusion, table, parent_index=str(index)
                )

        for exclusion in cohort.exclusions:
            index += 1
            table = self.append_phenotype_to_waterfall(
                table, exclusion, "exclusion", level=0, index=index
            )
            if self.include_component_phenotypes_level is not None:
                self._append_components_recursively(
                    exclusion, table, parent_index=str(index)
                )

        # Calculate deltas before adding first/last rows
        self.ds = self.append_delta(self.ds)

        # create dataframe with phenotype counts (without first/last rows)
        self.df = pd.DataFrame(self.ds)

        # calculate percentage of entry criterion
        self.df["% Remaining"] = self.df["Remaining"] / N_entry * 100
        self.df["% N"] = self.df["N"] / N_entry * 100

        # Calculate % Source Database column before rounding
        # Entry row gets a percentage, middle rows get NaN, last row will be added after concat
        entry_pct = N_entry / cohort.n_persons_in_source_database * 100

        # Round all numeric columns including % Source Database
        self.df = self.df.round(self.decimal_places)

        # first row data
        first_row_data = {
            "Type": "info",
            "Name": "N persons in database",
            "N": cohort.n_persons_in_source_database,
            "Level": 0,
            "Index": "",
        }

        # last rows via concatenation (they won't have percentages calculated)
        last_row_data = {
            "Type": "info",
            "Name": "Final Cohort Size",
            "Remaining": N,
            "% Remaining": round(100 * N / N_entry, self.decimal_places),
            "Level": 0,
            "Index": "",
        }

        # Concatenate: first row + main dataframe + last row
        first_row_df = pd.DataFrame([first_row_data])
        last_row_df = pd.DataFrame([last_row_data])
        self.df = pd.concat([first_row_df, self.df, last_row_df], ignore_index=True)

        entry_pct = round(
            N_entry / cohort.n_persons_in_source_database * 100, self.decimal_places
        )
        final_pct = round(
            N / cohort.n_persons_in_source_database * 100, self.decimal_places
        )

        self.df["% Source Database"] = (
            [np.nan, entry_pct] + [np.nan] * (self.df.shape[0] - 3) + [final_pct]
        )

        if self.pretty_display:
            self.create_pretty_display()

        # Do final column selection (keep _color if it exists for styling)
        columns_to_select = [
            "Type",
            "Index",
            "Name",
            "N",
            "% N",
            "Remaining",
            "% Remaining",
            "Delta",
            "% Source Database",
        ]

        # Add _color column if it exists
        if "_color" in self.df.columns:
            columns_to_select.append("_color")

        self.df = self.df[columns_to_select]

        # Return styled dataframe if pretty display is enabled
        if self.pretty_display and "_color" in self.df.columns:
            return self._apply_styling()

        return self.df

    def _append_components_recursively(
        self, current_phenotype, table, level=1, parent_index=""
    ):
        if level <= self.include_component_phenotypes_level:
            for i, child in enumerate(current_phenotype.children):
                current_index = f"{parent_index}.{i+1}"
                current_name = child.display_name if self.pretty_display else child.name
                self.append_phenotype_to_waterfall(
                    table,
                    child,
                    "component",
                    full_name=current_name,
                    index=current_index,
                    level=level,
                )
                self._append_components_recursively(
                    child, table, level + 1, parent_index=current_index
                )

    def append_phenotype_to_waterfall(
        self, table, phenotype, type, level, index=None, full_name=None
    ):
        if type == "inclusion":
            table = table.inner_join(
                phenotype.table, table["PERSON_ID"] == phenotype.table["PERSON_ID"]
            )
        elif type == "exclusion":
            table = table.filter(~table["PERSON_ID"].isin(phenotype.table["PERSON_ID"]))
        elif type == "component":
            table = table
        else:
            raise ValueError("type must be either inclusion or exclusion")
        logger.debug(f"Starting {type} criteria {phenotype.name}")

        if full_name is None:
            full_name = (
                phenotype.display_name if self.pretty_display else phenotype.name
            )

        self.ds.append(
            {
                "Type": type,
                "Name": full_name,
                "Level": level,
                "Index": index if index is not None else str(level),
                "N": phenotype.table.select("PERSON_ID").distinct().count().execute(),
                "Remaining": (
                    table.select("PERSON_ID").distinct().count().execute()
                    if type != "component"
                    else np.nan
                ),
            }
        )
        logger.debug(
            f"Finished {type} criteria {phenotype.name}: N = {self.ds[-1]['N']} waterfall = {self.ds[-1]['Remaining']}"
        )
        return table.select("PERSON_ID")

    def create_pretty_display(self):
        """Format dataframe for display and apply color styling"""
        # Add colors before any transformations
        self._add_row_colors()

        # Format numeric columns as strings
        self._format_numeric_columns()

        # Replace NAs and None values with empty strings
        self.df = self.df.replace("<NA>", "")

        # Create sparse type column (show type only once per section)
        self._create_sparse_type_column()

    def _add_row_colors(self):
        """Add HSL colors to each row based on type and level"""
        color_map = self._get_color_map()

        self.df["_color"] = None
        last_parent_color = None

        for idx, row in self.df.iterrows():
            row_type = self._get_effective_type(row)
            level = row.get("Level", 0)

            # Determine base color
            if row_type == "component":
                base_color = last_parent_color
            else:
                base_color = color_map.get(row_type, (0, 0, 100))
                last_parent_color = base_color

            # Apply brightness adjustment and convert to CSS string
            adjusted_color = self._adjust_brightness(base_color, level)
            self.df.at[idx, "_color"] = self._hsl_to_string(adjusted_color)

    def _format_numeric_columns(self):
        """Convert numeric columns to formatted strings with thousand separators"""
        # Format integer columns with commas
        self.df["N"] = self.df["N"].apply(
            lambda x: f"{int(x):,}" if pd.notna(x) else ""
        )
        self.df["Delta"] = self.df["Delta"].apply(
            lambda x: f"{int(x):,}" if pd.notna(x) else ""
        )
        self.df["Remaining"] = self.df["Remaining"].apply(
            lambda x: f"{int(x):,}" if pd.notna(x) else ""
        )

        # Format percentage columns without commas (they won't need them)
        self.df["% Remaining"] = self.df["% Remaining"].astype("Float64").astype(str)
        self.df["% N"] = self.df["% N"].astype("Float64").astype(str)
        self.df["% Source Database"] = (
            self.df["% Source Database"].astype("Float64").astype(str)
        )

    def _apply_styling(self):
        """Apply background colors to dataframe rows"""

        def apply_row_color(row):
            color = row.get("_color")
            if color and pd.notna(color):
                return [f"background-color: {color}" for _ in row]
            return ["" for _ in row]

        # Create styled dataframe (keeping _color column for now)
        styled_df = self.df.style.apply(apply_row_color, axis=1)

        # Hide the _color column in display
        styled_df = styled_df.hide(subset=["_color"], axis="columns")

        return styled_df

    def to_excel(self, filepath, sheet_name="Waterfall"):
        """
        Export waterfall report to Excel with color styling.
        All cells are formatted as text to prevent Excel auto-formatting.

        Args:
            filepath: Path to save the Excel file
            sheet_name: Name of the Excel sheet (default: 'Waterfall')
        """
        try:
            from openpyxl import Workbook
            from openpyxl.styles import PatternFill, Font, Alignment
            from openpyxl.utils.dataframe import dataframe_to_rows
        except ImportError:
            raise ImportError(
                "openpyxl is required for Excel export. Install with: pip install openpyxl"
            )

        # Get dataframe without _color column for export
        if "_color" in self.df.columns:
            export_df = self.df.drop(columns=["_color"])
            colors = self.df["_color"].tolist()
        else:
            export_df = self.df
            colors = [None] * len(self.df)

        # Create workbook and worksheet
        wb = Workbook()
        ws = wb.active
        ws.title = sheet_name

        # Write headers
        headers = list(export_df.columns)
        for col_idx, header in enumerate(headers, start=1):
            cell = ws.cell(row=1, column=col_idx, value=header)
            # Style header
            cell.fill = PatternFill(
                start_color="366092", end_color="366092", fill_type="solid"
            )
            cell.font = Font(bold=True, color="FFFFFF")
            cell.alignment = Alignment(horizontal="left", vertical="center")

        # Write data rows and apply styling
        for row_idx, (df_idx, row_data) in enumerate(export_df.iterrows(), start=2):
            color = colors[df_idx] if df_idx < len(colors) else None

            # Get fill pattern for this row
            fill = None
            if color and pd.notna(color):
                hex_color = self._hsl_to_hex(color)
                if hex_color:
                    fill = PatternFill(
                        start_color=hex_color, end_color=hex_color, fill_type="solid"
                    )

            # Write each cell as text
            for col_idx, value in enumerate(row_data, start=1):
                # Convert value to string and write
                cell_value = str(value) if pd.notna(value) else ""
                cell = ws.cell(row=row_idx, column=col_idx, value=cell_value)

                # Force cell to be text format (prevents Excel auto-formatting)
                cell.number_format = "@"  # '@' is the Excel format code for text
                cell.alignment = Alignment(horizontal="left", vertical="center")

                # Apply background color
                if fill:
                    cell.fill = fill

        # Auto-adjust column widths
        for column in ws.columns:
            max_length = 0
            column_letter = column[0].column_letter
            for cell in column:
                try:
                    if len(str(cell.value)) > max_length:
                        max_length = len(str(cell.value))
                except:
                    pass
            adjusted_width = min(max_length + 2, 50)  # Cap at 50 characters
            ws.column_dimensions[column_letter].width = adjusted_width

        # Save workbook
        wb.save(filepath)
        logger.info(f"Waterfall report exported to {filepath}")

    def _hsl_to_hex(self, hsl_string):
        """Convert HSL color string to hex for Excel"""
        import re

        # Parse HSL string like 'hsl(284, 16%, 24%)'
        match = re.match(r"hsl\((\d+),\s*(\d+)%,\s*(\d+)%\)", hsl_string)
        if not match:
            return None

        h, s, l = int(match.group(1)), int(match.group(2)), int(match.group(3))

        # Convert HSL to RGB
        h = h / 360.0
        s = s / 100.0
        l = l / 100.0

        def hue_to_rgb(p, q, t):
            if t < 0:
                t += 1
            if t > 1:
                t -= 1
            if t < 1 / 6:
                return p + (q - p) * 6 * t
            if t < 1 / 2:
                return q
            if t < 2 / 3:
                return p + (q - p) * (2 / 3 - t) * 6
            return p

        if s == 0:
            r = g = b = l
        else:
            q = l * (1 + s) if l < 0.5 else l + s - l * s
            p = 2 * l - q
            r = hue_to_rgb(p, q, h + 1 / 3)
            g = hue_to_rgb(p, q, h)
            b = hue_to_rgb(p, q, h - 1 / 3)

        # Convert to hex
        r_hex = format(int(r * 255), "02x")
        g_hex = format(int(g * 255), "02x")
        b_hex = format(int(b * 255), "02x")

        return f"{r_hex}{g_hex}{b_hex}".upper()

    def append_delta(self, ds):
        ds[0]["Delta"] = np.nan
        previous_remaining = ds[0]["Remaining"]
        for i in range(1, len(ds) - 1):
            d_current = ds[i]
            d_previous = ds[i - 1]
            if pd.isna(d_current["Remaining"]):
                d_current["Delta"] = np.nan
                continue
            print(f"Current: {d_current['Remaining']}, Previous: {previous_remaining}")
            d_current["Delta"] = d_current["Remaining"] - previous_remaining
            previous_remaining = d_current["Remaining"]
        return ds

    def _get_color_map(self):
        """Return HSL color definitions for each row type"""
        return {
            "entry": (208, 67, 75),  # Blue
            "inclusion": (88, 51, 66),  # Green
            "exclusion": (347, 62, 77),  # Rasperry
            "component": None,  # Inherits from parent
            "final_cohort": (0, 0, 100),  # Light gray
        }

    def _get_effective_type(self, row):
        """Get the effective type of a row (component if Type is empty)"""
        return row["Type"] if row["Type"] != "" else "component"

    def _adjust_brightness(self, hsl_tuple, level):
        """Increase lightness based on component nesting level"""
        if hsl_tuple is None:
            return None
        h, s, l = hsl_tuple
        brightness_increase = min(level * 10, 30)  # +10% per level, max +30%
        adjusted_l = min(l + brightness_increase, 95)  # Cap at 95%
        return (h, s, adjusted_l)

    def _hsl_to_string(self, hsl_tuple):
        """Convert HSL tuple to CSS color string"""
        if hsl_tuple is None:
            return None
        h, s, l = hsl_tuple
        return f"hsl({h}, {s}%, {l}%)"

    def _create_sparse_type_column(self):
        """Show type label only once per section (not repeated on each row)"""
        previous_type = None
        sparse_types = []
        for _type in self.df["Type"].values:
            if _type != previous_type and _type != "component":
                sparse_types.append(_type)
                previous_type = _type
            else:
                sparse_types.append("")
        self.df["Type"] = sparse_types

create_pretty_display()

Format dataframe for display and apply color styling

Source code in phenex/reporting/waterfall.py
def create_pretty_display(self):
    """Format dataframe for display and apply color styling"""
    # Add colors before any transformations
    self._add_row_colors()

    # Format numeric columns as strings
    self._format_numeric_columns()

    # Replace NAs and None values with empty strings
    self.df = self.df.replace("<NA>", "")

    # Create sparse type column (show type only once per section)
    self._create_sparse_type_column()

to_excel(filepath, sheet_name='Waterfall')

Export waterfall report to Excel with color styling. All cells are formatted as text to prevent Excel auto-formatting.

Parameters:

Name Type Description Default
filepath

Path to save the Excel file

required
sheet_name

Name of the Excel sheet (default: 'Waterfall')

'Waterfall'
Source code in phenex/reporting/waterfall.py
def to_excel(self, filepath, sheet_name="Waterfall"):
    """
    Export waterfall report to Excel with color styling.
    All cells are formatted as text to prevent Excel auto-formatting.

    Args:
        filepath: Path to save the Excel file
        sheet_name: Name of the Excel sheet (default: 'Waterfall')
    """
    try:
        from openpyxl import Workbook
        from openpyxl.styles import PatternFill, Font, Alignment
        from openpyxl.utils.dataframe import dataframe_to_rows
    except ImportError:
        raise ImportError(
            "openpyxl is required for Excel export. Install with: pip install openpyxl"
        )

    # Get dataframe without _color column for export
    if "_color" in self.df.columns:
        export_df = self.df.drop(columns=["_color"])
        colors = self.df["_color"].tolist()
    else:
        export_df = self.df
        colors = [None] * len(self.df)

    # Create workbook and worksheet
    wb = Workbook()
    ws = wb.active
    ws.title = sheet_name

    # Write headers
    headers = list(export_df.columns)
    for col_idx, header in enumerate(headers, start=1):
        cell = ws.cell(row=1, column=col_idx, value=header)
        # Style header
        cell.fill = PatternFill(
            start_color="366092", end_color="366092", fill_type="solid"
        )
        cell.font = Font(bold=True, color="FFFFFF")
        cell.alignment = Alignment(horizontal="left", vertical="center")

    # Write data rows and apply styling
    for row_idx, (df_idx, row_data) in enumerate(export_df.iterrows(), start=2):
        color = colors[df_idx] if df_idx < len(colors) else None

        # Get fill pattern for this row
        fill = None
        if color and pd.notna(color):
            hex_color = self._hsl_to_hex(color)
            if hex_color:
                fill = PatternFill(
                    start_color=hex_color, end_color=hex_color, fill_type="solid"
                )

        # Write each cell as text
        for col_idx, value in enumerate(row_data, start=1):
            # Convert value to string and write
            cell_value = str(value) if pd.notna(value) else ""
            cell = ws.cell(row=row_idx, column=col_idx, value=cell_value)

            # Force cell to be text format (prevents Excel auto-formatting)
            cell.number_format = "@"  # '@' is the Excel format code for text
            cell.alignment = Alignment(horizontal="left", vertical="center")

            # Apply background color
            if fill:
                cell.fill = fill

    # Auto-adjust column widths
    for column in ws.columns:
        max_length = 0
        column_letter = column[0].column_letter
        for cell in column:
            try:
                if len(str(cell.value)) > max_length:
                    max_length = len(str(cell.value))
            except:
                pass
        adjusted_width = min(max_length + 2, 50)  # Cap at 50 characters
        ws.column_dimensions[column_letter].width = adjusted_width

    # Save workbook
    wb.save(filepath)
    logger.info(f"Waterfall report exported to {filepath}")