{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "bef88828",
   "metadata": {},
   "source": [
    "# Propensity Score Matcher\n",
    "\n",
    "In this notebook, we show the basic usage of the PropensityScoreMatcher. Unlike the GeneticMatcher and ConstraintSatisfactionMatcher, the PropensityScoreMatcher does not directly optimize a  particular balance score. Instead, the PropensityScoreMatcher uses the given objective as a measure of \"correctness\" of the propensity score model. The matcher tries a (possibly large) number of potential models and returns the model with the best score according to the given metric. In doing this, we are essentially automating an often manual process of hyperparameter optimization that accompanies propensity score matching.\n",
    "\n",
    "We show that the hyperparameter search still leaves unoptimized balance by apply a ConstraintSatisfactionMatcher\n",
    "to the resulting population from the PropensityScoreMatcher. The residual unoptimzed balance highlights a major\n",
    "limitation of propensity score matching in general."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "347d7457",
   "metadata": {},
   "outputs": [],
   "source": [
    "import logging \n",
    "logging.basicConfig(\n",
    "    format=\"%(levelname)-4s [%(filename)s:%(lineno)d] %(message)s\",\n",
    "    level='INFO',\n",
    ")\n",
    "\n",
    "from pybalance.utils import *\n",
    "from pybalance.sim import generate_toy_dataset\n",
    "from pybalance.propensity import PropensityScoreMatcher, plot_propensity_score_match_distributions\n",
    "from pybalance.visualization import (\n",
    "    plot_numeric_features, \n",
    "    plot_categoric_features, \n",
    "    plot_binary_features,\n",
    "    plot_joint_numeric_distributions,\n",
    "    plot_per_feature_loss\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "8dd76114",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "        <b>Headers Numeric: </b><br>\n",
       "        ['age', 'height', 'weight']<br><br>\n",
       "        <b>Headers Categoric: </b><br>\n",
       "        ['gender', 'haircolor', 'country', 'binary_0', 'binary_1', 'binary_2', 'binary_3'] <br><br>\n",
       "        <b>Populations</b> <br>\n",
       "        ['pool', 'target'] <br>\n",
       "        <div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>height</th>\n",
       "      <th>weight</th>\n",
       "      <th>gender</th>\n",
       "      <th>haircolor</th>\n",
       "      <th>country</th>\n",
       "      <th>population</th>\n",
       "      <th>binary_0</th>\n",
       "      <th>binary_1</th>\n",
       "      <th>binary_2</th>\n",
       "      <th>binary_3</th>\n",
       "      <th>patient_id</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>60.807949</td>\n",
       "      <td>173.610298</td>\n",
       "      <td>77.912924</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>45.810836</td>\n",
       "      <td>170.541198</td>\n",
       "      <td>112.416988</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>58.876976</td>\n",
       "      <td>188.138610</td>\n",
       "      <td>108.789013</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>73.398077</td>\n",
       "      <td>162.939196</td>\n",
       "      <td>65.345017</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>56.890587</td>\n",
       "      <td>156.386701</td>\n",
       "      <td>78.140295</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>995</th>\n",
       "      <td>39.662026</td>\n",
       "      <td>162.692755</td>\n",
       "      <td>54.607476</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>10995</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>996</th>\n",
       "      <td>49.130301</td>\n",
       "      <td>141.583192</td>\n",
       "      <td>103.798145</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>10996</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>997</th>\n",
       "      <td>68.035281</td>\n",
       "      <td>168.744482</td>\n",
       "      <td>56.499644</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10997</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>998</th>\n",
       "      <td>62.044564</td>\n",
       "      <td>177.796983</td>\n",
       "      <td>75.983973</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10998</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>51.243734</td>\n",
       "      <td>161.013556</td>\n",
       "      <td>86.513956</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>10999</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>11000 rows × 12 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "<pybalance.utils.matching_data.MatchingData at 0x7f87307d9070>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "m = generate_toy_dataset(n_pool=10000, n_target=1000, seed=123)\n",
    "m"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3cc6d22-3960-462f-bbfb-095ce6964d6b",
   "metadata": {},
   "source": [
    "## Optimize Beta (Mean Absolute SMD)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "417e9766-9503-4be1-a4ec-8ecd8031f4f5",
   "metadata": {},
   "source": [
    "Using the given objective function, search max_iter possible different propensity score models and take the model that gives the best match given that objective function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ddfa32bc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'objective': 'beta',\n",
       " 'caliper': None,\n",
       " 'max_iter': 100,\n",
       " 'time_limit': 300,\n",
       " 'method': 'greedy'}"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Note that using a caliper can result in matched population being \n",
    "# smaller than target! If this is undesired, do not use a caliper.\n",
    "objective = beta = BetaBalance(m)\n",
    "matcher = PropensityScoreMatcher(\n",
    "    matching_data=m,\n",
    "    objective=objective,\n",
    "    time_limit=300,\n",
    "    max_iter=100)\n",
    "matcher.get_params()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ecbbc9be",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO [matcher.py:180] Training model LogisticRegression (iter 1/100, 0.000 min) ...\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 0.023702966007283093\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l2\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0444\n",
      "INFO [matcher.py:141] \tSolution time: 0.001 min\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 2/100, 0.001 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 3/100, 0.002 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 4/100, 0.003 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 23.61454798133838\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0373\n",
      "INFO [matcher.py:141] \tSolution time: 0.017 min\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 5/100, 0.017 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 6/100, 0.021 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 7/100, 0.022 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 8/100, 0.035 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 9/100, 0.036 min) ...\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 2.490445640066153\n",
      "INFO [matcher.py:139] \t* fit_intercept: True\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0345\n",
      "INFO [matcher.py:141] \tSolution time: 0.039 min\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 10/100, 0.039 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 11/100, 0.052 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 12/100, 0.065 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 13/100, 0.069 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 14/100, 0.070 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 15/100, 0.071 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 16/100, 0.072 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 17/100, 0.073 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 18/100, 0.074 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 19/100, 0.075 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 20/100, 0.077 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 21/100, 0.078 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 22/100, 0.088 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 23/100, 0.098 min) ...\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 0.28866833556559457\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0311\n",
      "INFO [matcher.py:141] \tSolution time: 0.111 min\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 24/100, 0.111 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 25/100, 0.112 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 26/100, 0.125 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 27/100, 0.126 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 28/100, 0.127 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 29/100, 0.128 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 30/100, 0.133 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 31/100, 0.134 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 32/100, 0.135 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 33/100, 0.135 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 34/100, 0.136 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 35/100, 0.137 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 36/100, 0.138 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 37/100, 0.139 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 38/100, 0.140 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 39/100, 0.156 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 40/100, 0.156 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 41/100, 0.158 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 42/100, 0.158 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 43/100, 0.159 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 44/100, 0.172 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 45/100, 0.186 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 46/100, 0.186 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 47/100, 0.199 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 48/100, 0.200 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 49/100, 0.205 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 50/100, 0.206 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 51/100, 0.208 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 52/100, 0.209 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 53/100, 0.214 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 54/100, 0.214 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 55/100, 0.215 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 56/100, 0.216 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 57/100, 0.217 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 58/100, 0.230 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 59/100, 0.231 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 60/100, 0.232 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 61/100, 0.233 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 62/100, 0.234 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 63/100, 0.234 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 64/100, 0.236 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 65/100, 0.237 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 66/100, 0.238 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 67/100, 0.239 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 68/100, 0.240 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 69/100, 0.241 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 70/100, 0.242 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 0.6191810056908827\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0307\n",
      "INFO [matcher.py:141] \tSolution time: 0.256 min\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 71/100, 0.256 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 72/100, 0.259 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 73/100, 0.260 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 74/100, 0.261 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 75/100, 0.274 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 76/100, 0.277 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 77/100, 0.278 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 78/100, 0.279 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 79/100, 0.280 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 80/100, 0.281 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 81/100, 0.291 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 82/100, 0.304 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 83/100, 0.305 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 84/100, 0.306 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 85/100, 0.307 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 86/100, 0.307 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 87/100, 0.308 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 88/100, 0.309 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 89/100, 0.310 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 90/100, 0.315 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 91/100, 0.316 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 92/100, 0.317 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 93/100, 0.318 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 94/100, 0.319 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 95/100, 0.319 min) ...\n",
      "INFO [matcher.py:180] Training model LogisticRegression (iter 96/100, 0.320 min) ...\n",
      "/opt/miniconda3/envs/pybalance/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
      "  warnings.warn(\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 97/100, 0.333 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 98/100, 0.334 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 99/100, 0.335 min) ...\n",
      "INFO [matcher.py:180] Training model SGDClassifier (iter 100/100, 0.336 min) ...\n",
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 0.6191810056908827\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0307\n",
      "INFO [matcher.py:141] \tSolution time: 0.256 min\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <b>Headers Numeric: </b><br>\n",
       "        ['age', 'height', 'weight']<br><br>\n",
       "        <b>Headers Categoric: </b><br>\n",
       "        ['gender', 'haircolor', 'country', 'binary_0', 'binary_1', 'binary_2', 'binary_3'] <br><br>\n",
       "        <b>Populations</b> <br>\n",
       "        ['pool', 'target'] <br>\n",
       "        <div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>height</th>\n",
       "      <th>weight</th>\n",
       "      <th>gender</th>\n",
       "      <th>haircolor</th>\n",
       "      <th>country</th>\n",
       "      <th>population</th>\n",
       "      <th>binary_0</th>\n",
       "      <th>binary_1</th>\n",
       "      <th>binary_2</th>\n",
       "      <th>binary_3</th>\n",
       "      <th>patient_id</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>5781</th>\n",
       "      <td>74.382687</td>\n",
       "      <td>194.082038</td>\n",
       "      <td>118.760023</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>5</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>5781</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6714</th>\n",
       "      <td>66.581290</td>\n",
       "      <td>178.545534</td>\n",
       "      <td>102.566840</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>6714</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9937</th>\n",
       "      <td>61.860293</td>\n",
       "      <td>159.449219</td>\n",
       "      <td>108.945960</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>9937</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8223</th>\n",
       "      <td>46.656414</td>\n",
       "      <td>140.392554</td>\n",
       "      <td>65.453208</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>8223</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>962</th>\n",
       "      <td>52.829914</td>\n",
       "      <td>137.725077</td>\n",
       "      <td>93.206007</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>962</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>995</th>\n",
       "      <td>39.662026</td>\n",
       "      <td>162.692755</td>\n",
       "      <td>54.607476</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>10995</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>996</th>\n",
       "      <td>49.130301</td>\n",
       "      <td>141.583192</td>\n",
       "      <td>103.798145</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>10996</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>997</th>\n",
       "      <td>68.035281</td>\n",
       "      <td>168.744482</td>\n",
       "      <td>56.499644</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10997</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>998</th>\n",
       "      <td>62.044564</td>\n",
       "      <td>177.796983</td>\n",
       "      <td>75.983973</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10998</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>51.243734</td>\n",
       "      <td>161.013556</td>\n",
       "      <td>86.513956</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>10999</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2000 rows × 12 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "<pybalance.utils.matching_data.MatchingData at 0x7f8753237a60>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "matcher.match()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a4a58de1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<seaborn.axisgrid.FacetGrid at 0x7f8730ed4bb0>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgI0lEQVR4nO3deVxUVf8H8M/MsA0qiCBrCKigaAoqSWi5JIpZ/bRFzTKVX2FPypOGS2nuWpiZUWnypD/NyrUyn3o0zSjEhDA36kncUENlUVRCFpmBOb8/JoZGFmefAT7v14uXzp1z7v3e43gu3zn3nCsRQggQEREREREZSGrtAIiIiIiIqGljUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFEREREREZhUkFkYosWLUJ4eLjJ95uamgqJRILi4mKT79sUJk2ahFGjRlk7DCIik2ipfTmRoZhUEDWipf2iHBgYCIlEovVzzz33WDssIiKjtJS+vCZhaewnNTXV2mFSM2Vn7QCIyLYsWbIEcXFxmtcymcyK0RARka769euH/Px8zetp06ahpKQEGzdu1Gxr166d5u8KhQIODg4WjZGaL45UULMwaNAg/POf/8T06dPh5uYGLy8vrFu3DmVlZYiNjUWbNm3QuXNnfPvtt5o61dXVeP755xEUFAS5XI4uXbrgvffe07y/aNEibNq0Cf/+97/rfMNz+fJljBs3Du3atUOrVq0QERGBzMxMrZg+/fRTBAYGwtXVFU8//TRu3bqleU+lUiExMVFz7LCwMHzxxRda9ffs2YOQkBDI5XIMHjwYFy9eNH3D1aNNmzbw9vbW/LRv3/6ubVWfL774Aj169IBcLoe7uzuio6NRVlameX/9+vUIDQ2Fk5MTunbtig8//NDcp0ZENo59uXEcHBy0+m+5XA5HR0fN6+TkZPTt2xfr169HUFAQnJycAKhHqZOSkrT2FR4ejkWLFmleFxcX44UXXkD79u3h4uKChx56CFlZWWY7F2p6OFJBzcamTZswe/ZsHD58GNu3b8dLL72Er776Co8//jjmzp2Ld999F8899xxyc3Ph7OwMlUqFe+65B59//jnc3d2Rnp6OyZMnw8fHB2PGjMHMmTORnZ2t9S1Pu3btUFpaioEDB8LPzw9ff/01vL29cezYMahUKk0sOTk52LVrF/7zn//g5s2bGDNmDJYvX4433ngDAJCYmIjPPvsMycnJCA4ORlpaGsaPH4/27dtj4MCBuHTpEp544glMnToVkydPxpEjRzBjxoy7tsHDDz+MgwcPNvh+QEAAfv/9d73b9m5tdaf8/HyMGzcOK1aswOOPP45bt27h4MGDEEIAADZv3owFCxZg9erV6NWrF44fP464uDi0atUKEydO1Ds+Imo+2Jebry8HgHPnzuHLL7/Ezp079RqJHj16NORyOb799lu4urriX//6F4YMGYIzZ85ojX5QCyaImoGBAweKBx54QPO6qqpKtGrVSjz33HOabfn5+QKAyMjIaHA/U6dOFU8++aTm9cSJE8XIkSO1yvzrX/8Sbdq0EdevX693HwsXLhTOzs6ipKREs23WrFkiMjJSCCHE7du3hbOzs0hPT9eq9/zzz4tx48YJIYSYM2eO6Natm9b7r776qgAgbt682WD8ly9fFmfPnm3w5+LFiw3WFUKIgIAA4eDgIFq1aqX5ee+99+ot21hbHT16VABo8HidOnUSW7Zs0dq2dOlSERUV1Wh8RNS8sS9XM7Yvb+i8Fy5cKOzt7cXVq1e1ygUEBIh3331Xa1tYWJhYuHChEEKIgwcPChcXF3H79m2tMp06dRL/+te/dIqFmj+OVFCz0bNnT83fZTIZ3N3d0aNHD802Ly8vAMDVq1c129asWYMNGzYgNzcXFRUVUCgUd13t48SJE+jVq1ej38wEBgaiTZs2mtc+Pj6a4547dw7l5eUYOnSoVh2FQoFevXoBALKzsxEZGan1flRUVKNxAYCfn99dy9zNrFmzMGnSJM1rDw8PAPq1VVhYGIYMGYIePXogJiYGw4YNw1NPPQU3NzeUlZUhJycHzz//vNbcjaqqKri6uhodPxE1bezLTdOXNyQgIADt27fXq05WVhZKS0vh7u6utb2iogI5OTmmDI+aMCYV1GzY29trvZZIJFrbJBIJAGiGtrdt24aZM2finXfeQVRUFNq0aYO33367zv20d5LL5QbFUnPc0tJSAMDu3bvrXDgcHR3vuu/GmGLI3MPDA507d9bapm9byWQy7N+/H+np6fjuu+/wwQcf4PXXX0dmZiacnZ0BAOvWratzseWkcCJiX27e259atWpVZ5tUKtXcnlpDqVRq/l5aWgofH596V45q27atQXFQ88OkglqsQ4cOoV+/fpgyZYpm253fuDg4OKC6ulprW8+ePbF+/XrcuHHDoPtIu3XrBkdHR+Tm5mLgwIH1lgkNDcXXX3+tte3nn3++677Xr1+PioqKBt+/8wKpK13a6k4SiQT9+/dH//79sWDBAgQEBOCrr75CQkICfH19cf78eTz77LMGxUNEVIN9ufHat2+vtWpUSUkJLly4oHndu3dvFBQUwM7ODoGBgSY9NjUfTCqoxQoODsYnn3yCffv2ISgoCJ9++il++eUXBAUFacoEBgZi3759OH36NNzd3eHq6opx48bhzTffxKhRo5CYmAgfHx8cP34cvr6+Og1rt2nTBjNnzsQrr7wClUqFBx54AH/++ScOHToEFxcXTJw4Ef/4xz/wzjvvYNasWXjhhRdw9OhRfPzxx3fdt7mGzHVpq7/LzMxESkoKhg0bBk9PT2RmZuLatWsIDQ0FACxevBgvv/wyXF1dMXz4cFRWVuLIkSO4efMmEhISzHIORNQ8sS833kMPPYSPP/4Yjz32GNq2bYsFCxZojRxHR0cjKioKo0aNwooVKxASEoK8vDzs3r0bjz/+OCIiIiwaL9kmLilLLdaLL76IJ554AmPHjkVkZCSuX7+u9U0XAMTFxaFLly6IiIhA+/btcejQITg4OOC7776Dp6cnRowYgR49emD58uV63bqzdOlSzJ8/H4mJiQgNDcXw4cOxe/duzUWwQ4cO+PLLL7Fr1y6EhYUhOTkZb775pknPXx+6tNXfubi4IC0tDSNGjEBISAjmzZuHd955Bw8//DAA4IUXXsD69euxceNG9OjRAwMHDsTHH3/cYJJCRNQQ9uXGmzNnDgYOHIhHH30UjzzyCEaNGoVOnTpp3pdIJNizZw8GDBiA2NhYhISE4Omnn8Yff/yhmeNCJBF33kRHRERERESkB45UEBERERGRUZhUEBERERGRUZhUEBERERGRUZhUEBERERGRUZhUEBERERGRUZhUEBERERGRUZhU1EMIgZKSkjqPrCciItvG/puIyDpsIqlYs2YNAgMD4eTkhMjISBw+fLjBsjt37kRERATatm2LVq1aITw8HJ9++qlWmUmTJkEikWj9DB8+XOd4bt26BVdXV9y4ccPgc2oOlEol/v3vf0OpVFo7FKtiO9RiW6ixHdRs8fzZf6vxM6rGdqjFtlBjO6iZ4/ztTL5HPW3fvh0JCQlITk5GZGQkkpKSEBMTg9OnT8PT07NO+Xbt2uH1119H165d4eDggP/85z+IjY2Fp6cnYmJiNOWGDx+OjRs3al47Ojpa5HyIiIiIiFoaq49UrFq1CnFxcYiNjUW3bt2QnJwMZ2dnbNiwod7ygwYNwuOPP47Q0FB06tQJ06ZNQ8+ePfHTTz9plXN0dIS3t7fmx83NzRKnQ0RERETU4lg1qVAoFDh69Ciio6M126RSKaKjo5GRkXHX+kIIpKSk4PTp0xgwYIDWe6mpqfD09ESXLl3w0ksv4fr16yaPn4iIiIiIrHz7U1FREaqrq+Hl5aW13cvLC6dOnWqw3p9//gk/Pz9UVlZCJpPhww8/xNChQzXvDx8+HE888QSCgoKQk5ODuXPn4uGHH0ZGRgZkMlmd/VVWVqKyslLzuqSkBID6frOWfM9dzbm35DYA2A5/x7ZQYzuoKZVK2NvbWzUG9t/142dUje1Qi22hxnZQM0f/LRFWXCIjLy8Pfn5+SE9PR1RUlGb77NmzceDAAWRmZtZbT6VS4fz58ygtLUVKSgqWLl2KXbt2YdCgQfWWP3/+PDp16oTvv/8eQ4YMqfP+okWLsHjx4jrbt2zZAmdnZ8NOjoioBRg5cqRVj8/+m4jIMKbuv62aVCgUCjg7O+OLL77AqFGjNNsnTpyI4uJi/Pvf/9ZpPy+88AIuXbqEffv2NVimffv2WLZsGV588cU679X3TZe/vz/y8/Ph7u6u+wk1M0qlEvv378fQoUOt/m2kNbEdarEt1NgOakql0uq/uLP/rh8/o2psh1q21BYqlQpKpdIqSz9XVVUhPT0d/fr1g52d1dcrMguJRAI7O7t6786pYY7+26qt6eDggD59+iAlJUWTVKhUKqSkpCA+Pl7n/ahUKq2Lyp0uX76M69evw8fHp973HR0d610dyt7e3ur/8WwB20GN7VCLbaHGdrA+9t+NYzuosR1qWbstFAoFLl68CJVKZZXjCyHg7e2N/Px8SCQSq8RgKW3btoW3t7fFztPqKVpCQgImTpyIiIgI9O3bF0lJSSgrK0NsbCwAYMKECfDz80NiYiIAIDExEREREejUqRMqKyuxZ88efPrpp1i7di0AoLS0FIsXL8aTTz4Jb29v5OTkYPbs2ejcubPWkrNEREREZDlCCOTn50Mmk8Hf3x9SqeXXC1KpVCgtLUXr1q2tcnxLEEKgvLwcV69eBYAGv1Q3NasnFWPHjsW1a9ewYMECFBQUIDw8HHv37tVM3s7NzdX6Ry8rK8OUKVNw+fJlyOVydO3aFZ999hnGjh0LAJDJZPj111+xadMmFBcXw9fXF8OGDcPSpUv5rAoiIiIiK6mqqkJ5eTl8fX2tduukSqWCQqGAk5NTs00qAEAulwMArl69Ck9Pz0ZvhTIVqycVABAfH9/g7U6pqalar5ctW4Zly5Y1uC+5XN7o3AoiIiIisrzq6moA6tvfyfxqEjelUmmRpKL5pmhEREREZHOa+1wGW2HpdmZSQURERERERrGJ25+IiIiIqGW6UlyBm2UKixxLpVLBXqWAi4tFDqezwMBATJ8+HdOnT7d2KAZjUtGI3377DS56fuo8PDzQoUMHM0VERERE1HxcKa7AQytTUVlluSVmHWQSpMwYCP92rSx2zJaASUUjHn74Ydy+fVuvOnJnZ5zKzmZiQURERHQXN8sUFk0oAEBRLXCzTMGkwsSYVDTi8anz4dMxVOfyhbk52PzWLBQVFTGpICIiImoGBg0ahHvvvRcA8Omnn8Le3h4vvfQSlixZAolEgps3b2LatGn45ptvUFlZiYEDB+L9999HcHCwZh9ffvklFixYgHPnzsHHxwf//Oc/MWPGDGudklkwqWhEe98A3BPc3dphEBEREZEVbdq0Cc8//zwOHz6MI0eOYPLkyejQoQPi4uIwadIknD17Fl9//TVcXFzw6quvYsSIETh58iTs7e1x9OhRjBkzBosWLcLYsWORnp6OKVOmwN3dHZMmTbL2qZkMkwoiIiIiokb4+/vj3XffhUQiQZcuXfDbb7/h3XffxaBBg/D111/j0KFD6NevHwBg8+bN8Pf3x65duzB69GisWrUKQ4YMwfz58wEAISEhOHnyJN5+++1mlVRwSVkiIiIiokbcf//9Ws99iIqKwtmzZ3Hy5EnY2dkhMjJS8567uzu6dOmC7OxsAEB2djb69++vtb/+/fvj7NmzmgcCNgdMKoiIiIiIyChMKoiIiIiIGpGZman1+ueff0ZwcDC6deuGqqoqrfevX7+O06dPo1u3bgCA0NBQHDp0SKv+oUOHEBISAplMZv7gLYRJBRERERFRI3Jzc5GQkIDTp09j69at+OCDDzBt2jQEBwdj5MiRiIuLw08//YSsrCyMHz8efn5+GDlyJABgxowZSElJwdKlS3HmzBls2rQJq1evxsyZM618VqbFidpERERERI2YMGECKioq0LdvX8hkMkybNg2TJ08GAGzcuBHTpk3Do48+CoVCgQEDBmDPnj2wt7cHAPTu3Rs7duzAggULsHTpUvj4+GDJkiXNapI2wKSCiIiIiKzErZUDHO2kFn+itlsrB73q2NvbIykpCWvXrq3znpubGz755JNG6z/55JN48sknG3z/4sWLesVji5hUEBEREZFV+LWV44eZg3CzTGGR46lUKtirFPBrK7fI8VoSJhVEREREZDV+beUW+yVfpVKhpKTEIsdqaZhUEBERERE1IDU11dohNAlc/YmIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzCJWWJiIiIyHqKLwHl1y1zLCEgqXYAXFwsc7wWhEkFEREREVlH8SVgdR+gqtIih5MCcJE5QsT/ArgF6FRn0KBBCA8PR1JSkllj05WtxVODtz8RERERkXWUX7dYQlFDUl0JlN+w6DEVCoVFj2cNTCqIiIiIiOoxadIkHDhwAO+99x4kEgkkEglycnLw/PPPIygoCHK5HF26dMF7771Xp96oUaPwxhtvwNfXF126dAEApKenIzw8HE5OToiIiMCuXbsgkUhw4sQJTd3//ve/ePjhh9G6dWt4eXnhueeeQ1FRUYPxXLx40VLN0Sje/kREREREVI/33nsPZ86cwb333oslS5YAANzc3HDPPffg888/h7u7O9LT0zF58mT4+PhgzJgxmropKSlwcXHB/v37AQAlJSV47LHHMGLECGzZsgV//PEHpk+frnW84uJiPPTQQ3jhhRfw7rvvoqKiAq+++irGjBmDH374od542rdvb5nGuAsmFURERERE9XB1dYWDgwOcnZ3h7e2t2b548WLN34OCgpCRkYEdO3ZoJRWtWrXC+vXr4eDgAABITk6GRCLBunXr4OTkhG7duuHKlSuIi4vT1Fm9ejV69eqFN998U7Ntw4YN8Pf3x5kzZxASElJvPLaASQURERERkR7WrFmDDRs2IDc3FxUVFVAoFAgPD9cq06NHD01CAQCnT59Gz5494eTkpNnWt29frTpZWVn48ccf0bp16zrHzMnJQUhIiGlPxISYVBARERER6Wjbtm2YOXMm3nnnHURFRaFNmzZ4++23kZmZqVWuVatWeu+7tLQUjz32GN5666067/n4+BgcsyUwqSAiIiIiaoCDgwOqq6s1rw8dOoR+/fphypQpmm05OTl33U+XLl3w2WefobKyEo6OjgCAX375RatM79698eWXXyIwMBB2dvX/mn5nPLbCJlZ/WrNmDQIDA+Hk5ITIyEgcPny4wbI7d+5EREQE2rZti1atWiE8PByffvqpVhkhBBYsWAAfHx/I5XJER0fj7Nmz5j4NIiIiImpmAgMDkZmZiYsXL6KoqAjBwcE4cuQI9u3bhzNnzmD+/Pl1koP6PPPMM1CpVJg8eTKys7Oxb98+rFy5EgAgkUgAAFOnTsWNGzcwbtw4/PLLL8jJycG+ffsQGxurSSTujEelUpnv5PVg9aRi+/btSEhIwMKFC3Hs2DGEhYUhJiYGV69erbd8u3bt8PrrryMjIwO//vorYmNjERsbi3379mnKrFixAu+//z6Sk5ORmZmJVq1aISYmBrdv37bUaRERERFRMzBz5kzIZDJ069YN7du3R0xMDJ544gmMHTsWkZGRuH79utaoRUNcXFzwzTff4MSJEwgPD8frr7+OBQsWAIBmnoWvry8OHTqE6upqDBs2DD169MD06dPRtm1bSKXSeuPJzc0138nrweq3P61atQpxcXGIjY0FoJ4Zv3v3bmzYsAGvvfZanfKDBg3Sej1t2jRs2rQJP/30E2JiYiCEQFJSEubNm4eRI0cCAD755BN4eXlh165dePrpp81+TkRERESkA2d3wM7Rog/AEzJHwLmdzuVDQkKQkZGhtW3jxo3YuHGj1rbExETN3z/++ON699WvXz9kZWVpXm/evBn29vbo0KGDZltwcDB27typVzy2wKpJhUKhwNGjRzFnzhzNNqlUiujoaJ0aSwiBH374AadPn9ZMaLlw4QIKCgoQHR2tKefq6orIyEhkZGQwqSAiIiKyFW39gfij6idrW4BKCNyqdkAbV3+LHO9On3zyCTp27Ag/Pz9kZWVpnkEhl8utEo8pWTWpKCoqQnV1Nby8vLS2e3l54dSpUw3W+/PPP+Hn54fKykrIZDJ8+OGHGDp0KACgoKBAs48791nz3p0qKytRWVmbIZeUlAAAZBJAInSfCCOTAHK5HCqVCkqlUud6tqrmHJrDuRiD7VCLbaHGdlBTKpWwt7e3agwN9d9KpbJF//vwM6rGdqhlC22hVCohhIBKpdKeB+Dip/6xACEExK1bmjgsLT8/HwsWLEBBQQF8fHzw1FNPYdmyZWaJRaVSQQgBpVIJmUym9Z45+m+JEEKYdI96yMvLg5+fH9LT0xEVFaXZPnv2bBw4cKDO0lw1VCoVzp8/j9LSUqSkpGDp0qXYtWsXBg0ahPT0dPTv3x95eXlaS2+NGTMGEokE27dvr7O/RYsWaT3EpMaWLVvg7OxsgjMlImqeam4ztRb230RNh52dHby9veHv76/1/AYyD4VCgUuXLqGgoABVVVV13jd1/23VkQoPDw/IZDIUFhZqbS8sLGz0KYFSqRSdO3cGAISHhyM7OxuJiYkYNGiQpl5hYaFWUlFYWFjnoSQ15syZg4SEBM3rkpIS+Pv745cCFTp01/0hI3k5p7B6xrNIS0tDWFiYzvVslVKpxP79+zF06FCrfxtpTWyHWmwLNbaDmi18+9tQ/z148GC4u7tbMTLr4mdUje1Qyxba4vbt27h06RJat26t9QA4SxJC4NatW2jTpo1mxaXm6vbt25DL5RgwYECd9jZH/23VpMLBwQF9+vRBSkoKRo0aBUA9CpGSkoL4+Hid96NSqTTD30FBQfD29kZKSoomiSgpKUFmZiZeeumleus7Ojpq1gv+u2oBCImsnhr1qxZARUUFpFJps+q87O3tm9X5GIrtUIttocZ2sL6G+m/+26ixHdTYDrWs2RbV1dWQSCSQSqWalYwsreY2o5o4mjOpVAqJRGKxf3Orr/6UkJCAiRMnIiIiAn379kVSUhLKyso0q0FNmDABfn5+mhn1iYmJiIiIQKdOnVBZWYk9e/bg008/xdq1awGoPyTTp0/HsmXLEBwcjKCgIMyfPx++vr6axIWIiIiIrMOKd963KJaeM2L1pGLs2LG4du2aZtJKeHg49u7dq5lonZubq5VJlpWVYcqUKbh8+TLkcjm6du2Kzz77DGPHjtWUmT17NsrKyjB58mQUFxfjgQcewN69e6021EZERETU0tnb20MikeDatWto3769VW4/UqlUUCgUuH37drMdqRBCQKFQ4Nq1a5BKpRabv2L1pAIA4uPjG7zdKTU1Vev1smXLsGzZskb3J5FIsGTJEixZssRUIRIRERGREWQyGe655x5cvnwZFy9etEoMQghUVFRALpc3+zkVzs7O6NChg8WSJ5tIKoiIiIio+WvdujWCg4OtttCDUqlEWloaBgwY0Kzn2chkMtjZ2Vk0cWJSQUREREQWI5PJ6jw3wZLHrqqqgpOTU7NOKqyhed5MRkREREREFsOkgoiIiIiIjMKkgoiIiIiIjMKkgoiIiIiIjMKkgoiIiIiIjMKkgoiIiIiIjMIlZc0gOztb7zoeHh7o0KGDGaIhIiIiIjIvJhUmVHLjGgBg/PjxeteVOzvjVHY2EwsiIiIianKYVJhQRWkJAOCRF19Hl559dK5XmJuDzW/NQlFREZMKIiIiImpymFSYgbtvAO4J7m7tMIiIiIiILIITtYmIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyChMKoiIiIiIyCg2kVSsWbMGgYGBcHJyQmRkJA4fPtxg2XXr1uHBBx+Em5sb3NzcEB0dXaf8pEmTIJFItH6GDx9u7tMgIiIiImqRrJ5UbN++HQkJCVi4cCGOHTuGsLAwxMTE4OrVq/WWT01Nxbhx4/Djjz8iIyMD/v7+GDZsGK5cuaJVbvjw4cjPz9f8bN261RKnQ0RERETU4lg9qVi1ahXi4uIQGxuLbt26ITk5Gc7OztiwYUO95Tdv3owpU6YgPDwcXbt2xfr166FSqZCSkqJVztHREd7e3pofNzc3S5wOEREREVGLY2fNgysUChw9ehRz5szRbJNKpYiOjkZGRoZO+ygvL4dSqUS7du20tqempsLT0xNubm546KGHsGzZMri7u9e7j8rKSlRWVmpel5SUAABkEkAiqnU+HzuZFHK5HHZSiV71ZBJALpdDpVJBqVTqXM/camKxpZisge1Qi22hxnZQUyqVsLe3t2oMDfXfSqWyRf/78DOqxnaoxbZQYzuomaP/lgghhEn3qIe8vDz4+fkhPT0dUVFRmu2zZ8/GgQMHkJmZedd9TJkyBfv27cPvv/8OJycnAMC2bdvg7OyMoKAg5OTkYO7cuWjdujUyMjIgk8nq7GPRokVYvHhxne1btmyBs7OzEWdIRNS8jRw50qrHZ/9NRGQYU/ffTTqpWL58OVasWIHU1FT07NmzwXLnz59Hp06d8P3332PIkCF13q/vmy5/f3+8suozdOjeW+fzOXHgW+x4dx7GzX0fPfr217leXs4prJ7xLNLS0hAWFqZzPXNTKpXYv38/hg4davVvI62J7VCLbaHGdlBTKpVW/8W9of47Pz+/wdHploCfUTW2Qy22hRrbQc0c/bdVb3/y8PCATCZDYWGh1vbCwkJ4e3s3WnflypVYvnw5vv/++0YTCgDo2LEjPDw8cO7cuXqTCkdHRzg6OtbZXi0AIak7stGQqmoVKioqUKUSetWrFkBFRQWkUqlNfsDt7e1tMi5LYzvUYluosR2sr6H+m/82amwHNbZDLbaFGtvB9Kw6UdvBwQF9+vTRmmRdM+n67yMXd1qxYgWWLl2KvXv3IiIi4q7HuXz5Mq5fvw4fHx+TxE1ERERERLWsvvpTQkIC1q1bh02bNiE7OxsvvfQSysrKEBsbCwCYMGGC1kTut956C/Pnz8eGDRsQGBiIgoICFBQUoLS0FABQWlqKWbNm4eeff8bFixeRkpKCkSNHonPnzoiJibHKORIRERERNWdWvf0JAMaOHYtr165hwYIFKCgoQHh4OPbu3QsvLy8AQG5uLqTS2txn7dq1UCgUeOqpp7T2s3DhQixatAgymQy//vorNm3ahOLiYvj6+mLYsGFYunRpvUPkRERERERkHKsnFQAQHx+P+Pj4et9LTU3Ven3x4sVG9yWXy7Fv3z4TRUZERERERHdj9dufiIiIiIioaWNSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERjEoqfjxxx9NHQcRERERETVRBiUVw4cPR6dOnbBs2TJcunTJ1DEREREREVETYlBSceXKFcTHx+OLL75Ax44dERMTgx07dkChUJg6PiIiIiIisnEGJRUeHh545ZVXcOLECWRmZiIkJARTpkyBr68vXn75ZWRlZZk6TiIiIiIislFGT9Tu3bs35syZg/j4eJSWlmLDhg3o06cPHnzwQfz++++miJGIiIiIiGyYwUmFUqnEF198gREjRiAgIAD79u3D6tWrUVhYiHPnziEgIACjR482ZaxERERERGSD7Ayp9M9//hNbt26FEALPPfccVqxYgXvvvVfzfqtWrbBy5Ur4+vqaLFAiIiIiIrJNBiUVJ0+exAcffIAnnngCjo6O9Zbx8PDg0rNERERERC2AQbc/LVy4EKNHj66TUFRVVSEtLQ0AYGdnh4EDBxofIRERERER2TSDkorBgwfjxo0bdbb/+eefGDx4sNFBERERERFR02FQUiGEgEQiqbP9+vXraNWqld77W7NmDQIDA+Hk5ITIyEgcPny4wbLr1q3Dgw8+CDc3N7i5uSE6OrpOeSEEFixYAB8fH8jlckRHR+Ps2bN6x0VERERERHen15yKJ554AgAgkUgwadIkrdufqqur8euvv6Jfv356BbB9+3YkJCQgOTkZkZGRSEpKQkxMDE6fPg1PT8865VNTUzFu3Dj069cPTk5OeOuttzBs2DD8/vvv8PPzAwCsWLEC77//PjZt2oSgoCDMnz8fMTExOHnyJJycnPSKj4iIiIiIGqfXSIWrqytcXV0hhECbNm00r11dXeHt7Y3Jkyfjs88+0yuAVatWIS4uDrGxsejWrRuSk5Ph7OyMDRs21Ft+8+bNmDJlCsLDw9G1a1esX78eKpUKKSkpANSjFElJSZg3bx5GjhyJnj174pNPPkFeXh527dqlV2xERERERHR3eo1UbNy4EQAQGBiImTNnGnSr098pFAocPXoUc+bM0WyTSqWIjo5GRkaGTvsoLy+HUqlEu3btAAAXLlxAQUEBoqOjNWVcXV0RGRmJjIwMPP3000bFTERERERE2gxaUnbhwoUmOXhRURGqq6vh5eWltd3LywunTp3SaR+vvvoqfH19NUlEQUGBZh937rPmvTtVVlaisrJS87qkpAQAIJMAElGt28kAsJNJIZfLYSeV6FVPJgHkcjlUKhWUSqXO9cytJhZbiska2A612BZqbAc1pVIJe3t7q8bQUP+tVCpb9L8PP6NqbIdabAs1toOaOfpvnZOK3r17IyUlBW5ubujVq1e9E7VrHDt2zCTB3c3y5cuxbds2pKamGjVXIjExEYsXL66z/T5vKZwrzui8n6C+nfD41q3qF/rU85Wi/9atuHLlCq5cuaJzPUvZv3+/tUOwCWyHWmwLNbYDMHLkSKsev6H++8cff4Szs7MVIrIt/IyqsR1qsS3U2A6m7791TipGjhypmZg9atQokxzcw8MDMpkMhYWFWtsLCwvh7e3daN2VK1di+fLl+P7779GzZ0/N9pp6hYWF8PHx0dpneHh4vfuaM2cOEhISNK9LSkrg7++PXwpU6NA9ROfzOXHgW+x4dx7GzX0fPfr217leXs4prJ7xLNLS0hAWFqZzPXNTKpXYv38/hg4davVvI62J7VCLbaHGdlCzhW/6Guq/Bw8eDHd3dytGZl38jKqxHWqxLdTYDmrm6L91Tir+fsuTqW5/cnBwQJ8+fZCSkqJJVGomXcfHxzdYb8WKFXjjjTewb98+REREaL0XFBQEb29vpKSkaJKIkpISZGZm4qWXXqp3f46OjvU+GbxaAEIi0/l8qqpVqKioQJVK6FWvWgAVFRWQSqU2+QG3t7e3ybgsje1Qi22hxnawvob6b/7bqLEd1NgOtdgWamwH0zNoToUpJSQkYOLEiYiIiEDfvn2RlJSEsrIyxMbGAgAmTJgAPz8/JCYmAgDeeustLFiwAFu2bEFgYKBmnkTr1q3RunVrSCQSTJ8+HcuWLUNwcLBmSVlfX1+TjbAQEREREVEtnZMKNze3RudR/F19T9tuyNixY3Ht2jUsWLAABQUFCA8Px969ezUTrXNzcyGV1q58u3btWigUCjz11FNa+1m4cCEWLVoEAJg9ezbKysowefJkFBcX44EHHsDevXv5jAoiIiIiIjPQOalISkoyWxDx8fEN3u6Umpqq9frixYt33Z9EIsGSJUuwZMkSE0RHRERERESN0TmpmDhxojnjICIiIiKiJkrnpKKkpAQuLi6avzemphwRERERETV/es2pyM/Ph6enJ9q2bVvv/AohBCQSCaqrdX/wGxERERERNW06JxU//PAD2rVrB0D9UCEiIiIiIiJAj6Ri4MCB9f6diIiIiIhaNoOfU3Hz5k383//9H7KzswEA3bp1Q2xsrGY0g4iIiIiIWgbp3YvUlZaWhsDAQLz//vu4efMmbt68iffffx9BQUFIS0szdYxERERERGTDDBqpmDp1KsaOHYu1a9dCJpMBAKqrqzFlyhRMnToVv/32m0mDJCIiIiIi22XQSMW5c+cwY8YMTUIBADKZDAkJCTh37pzJgiMiIiIiIttnUFLRu3dvzVyKv8vOzkZYWJjRQRERERERUdOh8+1Pv/76q+bvL7/8MqZNm4Zz587h/vvvBwD8/PPPWLNmDZYvX276KImIiIiIyGbpnFSEh4dDIpFACKHZNnv27DrlnnnmGYwdO9Y00RERERERkc3TOam4cOGCOeMgIiIiIqImSuekIiAgwJxxEBERERFRE2Xww+8A4OTJk8jNzYVCodDa/j//8z9GBUVERERERE2HQUnF+fPn8fjjj+O3337TmmchkUgAqJ9ZQURERERELYNBS8pOmzYNQUFBuHr1KpydnfH7778jLS0NERERSE1NNXGIRERERERkywwaqcjIyMAPP/wADw8PSKVSSKVSPPDAA0hMTMTLL7+M48ePmzpOIiIiIiKyUQaNVFRXV6NNmzYAAA8PD+Tl5QFQT+Y+ffq06aIjIiIiIiKbZ9BIxb333ousrCwEBQUhMjISK1asgIODAz766CN07NjR1DESEREREZENMyipmDdvHsrKygAAS5YswaOPPooHH3wQ7u7u2L59u0kDJCIiIiIi22ZQUhETE6P5e+fOnXHq1CncuHEDbm5umhWgiIiIiIioZTDqORUAcOnSJQCAv7+/0cEQEREREVHTY9BE7aqqKsyfPx+urq4IDAxEYGAgXF1dMW/ePCiVSlPHSERERERENsygkYp//vOf2LlzJ1asWIGoqCgA6mVmFy1ahOvXr2Pt2rUmDZKIiIiIiGyXQUnFli1bsG3bNjz88MOabT179oS/vz/GjRvHpIKIiIiIqAUx6PYnR0dHBAYG1tkeFBQEBwcHY2MiIiIiIqImxKCkIj4+HkuXLkVlZaVmW2VlJd544w3Ex8ebLDgiIiIiIrJ9Ot/+9MQTT2i9/v7773HPPfcgLCwMAJCVlQWFQoEhQ4aYNkIiIiIiIrJpOicVrq6uWq+ffPJJrddcUpaIiIiIqGXSOanYuHGjOeMgIiIiIqImyqiH3127dg2nT58GAHTp0gXt27c3SVBERETUdOXm5qKoqEivOh4eHujQoYOZIiIiczNoonZZWRn+93//Fz4+PhgwYAAGDBgAX19fPP/88ygvL9drX2vWrEFgYCCcnJwQGRmJw4cPN1j2999/x5NPPonAwEBIJBIkJSXVKbNo0SJIJBKtn65du+p7ikRERGSA3NxcdA0NRZ8+ffT66RoaitzcXGuHT0QGMmikIiEhAQcOHMA333yD/v37AwB++uknvPzyy5gxY4bOz6nYvn07EhISkJycjMjISCQlJSEmJganT5+Gp6dnnfLl5eXo2LEjRo8ejVdeeaXB/Xbv3h3ff/+95rWdnVEDMkRERKSjoqIiVJSX49lX34ZXh0461SnMzcHmt2ahqKiIoxVETZRBv21/+eWX+OKLLzBo0CDNthEjRkAul2PMmDE6JxWrVq1CXFwcYmNjAQDJycnYvXs3NmzYgNdee61O+fvuuw/33XcfANT7fg07Ozt4e3vrcUZERERkSl4dOuGe4O7WDoOILMSg25/Ky8vh5eVVZ7unp6fOtz8pFAocPXoU0dHRtcFIpYiOjkZGRoYhYWmcPXsWvr6+6NixI5599lkOpxIRERERmZFBIxVRUVFYuHAhPvnkEzg5OQEAKioqsHjxYkRFRem0j6KiIlRXV9dJTry8vHDq1ClDwgIAREZG4uOPP0aXLl2Qn5+PxYsX48EHH8R///tftGnTpt46lZWVWg/yKykpAQDIJIBEVOt8bDuZFHK5HHZSiV71ZBJALpdDpVJBqVTqXM/camKxpZisge1Qi22hxnZQUyqVsLe3t2oMDfXfSqWyRf/7WPMzqlKpIJfL9bqGmus6yP+rtdgWamwHNXP03xIhhNC30m+//Ybhw4ejsrJS6+F3Tk5O2LdvH7p3v/twZ15eHvz8/JCenq6ViMyePRsHDhxAZmZmo/UDAwMxffp0TJ8+vdFyxcXFCAgIwKpVq/D888/XW2bRokVYvHhxne1btmyBs7PzXc+FiKilGjlypFWPz/6biMgwpu6/DRqp6NGjB86ePYvNmzdrRhXGjRuHZ599FnK5XKd9eHh4QCaTobCwUGt7YWGhSedDtG3bFiEhITh37lyDZebMmYOEhATN65KSEvj7++OXAhU6dA/R+VgnDnyLHe/Ow7i576NH3/4618vLOYXVM57FunXr0KVLF53rubu745577tG5vL6USiX279+PoUOHWv3bSGtiO9RiW6ixHdRs4Zu+hvrvwYMHw93d3YqRWZc1P6NZWVkYMGAA4t/ZDN9Ouq2+WHMdTEtL03xZaQr8v1qLbaHGdlAzR/+td1KhVCrRtWtX/Oc//0FcXJzBB3ZwcECfPn2QkpKCUaNGAVAPmaakpCA+Pt7g/d6ptLQUOTk5eO655xos4+joCEdHxzrbqwUgJDKdj1VVrUJFRQWqVEKvejevX0NFRQXGjx+vcx0AkDs741R2ttlXyrC3t2/R//FqsB1qsS3U2A7W11D/zX8bNWu0g1QqRUVFhV7X0Gqhvo1aKpWaJV5+HmqxLdTYDqand1Jhb2+P27dvm+TgCQkJmDhxIiIiItC3b18kJSWhrKxMsxrUhAkT4Ofnh8TERADqyd0nT57U/P3KlSs4ceIEWrdujc6dOwMAZs6cicceewwBAQHIy8vDwoULIZPJMG7cOJPEbA4Vpep7gB958XV06dlHpzpcfo+IiIiIbIVBtz9NnToVb731FtavX2/UMyDGjh2La9euYcGCBSgoKEB4eDj27t2rmbydm5sLqbR2gaq8vDz06tVL83rlypVYuXIlBg4ciNTUVADA5cuXMW7cOFy/fh3t27fHAw88gJ9//rlJPO3b3TeAy+8RERERUZNjUEbwyy+/ICUlBd999x169OiBVq1aab2/c+dOnfcVHx/f4O1ONYlCjcDAQNxtXvm2bdt0PjYRERERERnPoKSibdu2ePLJJ00dCxERERERNUF6JRUqlQpvv/02zpw5A4VCgYceegiLFi3SecUnIiIiIiJqfvR6ovYbb7yBuXPnonXr1vDz88P777+PqVOnmis2IiIiIiJqAvRKKj755BN8+OGH2LdvH3bt2oVvvvkGmzdvhkqlMld8RERERERk4/RKKnJzczFixAjN6+joaEgkEuTl5Zk8MCIiIiIiahr0Siqqqqrg5OSktc3e3t4mnqpKRERERETWoddEbSEEJk2apPX00tu3b+Mf//iH1rKy+iwpS0RERERETZteScXEiRPrbBs/frzJgiEiIiIioqZHr6Ri48aN5oqDiIiIiIiaKL3mVBAREREREd2JSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERmFSQURERERERlFryVliYioecrNzUVRUZFedVQqFSIiIswUERER6cJW+m8mFURELVxubi5CQ7uivLxCr3pyuRzl5eVmioqIiO7GlvpvJhVERC1cUVERyssr8NncMQjt0F7netmXb5oxKiIiuhtb6r+ZVBAREQAgtEN79A7x07m8SiIzYzRERKQrW+i/OVGbiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwqSCiIiIiIiMwoffERERUb1yc3NRVFSkV53s7GwzRUNEtoxJBREREdWRm5uLrqGhqCgvN6h+aWmp3nUMSUg8PDzQoUMHvesRkWkxqSAiIqI6ioqKUFFejmdffRteHTrpXC/78AF8u+k93L59W+c6JTeuAQDGjx+vd5xyZ2ecys5mYkFkZUwqiIiIqEFeHTrhnuDuOpcvzM3R+xgVpSUAgEdefB1devbR61ib35qFoqIiJhVEVsakgoiIiGyCu2+AXgkMEdkOrv5ERERERERGsXpSsWbNGgQGBsLJyQmRkZE4fPhwg2V///13PPnkkwgMDIREIkFSUpLR+yQiIiIiIuNYNanYvn07EhISsHDhQhw7dgxhYWGIiYnB1atX6y1fXl6Ojh07Yvny5fD29jbJPomIiIiIyDhWTSpWrVqFuLg4xMbGolu3bkhOToazszM2bNhQb/n77rsPb7/9Np5++mk4OjqaZJ9ERERERGQcq03UVigUOHr0KObMmaPZJpVKER0djYyMDIvus7KyEpWVlZrXJSXqVShkEkAiqnU+vp1MCrlcDjupxOz1ZBJALpdDpVJBqVTqfCx91OzXXPtvKtgOtdgWas2tHVQqlbo/kcigFLp/16SSyMwYlW4a6r+VSmWz+fcxhCk+ozWfC0tcCw29ft7tWtjc/q8ag22h1tzawZb6b4kQQph8rzrIy8uDn58f0tPTERUVpdk+e/ZsHDhwAJmZmY3WDwwMxPTp0zF9+nSj97lo0SIsXry4zvYtW7bA2dlZzzMjImo5Ro4cadXjs/8mIjKMqftvLikLYM6cOUhISNC8Likpgb+/P34pUKFD9xCd93PiwLfY8e48jJv7Pnr07W/Wenk5p7B6xrNIS0tDWFiYzsfSh1KpxP79+zF06FDY29ub5RhNAduhFttCrbm1Q1ZWFgYMGIC0pDiEdfbVud7xnEIA1k0qGuq/Bw8eDHd3dytGZl2m+IzWfC7i39kM305dda5nyDXN0Ovn3a6Fze3/qjHYFmrNrR1sqf+2WlLh4eEBmUyGwsJCre2FhYUNTsI21z4dHR3rnaNRLQChx/BQVbUKFRUVqFIJs9erFkBFRQWkUqnZ/1PY29s3i/94xmI71GJbqDWXdpBKper+RFTDXqLSvZ4et6mYS0P9d3P5tzGWMe1Q87mwxLXQ0OunrtdCfh5qsS3Umks72FL/bbWJ2g4ODujTpw9SUlI021QqFVJSUrRuXbL2PomIiIiIqHFWvf0pISEBEydOREREBPr27YukpCSUlZUhNjYWADBhwgT4+fkhMTERgHoi9smTJzV/v3LlCk6cOIHWrVujc+fOOu2TiIiIiIhMy6pJxdixY3Ht2jUsWLAABQUFCA8Px969e+Hl5QUAyM3NhVRaO5iSl5eHXr16aV6vXLkSK1euxMCBA5GamqrTPpub7Oxsvet4eHigQ4cOZoiGiIh0kZGRgfPnz+tdr2PHjhx5JyKbZPWJ2vHx8YiPj6/3vZpEoUZgYCB0WayqsX02F6WlpQCA8ePH613X2VmO7OxTTCyIiKwgIyMD/fr1B2DI4osSpKcfYmJBRDbH6kkFGeb27dsAgKX/OxQj+uq+QlV27jWMf3MHioqKmFQQEVmBeoRCYMBjoxEY4K9zvYt/XELaN5/j/PnzTCqIyOYwqWjigrzd0DvEz9phEBGRngID/BHes7teddLMFAsRkbGstvoTERERERE1D0wqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKFxStom7UHATx85c0bl8du419Z86PIlbpVIBALKysiCVSvkkbiIiG3Do0CGdyrVu3Ro7duwAwCdxE5H5MalookqLrwMA5m/Yj/kb9utdX5cnccvlcmzduhUDBgxARUUFn8RNRGRFRddvAgDWrl2LtWvXNlq2pv+Oi4tDRUUF+CRuIjI3JhVmcLO4GPn5+TqXLy4u1vsYleWlAIABj41GRM9Qnesd+TUbad98jldH348xQ/o0WlYlkeEKgLSkOJz+o4BP4iaiZi0jI+Ovp13rx1KjALdK1f1+2OBHENa9S6Nl7WQyAMC4yfE4d/4in8RNRGbHpMKE1N8GAT/+8APSDp/QuZ7i6gUAQHl5ud7HdHVvj3sCAnQuf/ZKEQDgnvZt7vokbqWQ4sotIKyzL6SiWu/YiIiaioyMDPTr1x+AMKC2ZUcBvHy87/okbolEAgDocW8oqqqr+SRuIjI7JhUmVFlZCQCI6OKH+3rdq3O9n9OVOHgWqFQozBUaERE1Qj1CITDgsdEIDPDXud7FPy5xFICICEwqzKKNsyN83F10Lu8idzBjNEREpKvAAP+7jgLciaMARERcUpaIiIiIiIzEpIKIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzCpIKIiIiIiIzC1Z/I7HJzc1FUVKR3PQ8PDz5oj4jIyoqKiiBrbd4HuhJR08ekgswqNzcXoaFdUV5eoXddZ2c5srNPMbEgIrKC/Hx1IrFz507IWrfTuZ4xD3QloqaLSQWZVVFREcrLK/DZ3DEI7dBe53rZudcw/s0dOHjwIEJDQ3Wux9ENIiLTqBlxGNyrI7p2Cda5Xs0DXYuKijSJia7HIqKmi0kF6SU7O9ug8qEd2qN3iJ/O9fJv3IIEwPjx4/U6Hkc3iIjqd+jQIYPKu7V20uuBrg52MgDAkSNHcPzUeZ3qcHSDqOljUmFDbpWU6PytTsmtW2aORpuhv+TXuFVaqlf54tLbEABWTxmGqJ66fUNWM7pRVFTEpIKILEqfX9j1/eXeWEXXbwIA1q5di7Vr1+pd/89S/W5fVVRVAwDCOnmi3329dKpTM7pRqVDoHR8R2QYmFTbgtlLdARvyrU5VVZXZ4vo7Q37JB4A9h89g/ob9uH37tkHH7ezrptcIBxGRJRnzC7u+v6wbquZLnbDBjyCsexed6/3yy1FkZx5AhYG/6Ldystd5hMNF7mDQMYjIdjCpsAGGfKvzww9lOHoWqFZVmzO0OvT9JT8795oZoyEisi5DfmE39pd1Q3n5eCO8Z3edy1/445IZoyGi5oZJhQ3R51sdZyd+q0NEZCv0+YWdv6wTUXPEh98REREREZFRmFQQEREREZFRmFQQEREREZFROKeCiIiImrSGnqGkUqkAAFlZWZBKtb9H5cNSiUyLSQURERE1SSU31CsMNvQMJblcjq1bt2LAgAGoqNBewlfu7IxT2dlMLIhMxCaSijVr1uDtt99GQUEBwsLC8MEHH6Bv374Nlv/8888xf/58XLx4EcHBwXjrrbcwYsQIzfuTJk3Cpk2btOrExMRg7969ZjsHIiIisqyK0hIAwCMvvo4uPfvUeV8mUf8Z/85mVIva7YW5Odj81iw+LJXIhKyeVGzfvh0JCQlITk5GZGQkkpKSEBMTg9OnT8PT07NO+fT0dIwbNw6JiYl49NFHsWXLFowaNQrHjh3Dvffeqyk3fPhwbNy4UfPa0dHRIudDREREluXuG4B7gusu6SsR1UDFGfh26gohkdV5v6HbphrD26aI6mf1pGLVqlWIi4tDbGwsACA5ORm7d+/Ghg0b8Nprr9Up/95772H48OGYNWsWAGDp0qXYv38/Vq9ejeTkZE05R0dHeHt7W+YkiIiIqMm4221TjeFtU0T1s2pSoVAocPToUcyZM0ezTSqVIjo6GhkZGfXWycjIQEJCgta2mJgY7Nq1S2tbamoqPD094ebmhoceegjLli2Du7t7vfusrKxEZWWl5nVJiXo4VSb561sOHdnbSSGXy2FvJ4NEItG5noO93V/17HSuZ0gddYwyyOVySGT2UIrGF/+qeV8ppIBUfTwhtbtrPS0WrKeSqM9NpVJBqVTqfqy7qNmXKffZVLEt1JpbO6hUKvX/HYlMr/+nqnq++bW0hvpvpVKp97+PXC6Hncx2+2996tW8LZFY5njG1rO3+6uOTKrXdddOpr7u2kkl9dar2Xbne8qKUsjlcsT870wEd++l8/GuXr6AHe/Ow9WrV+Hj46NzPVvQ3PotQzW3drCl/lsihBB3L2YeeXl58PPzQ3p6OqKiojTbZ8+ejQMHDiAzM7NOHQcHB2zatAnjxo3TbPvwww+xePFiFBYWAgC2bdsGZ2dnBAUFIScnB3PnzkXr1q2RkZEBmaxuIy5atAiLFy+us33Lli1wdnY2xakSETVLI0eOtOrx2X8TERnG1P231W9/Moenn35a8/cePXqgZ8+e6NSpE1JTUzFkyJA65efMmaM1+lFSUgJ/f3/8UqBCh+4hOh/3wNdbsW/DSjz87At4MFL3bz7+8+1+pH+7Cw+NnoDoByPNVgcADmYex7eb12P6qAg8MajxGFUSGfI9B8Ln6gF8f+Q0ln36I3bOfwJDInvofLwdP/6KuHe+ski9rHN5GDB9HdLS0hAWFqbzse5GqVRi//79GDp0KOzt7U2236aIbaHW3NohKysLAwYMQFpSHMI6++pc73hOIQDrJhUN9d+DBw9ucHS6Pjt27EBcXBzGTY5Hj3tDda5nyf5bn3oSCRDo0Q4Xi27gmz3mP56x9Q78eAD7vtqBh6cuxYNDR9y9wl9OHPgWO96dh3Fz30ePvv3rvC8R1Qi8nYOLTp205lTcrV5D8nJOYfWMZ01+nbGE5tZvGaq5tYMt9d9WTSo8PDwgk8k0Iww1CgsLG5wP4e3trVd5AOjYsSM8PDxw7ty5epMKR0fHeidyVwvUO7GrIcoqFSoqKqCsqoY+A0AKZdVf9ap0rmdIHQD4s7gYFRUVSNx6EIlbDzZaVr0U30AMmpasWYrv2o0/YS9R6Xw8qNRxSlRVZq8nFdWoqKiAVCo1S0dhb2/fLDogU2BbqDWXdpBKper/O6Jar/+nUj1uUzGXhvpvQ/5tKioqUFVtu/23fvXUtx0JYanjGVdPWfVXnWqVXtfdqmr1dbdKJRqtJyQyrfd1rXenagGzXmcsobn0W8ZqLu1gS/23VZMKBwcH9OnTBykpKRg1ahQA9b1hKSkpiI+Pr7dOVFQUUlJSMH36dM22/fv3a90+dafLly/j+vXrTe7+R3NQVN4GANw/fCT69Wn8WxbZXw8Kip/5KjJP/I60bz7Hn+WVjdaxBVzNg4ioabpVUoL8/HydyxcXF5svGCLSi9Vvf0pISMDEiRMRERGBvn37IikpCWVlZZrVoCZMmAA/Pz8kJiYCAKZNm4aBAwfinXfewSOPPIJt27bhyJEj+OijjwAApaWlWLx4MZ588kl4e3sjJycHs2fPRufOnRETE2O187Q1Lu08cE9AQKNlaibY+XboANdLVy0RllHyb9yCBIat5uHsLEd29ikmFkREVnBbqf7W9MiRIzh+6rzO9RRXLwAAysvLzRIXEenO6knF2LFjce3aNSxYsAAFBQUIDw/H3r174eXlBQDIzc2FVFo7m71fv37YsmUL5s2bh7lz5yI4OBi7du3SPKNCJpPh119/xaZNm1BcXAxfX18MGzYMS5cu5bMqmrni0tsQAFZPGYaonsE618vOvYbxb+7AwYMHERpa915qlUo9nJiVlaX1WQQMH+HIzc1FUVGR3vU4okJEzZGiSp1UhHXyRL/7dJ+T+HO6EgfPAkVFRfWOcMggEOQKFBYUohq1K1EZO8Kh74g4+25qCayeVABAfHx8g7c7paam1tk2evRojB49ut7ycrkc+/btM2V41MR09nVD7xA/ncvfbYRDPbdkKwYMGKCZW1LDkBGO3NxchIZ2RXl5xd0L34EjKkTUnLVysoePu4vO5R3s1PMhGhrhcHKww/3TnsDGjzfitqJKs93QEY7S0lIA+o+Is++mlsAmkgoia7rbCIdKIsMVAGlJcVoTm2pGOIqKivS6UBQVFaG8vAKfzR2D0A7tda5n6PGIiJqru41wyKTq0YnY4b1RraqdNF4zwlGpUOh1vNu31fMSl/7vUIzoq9vqkOy7qaVgUkH0l4ZGOJRCiiu3gLDOvvWurKDvMHhN+dAO7fUaUSEiovo1NMJRMzfQq52L1kpULnIHAPpPDL/5121TQd76jYgTtQRMKogMZMzEcAC49dcwOhERWZahE8OrS28A4MRwovowqSAykKETw/ccPoP5G/ZrhtGJiMiyDJ0Y/svx/yI1C6hU2P7y6kSWxqSCyEj6TgzPzr1mxmjq4kpTRET103dieBtny64iyf6bmhImFUTNGFeaIiJqmth/U1PDpIKoGeNKU0RETRP7b2pqmFQQtQBcaYqIqGli/01NBZMK0sulayU4duaKzuUvFNw0YzRERESWp8+10NLz6IishUkF6aS89BYAYMXnmVjxeabe9a8Wl5k6JCIiIosy5lqoz/MwiJoiJhWkE0WlevnT+4ePRL8+YTrXO/JrNtK++Rx/lnP5PSIiatoMuRaePnseu3d8huK/HpxH1FwxqSC9uLTzwD0BATqXP3tF/6XwiIiIbJk+18KiP9UPOr1w4QKOHTum8zGys7MNio3IWphUEBEREZlJ6a0SAMD8+fMxf/58vevn37hl6pCIzIJJBREREZGZVFaonzMx4JmXEdF/kM71Tv96FLv/9QaKS2+bKTIi02JS0YgbN27AUY+JVSW3+G0CmZ8+Q+IcPqeWaufOnXB2dta5/KFDh8wYDREglbtA1rqd7uWdXc0YDZHpMaloxLd796Aq9WedyyuuXgAAVFVVmSskasHyb9yCBMD48eP1rnurtNT0ARHZsJdffhm3b+v/De+fpfo/vZioMbeV1QCAI0eO4Pip8zrXqy69AQAoLy83S1xEpsakohH9ugega2hXncv/8EMZjp4FqlXVZoyKWqri0tsQAFZPGYaonsE61dlz+Azmb9hv0C9XhsrNzUVRkf4T9D08PPj0VzKZ+4c+ig4Bun+efvnlKLIzD6BCoTBjVNQSKarUvxOEdfJEv/t66Vzvl+P/RWoWUKmw3OqJ7L/JGEwqGuHq7Agfdxedyzs7OZgxmqaND80znc6+bjo/XdXYhy7defuUSqUCAGRlZUEqldYpn5+fj9Gjn0JFhf5JjLOzHNnZp3hhIpO4x88X4T2761z+wh+XzBgNEdDKyV6v3ynaODsadTz232RpTCrIrPjQvKapoVut5HI5tm7digEDBqCiouHbRD6a/ij6dNV96eHs3GsY/+YOHDx4EKGhoTrX47djRETa2H+TtTCpILPiQ/OapoZutVJJZLgCIC0pDlJR9za/mtutOni00nk0BTB8vgi/HSMi0sb+m6yFSQVZBB+a1zTdeauVUkhx5RYQ1tkX9hJVnfKG3m5lyHyRmm/HioqKeFEiIroD+2+yNCYVRGQz9JkvQkREtoP9NzGpIJumzwRvTu4mIiIisg4mFWSTjJngzcndRETUXHD1RGoqmFSQTTJkgjcnd7dMhjw1nKuOEJGtawmrJ7L/bl6YVJBN02eCNyd3tyzGPGGcq44Qka0zdvXE//5xTWuEQyWRAV5dkXUur97Vnyw5wsH+u3liUkHNDoeKWwZDVhwBuOoIETUt+q6emHX6AoC6Ixzq51Q8hAHT1zX6nApLjHCw/26emFRQs9EShoqpLq44QkRUq6ERDtlfT9GOn/kqqlV1l5S1xi3E7L+bFyYV1GzwQXukD97LS0TN2Z0jHBKJBADg26EDhBB1yjelW4jZf9smJhXU7PBBe9QYU9zL6+PjY/rAiIioUey/bRuTCiJqUUxxLy8vSkRElsf+27YxqSD6S0MTvBtaMaNmgvfZvBtoz4nhTQ7v5SUiqsvQxU70uRYaex1k/22bbCKpWLNmDd5++20UFBQgLCwMH3zwAfr27dtg+c8//xzz58/HxYsXERwcjLfeegsjRozQvC+EwMKFC7Fu3ToUFxejf//+WLt2LYKDdc9qqeW42wTvu62Y8c8P9wPYr/dxOTG8acrOzobqr0mOWVlZkP41+bExvJeXiGydsYudGHIttPR1kP23eVk9qdi+fTsSEhKQnJyMyMhIJCUlISYmBqdPn4anp2ed8unp6Rg3bhwSExPx6KOPYsuWLRg1ahSOHTuGe++9FwCwYsUKvP/++9i0aROCgoIwf/58xMTE4OTJk3BycrL0KZKNu9sE74ZWzPgxLR3HD35vsjXE78Ya3wZRrb/fy6tONLdiwIABjS7NWIPrqhORrTN0sRNDroWWvA4CwMHfLgJg/21uVk8qVq1ahbi4OMTGxgIAkpOTsXv3bmzYsAGvvfZanfLvvfcehg8fjlmzZgEAli5div3792P16tVITk6GEAJJSUmYN28eRo4cCQD45JNP4OXlhV27duHpp5+23MlRk9LQBO+GVsxo3Ta70XoNaWgNcV0Z8m3Q4dN5aO/hoXN5JiN1/f1e3siwrrgCIC0prt6HSP2dMeuq5+bmoqhIv4UE+K0aERlD32uaIddCa1wHAeAfI3rhgd6hAIB1Mx4HVFWNlr9QcBPzN+xn/60jqyYVCoUCR48exZw5czTbpFIpoqOjkZGRUW+djIwMJCQkaG2LiYnBrl27AAAXLlxAQUEBoqOjNe+7uroiMjISGRkZTCrI6iz5bdBPPx/F4ZTdWPDpQSz49KDesd6ZjOj6RFZD55kYMgpjiWP9vV5nXzeEdfbFlVtAWGdf2EvqrvduCrm5uQgN7Yry8rt/k/Z3Tk6O+OKLL/WajGjI8oxERIay5HUQqL0WJu85jk0/nsLWrWMQ985XOo1UAMDBg/pdP/Pz8/HUU0/i9m39lqpv6v23VZOKoqIiVFdXw8vLS2u7l5cXTp06VW+dgoKCessXFBRo3q/Z1lCZO1VWVqKysvYf/s8//wQAXL5yWY+zAYqLiuDk5ITrhQU4dizLrPUscSw7mQxe/e9D1onfLHpuhtYz17H+3g5V1dU617vb8ZTKKly9Xqxzvaqqar3rVZSXw8nJCYHd+yAgQPdJbecvXMSl7F/x5ue/4M3Pf9Fsl8vlWLPmfgx77dMGO2MnJyfM2nAQgH6dsCH1LHmsmnpfpp9D7i0JWod1wMcZJwBV4yMVl64Vw8nJCbt27cLRo0d1PtalS5egUgnEPtwXnm5tdKpzofAGvj6Ujaeeekrn49RwcnLC9tT/4mjOVZ3rXLlZhpCnS9CmTRvNiJ6lsf+uH/tvNXP137ZwbvrWa6gtrBGnJa+DgPa1sHOnDigvL8eQx0ZBWdV4/5136TLO/nas3jtn7k6CMUN6IcirnU6lm0X/LazoypUrAoBIT0/X2j5r1izRt2/feuvY29uLLVu2aG1bs2aN8PT0FEIIcejQIQFA5OXlaZUZPXq0GDNmTL37XLhwoQDAH/7whz/8MeDn6tWrhl4GjMb+mz/84Q9/DP8xZf9t1ZEKDw8PyGQyFBYWam0vLCyEt7d3vXW8vb0bLV/zZ2FhodbwUWFhIcLDw+vd55w5c7RuqSouLkZAQAByc3Ph6uqq93k1FyUlJfD398elS5fg4uJi7XCshu1Qi22hxnZQq2kHBwcHq8XA/rt+/IyqsR1qsS3U2A5q5ui/rZpUODg4oE+fPkhJScGoUaMAACqVCikpKYiPj6+3TlRUFFJSUjB9+nTNtv379yMqKgoAEBQUBG9vb6SkpGiSiJKSEmRmZuKll16qd5+Ojo5wdHSss93V1bVFf+BquLi4sB3Advg7toUa20HNWrc+Aey/74afUTW2Qy22hRrbQc2U/bfVV39KSEjAxIkTERERgb59+yIpKQllZWWa1aAmTJgAPz8/JCYmAgCmTZuGgQMH4p133sEjjzyCbdu24ciRI/joo48AqBtn+vTpWLZsGYKDgzVLyvr6+moSFyIiIiIiMh2rJxVjx47FtWvXsGDBAhQUFCA8PBx79+7VTLTOzc3VejhJv379sGXLFsybNw9z585FcHAwdu3apXlGBQDMnj0bZWVlmDx5MoqLi/HAAw9g7969fEYFEREREZEZWD2pAID4+PgGb3dKTU2ts2306NEYPXp0g/uTSCRYsmQJlixZYlA8jo6OWLhwYb1D6i0J20GN7VCLbaHGdlCzxXawxZisge2gxnaoxbZQYzuomaMdJEL87WleREREREREepLevQgREREREVHDmFQQEREREZFRmFQQEREREZFRWmxSsWbNGgQGBsLJyQmRkZE4fPhwo+U///xzdO3aFU5OTujRowf27NljoUjNS592WLduHR588EG4ubnBzc0N0dHRd223pkLfz0ONbdu2QSKRNKvlivVti+LiYkydOhU+Pj5wdHRESEhIs/j/oW87JCUloUuXLpDL5fD398crr7yC27dvWyha80hLS8Njjz0GX19fSCQS7Nq16651UlNT0bt3bzg6OqJz5874+OOPTR4X+2819t9q7L/V2HfXYv9tpf7bZM/mbkK2bdsmHBwcxIYNG8Tvv/8u4uLiRNu2bUVhYWG95Q8dOiRkMplYsWKFOHnypJg3b56wt7cXv/32m4UjNy192+GZZ54Ra9asEcePHxfZ2dli0qRJwtXVVVy+fNnCkZuWvu1Q48KFC8LPz088+OCDYuTIkZYJ1sz0bYvKykoREREhRowYIX766Sdx4cIFkZqaKk6cOGHhyE1L33bYvHmzcHR0FJs3bxYXLlwQ+/btEz4+PuKVV16xcOSmtWfPHvH666+LnTt3CgDiq6++arT8+fPnhbOzs0hISBAnT54UH3zwgZDJZGLv3r0mi4n9txr7bzX232rsu2ux/1azRv/dIpOKvn37iqlTp2peV1dXC19fX5GYmFhv+TFjxohHHnlEa1tkZKR48cUXzRqnuenbDneqqqoSbdq0EZs2bTJXiBZhSDtUVVWJfv36ifXr14uJEyc2i4uSEPq3xdq1a0XHjh2FQqGwVIgWoW87TJ06VTz00ENa2xISEkT//v3NGqcl6XJRmj17tujevbvWtrFjx4qYmBiTxcH+W439txr7bzX23bXYf9dlqf67xd3+pFAocPToUURHR2u2SaVSREdHIyMjo946GRkZWuUBICYmpsHyTYEh7XCn8vJyKJVKtGvXzlxhmp2h7bBkyRJ4enri+eeft0SYFmFIW3z99deIiorC1KlT4eXlhXvvvRdvvvkmqqurLRW2yRnSDv369cPRo0c1Q+znz5/Hnj17MGLECIvEbCvM3Vey/1Zj/63G/luNfXct9t+GM0VfaRMPv7OkoqIiVFdXa57YXcPLywunTp2qt05BQUG95QsKCswWp7kZ0g53evXVV+Hr61vnQ9iUGNIOP/30E/7v//4PJ06csECElmNIW5w/fx4//PADnn32WezZswfnzp3DlClToFQqsXDhQkuEbXKGtMMzzzyDoqIiPPDAAxBCoKqqCv/4xz8wd+5cS4RsMxrqK0tKSlBRUQG5XG7U/tl/q7H/VmP/rca+uxb7b8OZov9ucSMVZBrLly/Htm3b8NVXX8HJycna4VjMrVu38Nxzz2HdunXw8PCwdjhWp1Kp4OnpiY8++gh9+vTB2LFj8frrryM5OdnaoVlUamoq3nzzTXz44Yc4duwYdu7cid27d2Pp0qXWDo2oDvbf7L/Zd9di/206LW6kwsPDAzKZDIWFhVrbCwsL4e3tXW8db29vvco3BYa0Q42VK1di+fLl+P7779GzZ09zhml2+rZDTk4OLl68iMcee0yzTaVSAQDs7Oxw+vRpdOrUybxBm4khnwkfHx/Y29tDJpNptoWGhqKgoAAKhQIODg5mjdkcDGmH+fPn47nnnsMLL7wAAOjRowfKysowefJkvP7665BKW8b3Nw31lS4uLkaPUgDsv2uw/1Zj/63GvrsW+2/DmaL/bhkt9TcODg7o06cPUlJSNNtUKhVSUlIQFRVVb52oqCit8gCwf//+Bss3BYa0AwCsWLECS5cuxd69exEREWGJUM1K33bo2rUrfvvtN5w4cULz8z//8z8YPHgwTpw4AX9/f0uGb1KGfCb69++Pc+fOaS7MAHDmzBn4+Pg02YuSIe1QXl5e58JTc7FWz5FrGczdV7L/VmP/rcb+W419dy3234YzSV+p7wzy5mDbtm3C0dFRfPzxx+LkyZNi8uTJom3btqKgoEAIIcRzzz0nXnvtNU35Q4cOCTs7O7Fy5UqRnZ0tFi5c2GyWJNSnHZYvXy4cHBzEF198IfLz8zU/t27dstYpmIS+7XCn5rJ6iBD6t0Vubq5o06aNiI+PF6dPnxb/+c9/hKenp1i2bJm1TsEk9G2HhQsXijZt2oitW7eK8+fPi++++0506tRJjBkzxlqnYBK3bt0Sx48fF8ePHxcAxKpVq8Tx48fFH3/8IYQQ4rXXXhPPPfecpnzNkoSzZs0S2dnZYs2aNWZZUpb9N/vvGuy/1dh312L/rWaN/rtFJhVCCPHBBx+IDh06CAcHB9G3b1/x888/a94bOHCgmDhxolb5HTt2iJCQEOHg4CC6d+8udu/ebeGIzUOfdggICBAA6vwsXLjQ8oGbmL6fh79rLhelGvq2RXp6uoiMjBSOjo6iY8eO4o033hBVVVUWjtr09GkHpVIpFi1aJDp16iScnJyEv7+/mDJlirh586blAzehH3/8sd7/8zXnPnHiRDFw4MA6dcLDw4WDg4Po2LGj2Lhxo8njYv+txv5bjf23GvvuWuy/rdN/S4RoQWM7RERERERkci1uTgUREREREZkWkwoiIiIiIjIKkwoiIiIiIjIKkwoiIiIiIjIKkwoiIiIiIjIKkwoiIiIiIjIKkwoiIiIiIjIKkwoiIiIiIjIKkwqiFmrSpEkYNWqUtcMgIiI9sf8mW8QnahO1UH/++SeEEGjbti0AYNCgQQgPD0dSUpJV4yIiosax/yZbZGftAIiaE4VCAQcHB2uHoRNXV1drh0BEZDPYfxMZh7c/ETVi0KBBiI+PR3x8PFxdXeHh4YH58+ejZoAvMDAQS5cuxYQJE+Di4oLJkycDAL788kt0794djo6OCAwMxDvvvKO135p648aNQ6tWreDn54c1a9ZolSkuLsYLL7yA9u3bw8XFBQ899BCysrI07y9atAjh4eH49NNPERgYCFdXVzz99NO4deuWpswXX3yBHj16QC6Xw93dHdHR0SgrKwOgPXw+adIkHDhwAO+99x4kEgkkEgkuXLiAzp07Y+XKlVpxnThxAhKJBOfOnTNNIxMRmQH7b/bfZGGCiBo0cOBA0bp1azFt2jRx6tQp8dlnnwlnZ2fx0UcfCSGECAgIEC4uLmLlypXi3Llz4ty5c+LIkSNCKpWKJUuWiNOnT4uNGzcKuVwuNm7cqNlvQECAaNOmjUhMTBSnT58W77//vpDJZOK7777TlImOjhaPPfaY+OWXX8SZM2fEjBkzhLu7u7h+/boQQoiFCxeK1q1biyeeeEL89ttvIi0tTXh7e4u5c+cKIYTIy8sTdnZ2YtWqVeLChQvi119/FWvWrBG3bt0SQggxceJEMXLkSCGEEMXFxSIqKkrExcWJ/Px8kZ+fL6qqqsQbb7whunXrptUmL7/8shgwYIC5mpyIyCTYf7P/JstiUkHUiIEDB4rQ0FChUqk021599VURGhoqhFBfXEaNGqVV55lnnhFDhw7V2jZr1iytzj0gIEAMHz5cq8zYsWPFww8/LIQQ4uDBg8LFxUXcvn1bq0ynTp3Ev/71LyGE+qLk7OwsSkpKtI4TGRkphBDi6NGjAoC4ePFivef294tSzblOmzZNq8yVK1eETCYTmZmZQgghFAqF8PDwEB9//HG9+yQishXsv9l/k2Xx9ieiu7j//vshkUg0r6OionD27FlUV1cDACIiIrTKZ2dno3///lrb+vfvr1WnZj9/FxUVhezsbABAVlYWSktL4e7ujtatW2t+Lly4gJycHE2dwMBAtGnTRvPax8cHV69eBQCEhYVhyJAh6NGjB0aPHo1169bh5s2bep27r68vHnnkEWzYsAEA8M0336CyshKjR4/Waz9ERNbA/pv9N1kOJ2oTGalVq1Ym32dpaSl8fHyQmppa572a1T4AwN7eXus9iUQClUoFAJDJZNi/fz/S09Px3Xff4YMPPsDrr7+OzMxMBAUF6RzLCy+8gOeeew7vvvsuNm7ciLFjx8LZ2dmg8yIisiXsv4lMh0kF0V1kZmZqvf75558RHBwMmUxWb/nQ0FAcOnRIa9uhQ4cQEhKiVefnn3+us9/Q0FAAQO/evVFQUAA7OzsEBgYaHLtEIkH//v3Rv39/LFiwAAEBAfjqq6+QkJBQp6yDg4PWN3E1RowYgVatWmHt2rXYu3cv0tLSDI6HiMiS2H+z/ybLYVJBdBe5ublISEjAiy++iGPHjuGDDz6osxrI382YMQP33Xcfli5dirFjxyIjIwOrV6/Ghx9+qFXu0KFDWLFiBUaNGoX9+/fj888/x+7duwEA0dHRiIqKwqhRo7BixQqEhIQgLy8Pu3fvxuOPP15nyL4+mZmZSElJwbBhw+Dp6YnMzExcu3ZNc+G7U2BgIDIzM3Hx4kW0bt0a7dq1g1QqhUwmw6RJkzBnzhwEBwfXGfYnIrJV7L/Zf5PlcE4F0V1MmDABFRUV6Nu3L6ZOnYpp06Zplh6sT+/evbFjxw5s27YN9957LxYsWIAlS5Zg0qRJWuVmzJiBI0eOoFevXli2bBlWrVqFmJgYAOpvqPbs2YMBAwYgNjYWISEhePrpp/HHH3/Ay8tLp7hdXFyQlpaGESNGICQkBPPmzcM777yDhx9+uN7yM2fOhEwmQ7du3dC+fXvk5uZq3nv++eehUCgQGxur07GJiGwB+2/232Q5fKI2USPM9ZTSwMBATJ8+HdOnTzfpfs3l4MGDGDJkCC5duqTzRZGIyJrYf6ux/yZL4e1PRNSgyspKXLt2DYsWLcLo0aN5QSIiaiLYf5Ol8fYnImrQ1q1bERAQgOLiYqxYscLa4RARkY7Yf5Ol8fYnIiIiIiIyCkcqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKEwqiIiIiIjIKP8Pu5dgRw/B7+sAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 800x400 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "plot_propensity_score_match_distributions(matcher)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f36dbce4-7fdc-464e-a0ca-2860675ce54c",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO [matcher.py:136] Best propensity score match found:\n",
      "INFO [matcher.py:137] \tModel: LogisticRegression\n",
      "INFO [matcher.py:139] \t* C: 0.6191810056908827\n",
      "INFO [matcher.py:139] \t* fit_intercept: False\n",
      "INFO [matcher.py:139] \t* max_iter: 500\n",
      "INFO [matcher.py:139] \t* penalty: l1\n",
      "INFO [matcher.py:139] \t* solver: saga\n",
      "INFO [matcher.py:140] \tScore (beta): 0.0307\n",
      "INFO [matcher.py:141] \tSolution time: 0.256 min\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAJjCAYAAACGIUCBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACR8klEQVR4nOzdd1QU198G8GfpICAoShMpYkNRsMbee2zRWGKCLaZJ1NhNLEETe+8xxhqNJlETowYL9hKNDTsqtiSKDQEBpe19/+Blf6y7jLsr7Iz4fM7Zo3tn5s6zs8vy5U5TCSEEiIiIiIjyYCF3ACIiIiJSNhaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEZDQ/Pz/06dNH83zVqlVQqVQ4efKkWdbfuHFjNG7c2CzrMoevv/4aKpUKjx49kjvKS/n5+eHtt98u8PXcv38fXbt2RfHixaFSqTB37twCXycR5Y0FI5ECxMbG4uOPP0ZAQADs7Ozg7OyMevXqYd68eXj27FmBrffSpUv4+uuvcevWrQJbh6mUmE2JmfKyfv3617rI+uKLL7Bz506MGTMGa9euRevWrQtkPZMnT8Zvv/1WIH0TFSZWcgcgetNt374d7777LmxtbREWFobKlSsjPT0dhw8fxogRI3Dx4kUsW7asQNZ96dIlREREoHHjxvDz8zN4uZiYGFhYFOzfm1LZdu3aVaDrNiWT0qxfvx4XLlzAkCFD5I5ikr1796Jjx44YPnx4ga5n8uTJ6Nq1Kzp16lSg6yF63bFgJJLRzZs30aNHD/j6+mLv3r3w9PTUTBs4cCCuX7+O7du3y5jwf4QQeP78Oezt7WFraytrFhsbG1nXTwXvwYMHcHFxkTuGSdRqNdLT02FnZyd3FKJ8w13SRDKaPn06kpOT8cMPP2gVizkCAwMxePBgzfPMzExMmjQJZcqUga2tLfz8/PDll18iLS1Na7mc48wOHz6MWrVqwc7ODgEBAVizZo1mnlWrVuHdd98FADRp0gQqlQoqlQr79+/X6mPnzp2oUaMG7O3t8d1332mm5T6GMUdqaio+/vhjFC9eHM7OzggLC8OTJ0+05lGpVPj66691ls3d58uy6TuG8cGDB+jfvz/c3d1hZ2eHqlWrYvXq1Vrz3Lp1CyqVCjNnzsSyZcs027FmzZr4+++/dTLl9rJMALB48WJUqlQJtra28PLywsCBA5GQkCDZb26PHj1Ct27d4OzsjOLFi2Pw4MF4/vy5znw//vgjqlevDnt7exQrVgw9evTAP//8o5neuHFjbN++Hbdv39bkzBkRTU9Px/jx41G9enUULVoURYoUQYMGDbBv3z6DcwLZo7whISGws7NDUFAQNm/erJl248YNqFQqzJkzR2e5o0ePQqVS4aefftLbb87xsEIILFq0SJM/R0JCAoYMGQIfHx/Y2toiMDAQ06ZNg1qt1upn5syZqFu3LooXLw57e3tUr14dv/76q9Y8KpUKKSkpWL16tWY9OZ/BPn366B1Fzjne9MV+wsPDsW7dOs37HxkZCQD477//0K9fP7i7u8PW1haVKlXCihUr8t6wREoliEg23t7eIiAgwOD5e/fuLQCIrl27ikWLFomwsDABQHTq1ElrPl9fX1G+fHnh7u4uvvzyS7Fw4UJRrVo1oVKpxIULF4QQQsTGxopBgwYJAOLLL78Ua9euFWvXrhVxcXGaPgIDA4Wrq6sYPXq0WLp0qdi3b59mWu/evTXrW7lypQAggoODRYMGDcT8+fPFwIEDhYWFhWjYsKFQq9WaeQGICRMm6Ly23H2+LFujRo1Eo0aNNMumpqaKihUrCmtra/HFF1+I+fPniwYNGggAYu7cuZr5bt68KQCI0NBQERgYKKZNmyamT58u3NzcRKlSpUR6enqe2/5lmSZMmCAAiObNm4sFCxaI8PBwYWlpKWrWrCnZb+5lg4ODRfv27cXChQvF+++/LwCIDz74QGveb775RqhUKtG9e3exePFiERERIdzc3ISfn5948uSJEEKIXbt2iZCQEOHm5qbJuWXLFiGEEA8fPhSenp5i6NChYsmSJWL69OmifPnywtraWpw5c0YyZ877VK5cOeHi4iJGjx4tZs+eLYKDg4WFhYXYtWuXZr569eqJ6tWr6yz/2WefCScnJ5GSkpLndl67dq0AIFq0aKHJL4QQKSkpokqVKqJ48eLiyy+/FEuXLhVhYWFCpVKJwYMHa/VTqlQp8dlnn4mFCxeK2bNni1q1agkAYtu2bZp51q5dK2xtbUWDBg006zl69KgQIvtnzdfXVydfznuVGwBRsWJFUaJECRERESEWLVokzpw5I+Li4kSpUqWEj4+PmDhxoliyZIno0KGDACDmzJnz0m1NpCQsGIlkkpiYKACIjh07GjT/2bNnBQDx4YcfarUPHz5cABB79+7VtPn6+goA4uDBg5q2Bw8eCFtbWzFs2DBN2y+//CIAaArB3HL6iIyM1DtNX8FYvXp1reJo+vTpAoD4/fffNW2GFIwvy/ZiwTh37lwBQPz444+atvT0dFGnTh3h6OgokpKShBD/KxiLFy8u4uPjNfP+/vvvAoD4448/dNaVW16ZHjx4IGxsbETLli1FVlaWpn3hwoUCgFixYoVkvzlFSIcOHbTaP/vsMwFAREdHCyGEuHXrlrC0tBTffvut1nznz58XVlZWWu3t2rXTW/BkZmaKtLQ0rbYnT54Id3d30a9fP8mcQvzvc7Fp0yZNW2JiovD09BShoaGatu+++04AEJcvX9a0paenCzc3N633OS8AxMCBA7XaJk2aJIoUKSKuXr2q1T569GhhaWkp7ty5o2lLTU3Vmic9PV1UrlxZNG3aVKu9SJEievMYWzBaWFiIixcvarX3799feHp6ikePHmm19+jRQxQtWlQnI5GScZc0kUySkpIAAE5OTgbNv2PHDgDA0KFDtdqHDRsGADrHOgYFBaFBgwaa5yVKlED58uVx48YNgzP6+/ujVatWBs//0UcfwdraWvP8008/hZWVlSZ7QdmxYwc8PDzQs2dPTZu1tTUGDRqE5ORkHDhwQGv+7t27w9XVVfM8ZzsZs21y27NnD9LT0zFkyBCtk4EGDBgAZ2dng49DHThwoNbzzz//HMD/3vvNmzdDrVajW7duePTokebh4eGBsmXLGrRb2dLSUnMMqFqtRnx8PDIzM1GjRg2cPn3aoJxeXl7o3Lmz5nnO4QdnzpxBXFwcAKBbt26ws7PDunXrNPPt3LkTjx49wvvvv2/Qel70yy+/oEGDBnB1ddV6/c2bN0dWVhYOHjyomdfe3l7z/ydPniAxMRENGjQw+DUaq1GjRggKCtI8F0Jg06ZNaN++PYQQWnlbtWqFxMTEAstCVBB40guRTJydnQEAT58+NWj+27dvw8LCAoGBgVrtHh4ecHFxwe3bt7XaS5curdOHq6urzjGFUvz9/Q2eFwDKli2r9dzR0RGenp4Ffhma27dvo2zZsjpnblesWFEzPbcXt01O8WjMtnlx/QBQvnx5rXYbGxsEBATorD8vL26/MmXKwMLCQrP9rl27BiGEznw5chfrUlavXo1Zs2bhypUryMjI0LQb+n4HBgbqHMdXrlw5ANnHieZ8Jtu3b4/169dj0qRJAIB169bB29sbTZs2NWg9L7p27RrOnTuHEiVK6J3+4MEDzf+3bduGb775BmfPntU6xvfF3PnlxW338OFDJCQkYNmyZXle5SB3XiKlY8FIJBNnZ2d4eXnhwoULRi1n6C88S0tLve1CCIPXlXuUpqBlZWWZbV35sW3M4cX3Wq1WQ6VS4c8//9T7GhwdHV/a548//og+ffqgU6dOGDFiBEqWLAlLS0tMmTIFsbGx+ZYdAMLCwvDLL7/g6NGjCA4OxtatW/HZZ5+ZfEkmtVqNFi1aYOTIkXqn5xSthw4dQocOHdCwYUMsXrwYnp6esLa2xsqVK7F+/XqD1pXXz1len9MXf1ZyTsJ5//330bt3b73LVKlSxaAsRErAgpFIRm+//TaWLVuGY8eOoU6dOpLz+vr6Qq1W49q1a5qRMyD7jhgJCQnw9fU1ev35Pdpy7do1NGnSRPM8OTkZ9+7dQ9u2bTVtrq6uOmcOp6en4969eyZn8/X1xblz56BWq7WKkStXrmim54e8MuX0HxMTg4CAAE17eno6bt68iebNmxvU/7Vr17RGqq5fvw61Wq05W7dMmTIQQsDf319THBmb9ddff0VAQAA2b96sNc+ECRMMypiTSwihtfzVq1cBQOvM4tatW6NEiRJYt24dateujdTUVHzwwQcGr+dFZcqUQXJy8ku356ZNm2BnZ4edO3dqXQJq5cqVOvPmtZ30fU4B3dHqvJQoUQJOTk7Iysoy+P0nUjIew0gko5EjR6JIkSL48MMPcf/+fZ3psbGxmDdvHgBoiq4X794xe/ZsAEC7du2MXn+RIkUAwKhLv0hZtmyZ1i7OJUuWIDMzE23atNG0lSlTRutYs5zlXhy5MSZb27ZtERcXh40bN2raMjMzsWDBAjg6OqJRo0amvBwdeWVq3rw5bGxsMH/+fK1Ryh9++AGJiYkGvzeLFi3Ser5gwQIA0Gy/d955B5aWloiIiNAZDRVC4PHjx1pZExMTddaRMzKZe/njx4/j2LFjBmUEgLt372LLli2a50lJSVizZg1CQkLg4eGhabeyskLPnj3x888/Y9WqVQgODn6lUbVu3brh2LFj2Llzp860hIQEZGZmAsh+jSqVSuszdevWLb13dClSpIjez1iZMmWQmJiIc+fOadru3bun9bqlWFpaokuXLti0aZPevQgPHz40qB8ipeAII5GMypQpg/Xr16N79+6oWLGi1p1ejh49il9++UVzXbiqVauid+/eWLZsGRISEtCoUSOcOHECq1evRqdOnbRG9gwVEhICS0tLTJs2DYmJibC1tUXTpk1RsmRJk15Peno6mjVrhm7duiEmJgaLFy9G/fr10aFDB808H374IT755BN06dIFLVq0QHR0NHbu3Ak3NzeTs3300Uf47rvv0KdPH5w6dQp+fn749ddfceTIEcydO9fgE4teRirTmDFjEBERgdatW6NDhw6a11+zZk2DT/K4efMmOnTogNatW+PYsWP48ccf8d5776Fq1aoAsj8v33zzDcaMGYNbt26hU6dOcHJyws2bN7FlyxZ89NFHmjujVK9eHRs3bsTQoUNRs2ZNODo6on379nj77bexefNmdO7cGe3atcPNmzexdOlSBAUFITk52aCc5cqVQ//+/fH333/D3d0dK1aswP379/WO4IWFhWH+/PnYt28fpk2bZuCW1m/EiBHYunUr3n77bfTp0wfVq1dHSkoKzp8/j19//RW3bt2Cm5sb2rVrh9mzZ6N169Z477338ODBAyxatAiBgYFaBWDOdtqzZw9mz54NLy8v+Pv7o3bt2ujRowdGjRqFzp07Y9CgQUhNTcWSJUtQrlw5g09WmTp1Kvbt24fatWtjwIABCAoKQnx8PE6fPo09e/YgPj7+lbYHkVnJdHY2EeVy9epVMWDAAOHn5ydsbGyEk5OTqFevnliwYIF4/vy5Zr6MjAwREREh/P39hbW1tfDx8RFjxozRmkeI7EuftGvXTmc9L16ORgghvv/+exEQECAsLS21LhmTVx850/RdVufAgQPio48+Eq6ursLR0VH06tVLPH78WGvZrKwsMWrUKOHm5iYcHBxEq1atxPXr13X6lMqm73Xcv39f9O3bV7i5uQkbGxsRHBwsVq5cqTVPzmV1ZsyYofOakMflfl6UVyYhsi+jU6FCBWFtbS3c3d3Fp59+qrk2opScS7VcunRJdO3aVTg5OQlXV1cRHh4unj17pjP/pk2bRP369UWRIkVEkSJFRIUKFcTAgQNFTEyMZp7k5GTx3nvvCRcXFwFAc4kYtVotJk+eLHx9fYWtra0IDQ0V27Zty/MyMi/K+Vzs3LlTVKlSRdja2ooKFSqIX375Jc9lKlWqJCwsLMS///770v5zQM9ldYQQ4unTp2LMmDEiMDBQ2NjYCDc3N1G3bl0xc+ZMrUs6/fDDD6Js2bKafCtXrtR7SZwrV66Ihg0bCnt7ewFA6zO4a9cuUblyZWFjYyPKly8vfvzxxzwvq6MvqxDZn8uBAwcKHx8fYW1tLTw8PESzZs3EsmXLDN4WREqgEkJhR3kTEVGhEhoaimLFiiEqKkruKERkIh7DSEREBebkyZM4e/YswsLC5I5CRK+AI4xERJTvLly4gFOnTmHWrFl49OgRbty4ATs7O7ljEZGJOMJIRET57tdff0Xfvn2RkZGBn376icUi0WuOI4xEREREJIkjjEREREQk6Y27DqNarcbdu3fh5ORUYPcUJSIiInodCCHw9OlTeHl5Sd62840rGO/evQsfHx+5YxAREREpxj///INSpUrlOf2NKxhz7vjwzz//wNnZWeY0ugIDA3H9+nW5Y+jFbMZTai6A2Uyl1GxKzQUwm6mUmk2puQBmM0VSUhJ8fHxeekesN65gzNkN7ezsrMiC0cLCQpG5AGYzhVJzAcxmKqVmU2ougNlMpdRsSs0FMNureNlhejzphYiIiIgksWAkIiIiIkksGImIiIhI0ht3DKOhsrKykJGRYfb1lipVCs+fPzf7eg3BbMZTai6A2UyVk83a2hqWlpZyxyEiMos37k4vSUlJKFq0KBITE/UefCqEQFxcHBISEswfDtlnbyv1sj/MZjyl5gKYzVS5s7m4uMDDw0MR13T18PBAXFyc3DH0YjbTKDWbUnMBzGaKl9VFOTjC+IKcYrFkyZJwcHAw+y+CtLQ0+Pv7m3WdhmI24yk1F8BspkpLS4Ofnx9SU1Px4MEDAICnp6fMqYiIChYLxlyysrI0xWLx4sVlyaBSqWBnZyfLul+G2Yyn1FwAs5lKpVLB3t4e9vb2AIAHDx6gZMmS3D1NRIUaT3rJJeeYRQcHB5mTENHrIOe7Qo7jnYmIzIkFox5KOB6JiJSP3xVE9KZgwUhEREREklgwEhEREZEknvRioOoj1phvZT9G49SMMPOtzwh+fn4YMmQIhgwZkuc86enpCAoKwpo1a1C3bl3cunUL/v7+OHPmDEJCQsyW9U3Vo0cP1KxZE8OGDZM7ChERFRIcYaR8t3TpUvj7+6Nu3br52m/jxo0lC1VzunPnDtq1awcHBweULFkSI0aMQGZmpuQy8fHx6NWrF5ydneHi4oL+/fsjOTlZMz0mJgZNmjSBu7s77OzsEBAQgLFjx2qdUHHx4kV06dIFfn5+UKlUmDt3rs56xo4di2+//RaJiYn59nqJiOjNxoKR8pUQAgsXLkT//v3ljlJgsrKy0K5dO6Snp+Po0aNYvXo1Vq1ahfHjx0su16tXL1y8eBG7d+/Gtm3bcPDgQXz00Uea6dbW1ggLC8OuXbsQExODuXPn4vvvv8eECRM086SmpiIgIABTp06Fh4eH3vVUrlwZZcqUwY8//pg/L5iIiN54LBgLicaNGyM8PBzh4eEoWrQo3NzcMG7cOOS+kc+TJ08QFhYGV1dXODg4oE2bNrh27ZpWP5s2bUKlSpVga2sLPz8/zJo1y6gcp06dQmxsLNq1a6cz7cqVK6hbty7s7OxQuXJlHDhwQGv6hQsX0KZNGzg6OsLd3R0ffPABHj16BADo06cPDhw4gHnz5kGlUkGlUuHWrVvIyspC//790bZtW9jb26N8+fKYN2+eUZmNtWvXLly6dAk//vgjQkJC0KZNG0yaNAmLFi1Cenq63mUuX76MyMhILF++HLVr10b9+vWxYMECbNiwAXfv3gUABAQEoG/fvqhatSp8fX3RoUMH9OrVC4cOHdL0U7NmTcyYMQM9evSAra1tnhnbt2+PDRs25O8LJyKiNxYLxkJk9erVsLKywokTJzBv3jzMnj0by5cv10zv06cPTp48ia1bt+LYsWMQQqBt27aaXZ6nTp1Ct27d0KNHD5w/fx5ff/01xo0bh1WrVhmc4dChQyhXrhycnJx0po0YMQLDhg3DmTNnUKdOHbRv3x6PHz8GACQkJKBp06YIDQ3FyZMnERkZifv376Nbt24AgHnz5qFOnToYMGAA7t27h3v37sHHxwdqtRqlSpXCjBkzcOnSJYwfPx5ffvklfv75Z8mcjo6Oko9PPvkkz2WPHTuG4OBguLu7a9patWqFpKQkXLx4Mc9lXFxcUKNGDU1b8+bNYWFhgePHj+td5vr164iMjESjRo0kX4s+tWrVwokTJ5CWlmb0skRERC/iSS+FiI+PD+bMmQOVSoXy5cvj/PnzmDNnDgYMGIBr165h69atOHLkiObYwnXr1sHHxwe//fYb3n33XcyePRvNmjXDuHHjAADlypXDpUuXMGPGDPTp08egDLdv34aXl5feaeHh4ejSpQsAYMmSJYiMjMQPP/yAkSNHYuHChQgNDcXkyZM1869YsQI+Pj64evUqypUrBxsbGzg4OGjtirW0tERERASio6Ph7+8Pf39/HDt2DD///LOm2NTn7Nmzkq9D6n6acXFxWsUiAM3zvO4TGhcXh5IlS2q1WVlZoVixYjrL1K1bF6dPn0ZaWho++ugjTJw4UTKrPl5eXkhPT0dcXBx8fX2NXp6IiCg3FoyFyFtvvaV1IeE6depg1qxZyMrKwuXLl2FlZYXatWtrphcvXhzly5fH5cuXAWTvNu3YsaNWn/Xq1cPcuXORlZVlUIZnz57leUu3OnXqaP5vZWWFGjVqaNYdHR2Nffv2wdHRUWe52NhYlCtXLs91Llq0CIsWLcLDhw/x7NkzpKenv/Rs7MDAQANejTw2btyIp0+fIjo6GiNGjMDMmTMxcuRIo/rIuW1dampqQUQkIqI3DAtGyldubm44f/680cslJyejffv2mDZtms40T0/PPJfbsGEDhg8fji+++ALvvvsunJycMGPGjDx38+bQV5jm9v7772Pp0qV6p3l4eODEiRNabffv39dMy2uZBw8eaLVlZmYiPj5eZxkfHx8AQFBQELKysvDRRx9h2LBhRt2rOD4+HgBQokQJg5chIiLKCwvGQuTFIumvv/5C2bJlYWlpiYoVKyIzMxPHjx/X7JJ+/PgxYmJiEBQUBACoWLEijhw5otXHkSNHUK5cOYOLldDQUCxZsgRCCJ3bpv31119o2LAhgOxi6dSpUwgPDwcAVKtWDZs2bYKfnx+srPR/LG1sbHRGOnN2sXfv3h1Vq1YFkD0i+TKvsku6Tp06+Pbbb/HgwQPNbubdu3fD2dlZsy31LZOQkIBTp06hevXqAIC9e/dCrVZrjfq+SK1WIyMjA2q12qiC8cKFCyhVqhTc3NwMXoaICoc7E4MNmq/0eOP/uKc3FwvGQuTOnTsYOnQoPv74Y5w+fRoLFizQnOVctmxZdOzYEQMGDMB3330HJycnjB49Gt7e3prd0MOGDUPNmjUxadIkdO/eHceOHcPChQuxePFigzM0adIEycnJuHjxIipXrqw1bdGiRShbtiwqVqyIOXPm4MmTJ+jXrx8AYODAgfj+++/Rs2dPjBw5EsWKFcP169exYcMGLF++HJaWlvDz88Px48dx69YtODo6olixYihbtizWrFmDo0ePwt7eHmvXrsXff/8Nf39/yZyvsku6ZcuWCAoKwgcffIDp06cjLi4OY8eOxcCBAzVnLp84cQJhYWGYP38+gOxivHXr1hgwYACWLl2KjIwMhIeHo0ePHppjPtetWwdra2sEBwfD1tYWJ0+exJgxY9C9e3dYW1sDyL4o+qVLlzT//++//3D27Fk4OjpqvaZDhw6hZcuWJr9GIiKi3FgwGshcd16Jjo7WjJQZKywsDM+ePUOtWrVgaWmJwYMHa13nb+XKlRg8eDDefvttpKeno2HDhtixY4emGKlWrRp+/vlnjB8/HpMmTYKnpycmTpxo8AkvQPZxkZ07d8a6deswZcoUrWlTp07F1KlTcfbsWQQGBmLr1q2aETAvLy8cOXIEo0aNQsuWLZGWlgZfX1+0bt0aFhbZJ/MPHz4cvXv3RlBQEJ49e4abN2/i448/xpkzZzBy5EhYWVmhZ8+e+Oyzz/Dnn3+atA0NYWlpiW3btuHTTz9FnTp1UKRIEfTu3Vvr5JTU1FTExMRoXcx73bp1CA8PR7NmzWBhYYEuXbpoCkog+7jOadOm4erVqxBCwNfXF+Hh4fjiiy8089y9exehoaGa5zNnzsTMmTPRqFEj7N+/HwDw/Plz/Pbbb4iMjCywbUBERG8Wlch9ob43QFJSEooWLYrExESd3Y7Pnz/HzZs34e/vn+eJGwXN1IKxcePGCAkJ0Xvnj/xiaLZz586hRYsWiI2NfemxgvnlVQrtgiRHriVLlmDLli3YtWuX5HxK3WbA65NNCd8ZOTw8PPI8S19uzGYaU7MV9C7pwrjNzEGp2aTqotx4HUbKd1WqVMG0adNw8+ZNuaO8kaytrbFgwQK5YxARUSHCXdJUIIzZjU3568MPP5Q7AhERFTIsGAuJnOPXiIiIiPIbd0kTERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJImX1TGQoVfOf1WuAO78rtybwvv5+WHIkCEYMmRInvOkp6cjKCgIa9asQd26dc0XTgFUKhW2bNmCTp066Z1+6dIltGzZEjExMShSpMhL+2vYsCE++eQTvPfeewb1T/mnR48eqFmzJoYNGyZ3FCIi2XGEkfLd0qVL4e/v/1oXi7du3YJKpcLZs2fztd+goCC89dZbmD179kvn3bp1K+7fv48ePXrka4Y+ffoopuCMj49Hr1694OzsDBcXF/Tv3x/JycmS83/++ecoX7487O3tUbp0aQwaNAiJiYl653/8+DFKlSoFlUqFhIQETfv+/fuhUql0Hrlv2zV27Fh8++23efZNRPQmYcFI+UoIgYULF6J///6v3E9mZmY+pVKWvn37YsmSJS99ffPnz0ffvn1hYVF4f0x79eqFixcvYvfu3di2bRsOHjyIjz76KM/57969i7t372LmzJm4cOECVq1ahcjIyDw/b/3790eVKlXy7C8mJgb37t3TPEqWLKmZVrlyZZQpUwY//vij6S+QiKiQKLy/id4wjRs3Rnh4OMLDw1G0aFG4ublh3LhxEEJo5nny5AnCwsLg6uoKBwcHtGnTBteuXdPqZ9OmTahUqRJsbW3h5+eHWbNmGZXj1KlTiI2NRbt27TRtOaN1GzZsQN26dWFnZ4fKlSvjwIEDmnlyRnz+/PNPVK9eHba2tjh8+DDUajWmTJkCf39/2Nvbo2rVqvj11191ljt69ChCQ0Nhb2+Ppk2b4sGDB/jzzz9RsWJFODs747333kNqaqpmucjISNSvXx8uLi4oXrw43n77bcTGxmqm+/v7AwBCQ0OhUqnQuHFjzbQVK1ZotpGnpyfCw8O1tsGjR4/QuXNnODg4oH379ti6davW9BYtWiA+Pl7r9b/o4cOH2Lt3L9q3b68z7d69e2jTpg3s7e0REBCgtT0A4J9//kG3bt3g4uKCYsWKoWPHjrh16xYA4Ouvv8bq1avx+++/IyQkBCqVSnOXoFGjRqFcuXJwcHBAQEAAxo0bh4yMjDwzvqrLly8jMjISy5cvR+3atVG/fn0sWLAAGzZswIMHD/QuU7lyZWzatAnt27dHmTJl0LRpU3z77bf4448/dArwJUuWICEhAcOHD88zQ8mSJeHh4aF5vFict2/fHhs2bHj1F0tE9JpjwViIrF69GlZWVjhx4gTmzZuH2bNnY/ny5Zrpffr0wcmTJ7F161YcO3YMQgi0bdtWUxScOnUK3bp1Q48ePXD+/Hl8/fXXGDduHFatWmVwhkOHDqFcuXJwcnLSmTZixAgMGzYMZ86cQZ06ddC+fXs8fvxYa57Ro0dj6tSpuHz5MqpUqYIpU6ZgzZo1WLp0KS5evIgvvvgC77//vk6xtXTpUixcuBBHjx7VFExz587F+vXrsX37duzatQsLFizQzJ+SkoKhQ4fi5MmTiIqKgoWFBTp37gy1Wg0AOHHiBABgz549uHfvHjZv3gwguwgZOHAgPvroI5w/fx5bt25FYGCgVpaIiAh069YN586dQ/369dGrVy/Ex8drptvY2CAkJASHDh3KczsePnwYDg4OqFixos60cePGoUuXLoiOjkavXr3Qo0cPXL58GQCQkZGBVq1awcnJCYcOHcKRI0fg6OiI1q1bIz09HcOHD0e3bt3QunVrzWvLOXTAyckJq1atwqVLlzBv3jx8//33mDNnTp4ZAaBSpUpwdHTM89GmTZs8lz127BhcXFxQo0YNTVvz5s1hYWGBCxcuSK43t8TERDg7O8PK6n+HZF+6dAkTJ07EmjVrJEdoQ0JC4OnpiRYtWuDIkSM602vVqoUTJ04gLS3N4DxERIURT3opRHx8fDBnzhyoVCqUL18e58+fx5w5czBgwABcu3YNW7duxZEjRzQFwrp16+Dj44PffvsN7777LmbPno1mzZph3LhxAIBy5crh0qVLmDFjBvr06WNQhtu3b8PLy0vvtPDwcHTp0gVAduEVGRmJH374ASNHjtTMM3HiRLRo0QIAkJaWhsmTJ2PPnj2oU6cOACAgIACHDx/Gd999h0aNGmmWGzhwIOrVqwcgezfkmDFjEBsbi4CAAABA165dsW/fPowaNQoANDlyrFixAiVKlMClS5dQuXJllChRAgBQvHhxeHh4aOb75ptvMGzYMAwePFjTVrNmTa2++vTpg549ewIABg0ahJ9++gknTpxA69atNfN4eXnh9u3bktvR3d1db7Hz7rvv4sMPPwQATJo0Cbt378aCBQuwePFibNy4EWq1GsuXL4dKpQIArFy5Ei4uLti/fz9atmwJe3t7pKWlwc3NTeu1jR07VvN/Pz8/DB8+HBs2bNB6f160Y8cOyVFIe3v7PKfFxcVp7QIGACsrKxQrVgyPHj3Kc7ncHj16hEmTJmntxk5LS0PPnj0xY8YMlC5dGjdu3NBZztPTE0uXLkWNGjWQlpaG5cuXo3Hjxjh+/DiqVaummc/Lywvp6emIi4uDr6+vQZmIiAojFoyFyFtvvaUpEgCgTp06mDVrFrKysnD58mVYWVmhdu3amunFixdH+fLlNaNTly9fRseOHbX6rFevHubOnYusrCyDMjx79gx2dnZ6p+UUfUB2YVCjRg3NunPkHm26fv06UlNTNQVkjvT0dISGhmq1lS1bVvN/d3d3zW7V3G05o4YAcO3aNYwfPx7Hjx/Ho0ePNCOLd+7cQeXKlfXmf/DgAe7evYtmzZrpnZ4j9zFz9vb2cHZ21tnFam9vr7WL/EWGbsec5zkn50RHR+P69es6I7zPnz/X2uWuz8aNGzF//nzExsYiOTkZmZmZcHZ2llxGziIqKSkJ7dq1Q1BQEL7++mtN+5gxY1CxYkW8//77eS5bvnx5lC9fXvO8bt26iI2NxZw5c7B27VpNe07BK/VeERG9CVgwUr5yc3PD+fOmXxIo96Vmcs6W3b59O7y9vbXms7W11Xqee3ekSqWCtbW11nSVSqUpCoHsY9N8fX3x/fffw8vLC2q1GpUrV0Z6enqe2aRGy3J72bqB7LN9y5Qpk2cfbm5uePLkiUHryy05ORnVq1fHunXrdKbljJrqc+zYMfTq1QsRERFo1aoVihYtig0bNrz0GNZKlSpJjpQ2aNAAf/75p95pHh4eOoV0ZmYm4uPj4ebmJrnep0+fonXr1nBycsKWLVu0tvnevXtx/vx5zbGdOcfxurm54auvvkJERITePmvVqoXDhw9rteUcSiC17YiI3gQsGAuR48ePaz3/66+/ULZsWVhaWqJixYrIzMzE8ePHNbukHz9+jJiYGAQFBQEAKlasqHMc15EjR1CuXDlYWloalCE0NBRLliyBEEJrtDMnT8OGDQFkFwanTp3SOWEkt6CgINja2uLOnTtau59fVc7r/v7779GgQQMA0CkUbGxsAEBrZNXJyQl+fn6IiopCkyZNXinDhQsX0LVr1zynh4aGIi4uDk+ePIGrq6vWtL/++gthYWFaz3NGXKtVq4aNGzeiZMmSeY4O2tjY6IwYHz16FL6+vvjqq680bVKFYI5X2SVdp04dJCQk4NSpU6hevTqA7GIvp3jPS1JSElq1agVbW1ts3bpVZyR206ZNePbsmeb533//jX79+uHQoUOSRfrZs2fh6emp1XbhwgWUKlXqpQUsEVFhx4KxELlz5w6GDh2Kjz/+GKdPn8aCBQs0I0Rly5ZFx44dMWDAAHz33XdwcnLC6NGj4e3trdkNPWzYMNSsWROTJk1C9+7dcezYMSxcuBCLFy82OEOTJk2QnJyMixcv6vzSX7RoEcqWLYuKFStizpw5ePLkCfr165dnX05OThg+fDi++OILqNVq1K9fH4mJiThy5AicnZ3Ru3dvE7YS4OrqiuLFi2PZsmXw9PTEnTt3MHr0aK15SpYsCXt7e0RGRqJUqVKws7ND0aJF8fXXX+OTTz5ByZIl0aZNGzx9+hRHjhzB559/bvD6b926hf/++w/NmzfPc57Q0FC4ubnhyJEjePvtt7Wm/fLLL6hRowbq16+PdevW4cSJE/jhhx8AZF+mZsaMGejYsSMmTpyIUqVK4fbt29i8eTNGjhyJUqVKwc/PDzt37sStW7fg7e2NokWLomzZsrhz5w42bNiAmjVrYvv27diyZctLX8ur7JKuWLEiWrdujQEDBmDp0qXIyMhAeHg4evTooTm28b///kOzZs2wZs0a1KpVC0lJSWjZsiVSU1Px448/IikpCUlJSQCyRwEtLS11isKc4yErVqwIFxcXAMDcuXPh7++PSpUq4fnz51i+fDn27t2LXbt2aS176NAhtGzZ0uTXSERUWLBgNJC57rwSHR2NqlWrmrRsWFgYnj17hlq1asHS0hKDBw/WOhlg5cqVGDx4MN5++22kp6ejYcOG2LFjh2Z3XrVq1fDzzz9j/PjxmDRpEjw9PTFx4kSDT3gBso+L7Ny5M9atW4cpU6ZoTZs6dSqmTp2Ks2fPIjAwEFu3bn3pyM2kSZNQokQJTJkyBTdu3ICLiwuqVauGL7/80vAN8wILCwts2LABgwYNQuXKlVG+fHnMnz9f69I5VlZWmD9/PiZOnIjx48ejQYMG2L9/P3r37o3nz59jzpw5GD58ONzc3CRHCvX56aef0LJlS8liy9LSEn379sW6det0CsaIiAhs2LABn332GTw9PfHTTz9pRokdHBxw8OBBjBo1Cu+88w6ePn0Kb29vNGvWTDPiOGDAAOzfv19zqaF9+/ahQ4cO+OKLLxAeHo60tDS0a9cO48aN0zo2sCCsW7cO4eHhaNasGSwsLNClSxfNcZRA9lnfMTExmmMIT58+rRlJf/Hs9Js3b8LPz8+g9aanp2PYsGH477//4ODggCpVqmDPnj1aI8fPnz/Hb7/9hsjIyHx4pURErzeVyH2hvjdAUlISihYtqrkUR27Pnz/HzZs34e/vn+cJBwXN1IKxcePGCAkJwdy5c/M/1P8zNNu5c+fQokULxMbGwtHREbdu3YK/vz/OnDmDkJAQWbOZ24u50tPTUbZsWaxfv15zVnde4uLiUKlSJZw+fbpATi5R6jYDlJFtyZIl2LJli86oY+5sSvjOyOHh4aF1pxolYTbTmJrN0FvZmjoQUhi3mTkoNZtUXZQbr8NI+a5KlSqYNm0abt68KXcUxblz5w6+/PLLlxaLQPaXyw8//IA7d+6YIRm9yNraWuvanUREbzLukqYCYcxu7DdJYGCgzq5UKUq55/ObKOdal0RExIKx0Mi5vZsS+fn54Q078oGIiKhQ4S5pIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCTxsjoGqrfg5RdazjcHgSOfHzHf+hQgJiYGjRo1wrVr1+Dk5IRVq1ZhyJAhSEhIkDtaoffo0SMEBQXh9OnTKFWqlNxxiIhIgTjCWEg0btwYQ4YMkTuGFmMyjRkzBp9//jmcnJzyNYNKpcJvv/2Wr32aav/+/ahWrRpsbW0RGBiIVatWvXSZc+fOoUGDBrCzs4OPjw+mT5+uM88vv/yCChUqwM7ODsHBwdixY4fWdCEExo8fD09PT9jb26N58+a4du2aZrqbmxvCwsIwYcKEV36NRERUOLFgJC3p6elmX+edO3ewbdu2Qn13mJs3b6Jdu3Zo0qQJzp49iyFDhuDDDz/Ezp0781wmKSkJLVu2hK+vL06dOoUZM2bg66+/xrJlyzTzHD16FD179kT//v1x5swZdOrUCZ06dcKFCxc080yfPh3z58/H0qVLcfz4cRQpUgStWrVCWlqaZp6+ffti3bp1iI+PL5gNQERErzUWjIVAnz59cODAAcybNw8qlQoqlQq3bt1CVlYW+vfvD39/f9jb26N8+fKYN2+ezrKdOnXCt99+Cy8vL5QvXx5AdiESEhICOzs71KhRA7/99htCQkJw9uxZzbIXLlxAmzZt4OjoCHd3d3zwwQd49OiRZCZ9fv75Z1StWhXe3t4603777TeULVsWdnZ2aNWqFf755x+t6b///juqVauGWrVqISAgABEREcjMzASQfYcZAOjcuTNUKpXmeWxsLDp27Ah3d3c4OjqiZs2a2LNnj7Gb3ShLly6Fv78/Zs2ahYoVKyI8PBxdu3bFnDlz8lxm3bp1SE9Px4oVK1CpUiX06NEDgwYNwuzZszXzzJs3D61bt8aIESNQsWJFTJo0CdWqVcPChQsBZI8uzp07F2PHjkXHjh1RpUoVrFmzBnfv3sW+ffs0/VSqVAleXl7YsmVLwW0EIiJ6bbFgLATmzZuHOnXqYMCAAbh37x7u3bsHHx8fqNVqlCpVCr/88gsuXbqE8ePH48svv8TPP/+stXxUVBRiYmKwe/dubNu2DUlJSWjfvj2Cg4Nx+vRpTJo0CaNGjdJaJiEhAU2bNkVoaChOnjyJyMhI3L9/H926dZPMpM+hQ4dQo0YNnfbU1FR8++23WLNmDY4cOYKEhAT06NFDa7mwsDAMHjwYmzdvxnfffYdVq1bh22+/BQD8/fffAICVK1fi3r17mufJyclo27YtoqKicObMGbRu3Rrt27fHnTt38tzGhw4dgqOjo+Rj3bp1eS5/7NgxNG/eXKutVatWOHbsmOQyDRs2hI2NjdYyMTExePLkiUH93rx5E3FxcVrzFC1aFLVr10Z0dLTWcrVq1cKhQ4fyzENERG8unvRSCBQtWhQ2NjZwcHCAh4eHpt3S0hIRERGa5/7+/jh27Bh+/vlnTWEHAEWKFMHy5cs1hcnSpUuhUqnw/fffw87ODkFBQfjvv/8wYMAAzTILFy5EaGgoJk+erGlbsWIFfHx8cPXqVZQrV05vJn1u376tt2DMyMjAwoULUbt2bQDA6tWrUbFiRZw4cQK1atVCREQERo8ejd69eyM6OhpVq1bFpEmTMHLkSEyYMAElSpQAALi4uGhlqFq1KqpWrap5PmnSJGzZsgVbt25FeHi43ow1atTQGl3Vx93dPc9pcXFxOtPd3d2RlJSEZ8+ewd7eXu8y/v7+etcRFxcHV1fXPPuNi4vTzKcvm7u7Ox4/fqzV5uXlhTNnzki9RCIiekOxYCzkFi1ahBUrVuDOnTt49uwZ0tPTERISojVPcHCw1ihWTEwMqlSpAjs7O01brVq1tJaJjo7Gvn374OjoqLPO2NhYlCtXzuCMz54901pXDisrK9SsWVPzvEKFCnBxccHly5dRq1YtREdH48iRI/j222+hVqthYWGBrKwsPH/+HKmpqXBwcNC7vuTkZHz99dfYvn077t27h8zMTDx79kxyhNHe3h6BgYEGv6bXkb29PVJTU+WOQURECsSCsRDbsGEDhg8fjlmzZqFOnTpwcnLCjBkzcPz4ca35ihQpYnTfycnJaN++PaZNm6YzzdPT06i+3NzcNLtYjc0QERGBd955B5cvX0bFihU10/QVoDmGDx+O3bt3Y+bMmQgMDIS9vT26du0qecLPoUOH0KZNG8k83333HXr16qV3moeHB+7fv6/Vdv/+fTg7O+sdXZRaJmea1Dy5p+e05X5f7t+/r3PMaHx8vGZUloiIKDcWjIWEjY0NsrKytNqOHDmCunXr4rPPPtO0xcbGvrSv8uXL48cff0RaWhpsbW0B/O94wBzVqlXDpk2b4OfnBysr/R8jfZn0CQ0NxaVLl3TaMzMzcfLkSc3oZkxMDBISEjSFYbVq1RATE4PAwECkpKToHQG0trbWu1369OmDzp07A8guPPM6ISfHq+6SrlOnjs7lbnbv3o06depILvPVV18hIyMD1tbWmmXKly8PV1dXzTxRUVFaly/K3a+/vz88PDwQFRWlGVlOSkrC8ePHtQ5XALJPYmrcuLHkayQiojcTT3opJPz8/HD8+HHcunULjx49glqtRtmyZXHy5Ens3LkTV69exbhx43QKP33ee+89qNVqfPTRR7h8+TJ27tyJmTNnAsi+riEADBw4EPHx8ejZsyf+/vtvxMbGYufOnejbt6+mQNOXSZ+ckzReLOysra3x+eef4/jx4zh16hT69OmDt956S1NAjh8/HmvWrEFERASuX7+Oy5cvY8OGDRg7dqzWdomKikJcXJxmFLNs2bLYvHkzzp49i+joaM3rlZKzS1rqIXUNyU8++QQ3btzAyJEjceXKFSxevBg///wzvvjiC808CxcuRLNmzbTeBxsbG/Tv3x8XL17Exo0bMW/ePAwdOlQzz+DBgxEZGYlZs2bhypUr+Prrr3Hy5EnNsZgqlQpDhgzBN998g61bt+L8+fMICwuDl5cXmjRpouknNTUVp06dQsuWLSW3AxERvaHEGyYxMVEAEImJiTrTnj17Ji5duiSePXsmQ7JsZ8+eNWm5mJgY8dZbbwl7e3sBQNy8eVM8f/5c9OnTRxQtWlS4uLiITz/9VIwePVpUrVpVs1zv3r1Fx44ddfo7cuSIqFKlirCxsRHVq1cX69evFwDElStXNPNcvXpVdO7cWbi4uAh7e3tRoUIFMWTIEKFWq/PMpE9GRobw8vISkZGRmraVK1eKokWLik2bNomAgABha2srmjdvLm7fvq21bGRkpKhbt66ws7MTzs7OolatWmLZsmWa6Vu3bhWBgYHCyspK+Pr6CiGEuHnzpmjSpImwt7cXPj4+YuHChaJRo0Zi8ODBxm10A+R+P/ft2ydCQkKEjY2NCAgIECtXrtSad8KECZqMOaKjo0X9+vWFra2t8Pb2FlOnTtVZx88//yzKlSsnbGxsRKVKlcT27du1pqvVajFu3Djh7u4ubG1tRbNmzURMTIxWtvXr14vy5cu/+gvOJ6b+HJhD7mxK+M7I4e7uLneEPDGbaUzNdjuiskEPc+cyB2YznlRdlJtKCCFkrVjNLCkpCUWLFkViYiKcnZ21pj1//hw3b96Ev7+/5DFwBSnnbF+lWbduHfr06YOkpKQ8j7l7FYsWLcLWrVslL2QtRanbTam5AO1sb731FgYNGoT33ntP5lTZXpftpoTvjBweHh6as+KVhtlMY2q2OxODDZqv9PjzRvcNFM5tZg5KzSZVF+XGYxhJrzVr1iAgIADe3t6Ijo7GqFGj0LJlywIpFgHg448/RkJCAp4+fZrvtwckaY8ePcI777yDnj17yh2FiIgUigUj6RUXF4fx48cjLi4Onp6eePfdd9G9e/cCW5+VlRW++uqrAuuf8ubm5oaRI0fKHYOIiBSMBSPpNXLkSJ0i4sU7gxAREdGbgWdJExEREZEkFox6vOwSK0REAL8riOjNwV3SudjY2MDCwgJ3795FiRIlYGNjo7nuoLkIIfD8+XOzrtNQzGY8peYCmM1UQgjNbTYfPnwICwsLrVtrEhEVRiwYc7GwsIC/vz/u3buHu3fvypLhwYMHmrurKA2zGU+puQBmM1XubA4ODihdujQsLLizhogKNxaML7CxsUHp0qWRmZlp0G3t8tsHH3yAw4cPm329hmA24yk1F8BspsrJZmlpCSsrK7PvhSAikgMLRj1UKhWsra019+81p3///Vf2CwDnhdmMp9RcALOZSsnZiIgKCvejEBEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJEUUjIsWLYKfnx/s7OxQu3ZtnDhxwqDlNmzYAJVKhU6dOhVsQCIiIqI3mOwF48aNGzF06FBMmDABp0+fRtWqVdGqVSs8ePBAcrlbt25h+PDhaNCggZmSEhEREb2ZZC8YZ8+ejQEDBqBv374ICgrC0qVL4eDggBUrVuS5TFZWFnr16oWIiAgEBASYMS0RERHRm0fWC3enp6fj1KlTGDNmjKbNwsICzZs3x7Fjx/JcbuLEiShZsiT69++PQ4cOSa4jLS0NaWlpmudJSUkAgIyMDGRkZLziK8h/QghF5gKYzRRKzQUwm6mUmk2puQBmM5Wp2bIsDLutpqmvuzBuM3NQajZDM8laMD569AhZWVlwd3fXand3d8eVK1f0LnP48GH88MMPOHv2rEHrmDJlCiIiInTad+3aBQcHB6MzF7T09HTs2LFD7hh6MZvxlJoLYDZTKTWbUnMBzGYqk7MFjzNotnMmvu5Cuc3MQKnZUlNTDZrvtbo14NOnT/HBBx/g+++/h5ubm0HLjBkzBkOHDtU8T0pKgo+PD1q2bAlnZ+eCimoyGxsbtG3bVu4YejGb8ZSaC2A2Uyk1m1JzAcxmKlOz/TutjkHzlRqV9548KYVxm5mDUrPl7Hl9GVkLRjc3N1haWuL+/fta7ffv34eHh4fO/LGxsbh16xbat2+vaVOr1QAAKysrxMTEoEyZMlrL2NrawtZWd3herntFv0zOfayViNmMp9RcALOZSqnZlJoLYDZTmZrNUp328pkAk193Ydxm5qDUbIZmkvWkFxsbG1SvXh1RUVGaNrVajaioKNSpo/sXUoUKFXD+/HmcPXtW8+jQoQOaNGmCs2fPwsfHx5zxiYiIiN4Isu+SHjp0KHr37o0aNWqgVq1amDt3LlJSUtC3b18AQFhYGLy9vTFlyhTY2dmhcuXKWsu7uLgAgE47EREREeUP2QvG7t274+HDhxg/fjzi4uIQEhKCyMhIzYkwd+7cgYWF7Ff/ISIiInpjyV4wAkB4eDjCw8P1Ttu/f7/ksqtWrcr/QERERESkwaE7IiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISJIiTnohotfHnYnBBs9bevz5AkxCRETmwhFGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkm8lzQR0RuM9wYnIkNwhJGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgk8U4vREREVOB4V6HXG0cYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSVZyByAiInrd3JkYbNB8pcefL+AkRObBEUYiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJiigYFy1aBD8/P9jZ2aF27do4ceJEnvNu3rwZNWrUgIuLC4oUKYKQkBCsXbvWjGmJiIiI3iyyF4wbN27E0KFDMWHCBJw+fRpVq1ZFq1at8ODBA73zFytWDF999RWOHTuGc+fOoW/fvujbty927txp5uREREREbwbZC8bZs2djwIAB6Nu3L4KCgrB06VI4ODhgxYoVeudv3LgxOnfujIoVK6JMmTIYPHgwqlSpgsOHD5s5OREREdGbQdZbA6anp+PUqVMYM2aMps3CwgLNmzfHsWPHXrq8EAJ79+5FTEwMpk2bpneetLQ0pKWlaZ4nJSUBADIyMpCRkfGKryD/CSEUmQtgNlMoNRdgerYsC1uD5zX1tRfG7VbQ+H6apqC326u8bqVm42fNNErNZmgmWQvGR48eISsrC+7u7lrt7u7uuHLlSp7LJSYmwtvbG2lpabC0tMTixYvRokULvfNOmTIFEREROu27du2Cg4PDq72AApCeno4dO3bIHUMvZjOeUnMBr5AteJzBs54z8bUXyu1WwPh+mqagt5up2wxQbjZ+1kyj1GypqakGzacSQogCzpKnu3fvwtvbG0ePHkWdOnU07SNHjsSBAwdw/Phxvcup1WrcuHEDycnJiIqKwqRJk/Dbb7+hcePGOvPqG2H08fHBo0eP4OzsnO+v6VWVKlUK//77r9wx9GI24yk1F2B6tn+n1Xn5TDnrGPXyPQV6lyuE262g8f00TUFvN1O3GaDcbPysmUap2ZKSkuDm5obExETJukjWEUY3NzdYWlri/v37Wu3379+Hh4dHnstZWFggMDAQABASEoLLly9jypQpegtGW1tb2NrqDoNbW1vD2tr61V5AAVCpVIrMBTCbKZSaCzA9m6U67eUz/T9TX3th3G4Fje+naQp6u73K61ZqNn7WTKPUbIZmkvWkFxsbG1SvXh1RUVGaNrVajaioKK0Rx5dRq9Vao4hERERElH9kHWEEgKFDh6J3796oUaMGatWqhblz5yIlJQV9+/YFAISFhcHb2xtTpkwBkH1MYo0aNVCmTBmkpaVhx44dWLt2LZYsWSLnyyAiIiIqtGQvGLt3746HDx9i/PjxiIuLQ0hICCIjIzUnwty5cwcWFv8bCE1JScFnn32Gf//9F/b29qhQoQJ+/PFHdO/eXa6XQERERFSoyV4wAkB4eDjCw8P1Ttu/f7/W82+++QbffPONGVIREREREaCAC3cTERERkbKxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEiSlakLJiQk4MSJE3jw4AHUarXWtLCwsFcORkRERETKYFLB+Mcff6BXr15ITk6Gs7MzVCqVZppKpWLBSERERFSImFQwDhs2DP369cPkyZPh4OCQ35mIiIhwZ2KwwfOWHn++AJMQkUnHMP73338YNGgQi0UiIiKiN4BJBWOrVq1w8uTJ/M5CRERERApk8C7prVu3av7frl07jBgxApcuXUJwcDCsra215u3QoUP+JSQiIiIiWRlcMHbq1EmnbeLEiTptKpUKWVlZrxSKiIiIiJTD4ILxxUvnEBEREdGbgRfuJiIiIiJJJhWMgwYNwvz583XaFy5ciCFDhrxqJiIiIiJSEJMKxk2bNqFevXo67XXr1sWvv/76yqGIiIiISDlMKhgfP36MokWL6rQ7Ozvj0aNHrxyKiIiIiJTDpIIxMDAQkZGROu1//vknAgICXjkUERERESmHSbcGHDp0KMLDw/Hw4UM0bdoUABAVFYVZs2Zh7ty5+ZmPiIiIiGRmUsHYr18/pKWl4dtvv8WkSZMAAH5+fliyZAnCwsLyNSARERHRm8rQe6oX9P3UTSoYAeDTTz/Fp59+iocPH8Le3h6Ojo75mYuIiIiIFMKkYxibNm2KhIQEAECJEiU0xWJSUpJmFzURERERFQ4mFYz79+9Henq6Tvvz589x6NChVw5FRERERMph1C7pc+fOaf5/6dIlxMXFaZ5nZWUhMjIS3t7e+ZeOiIiIiGRnVMEYEhIClUoFlUqld9ezvb09FixYkG/hiIiIiEh+RhWMN2/ehBACAQEBOHHiBEqUKKGZZmNjg5IlS8LS0jLfQxIRERGRfIwqGH19fQEAarW6QMIQERERkfKYfFkdIPs4xjt37uicANOhQ4dXCkVEREREymFSwXjjxg107twZ58+fh0qlghACAKBSqQBknwBDRERERIWDSZfVGTx4MPz9/fHgwQM4ODjg4sWLOHjwIGrUqIH9+/fnc0QiIiIikpNJI4zHjh3D3r174ebmBgsLC1hYWKB+/fqYMmUKBg0ahDNnzuR3TiIiIiKSiUkjjFlZWXBycgIAuLm54e7duwCyT4qJiYnJv3REREREJDuTRhgrV66M6Oho+Pv7o3bt2pg+fTpsbGywbNkyBAQE5HdGIiIiIpKRSQXj2LFjkZKSAgCYOHEi3n77bTRo0ADFixfHxo0b8zUgEREREcnLpIKxVatWmv8HBgbiypUriI+Ph6urq+ZMaSIiIiIqHF7pOoy5FStWLL+6IiIiIiIFMalgfP78ORYsWIB9+/bhwYMHOnd+OX36dL6EIyIiIiL5mVQw9u/fH7t27ULXrl1Rq1Yt7oYmIiIiKsRMKhi3bduGHTt2oF69evmdh4iIiIgUxqTrMHp7e2uuw0hEREREhZtJBeOsWbMwatQo3L59O7/zEBEREZHCmLRLukaNGnj+/DkCAgLg4OAAa2trrenx8fH5Eo6IiIiI5GdSwdizZ0/8999/mDx5Mtzd3XnSCxEREVEhZlLBePToURw7dgxVq1bN7zxEREREpDAmHcNYoUIFPHv2LL+zEBEREZECmVQwTp06FcOGDcP+/fvx+PFjJCUlaT2IiIiIqPAwaZd069atAQDNmjXTahdCQKVSISsr69WTEREREZEimFQw7tu3L79zEBEREZFCmVQwNmrUKL9zEMnizsRgg+YrPf58ASchIiJSLpOOYYyMjMThw4c1zxctWoSQkBC89957ePLkSb6FIyIiIiL5mVQwjhgxQnNyy/nz5zF06FC0bdsWN2/exNChQ/M1IBERERHJy6Rd0jdv3kRQUBAAYNOmTWjfvj0mT56M06dPo23btvkakIiIiIjkZdIIo42NDVJTUwEAe/bsQcuWLQEAxYoV42V1iIiIiAoZk0YY69evj6FDh6JevXo4ceIENm7cCAC4evUqSpUqla8BiYiIiEheJo0wLly4EFZWVvj111+xZMkSeHt7AwD+/PNPzTUaiYiIiKhwMGmEsXTp0ti2bZtO+5w5c145EBEREREpi8EFY1JSEpydnTX/l5IzHxERERG9/gwuGF1dXXHv3j2ULFkSLi4uUKlUOvPw1oBEREREhY/BBePevXtRrFgxALw1IBEREdGbxOCCMfftABs1aoTnz5/j3LlzePDgAdRqdYGEIyIiIiL5mXTSS2RkJMLCwvDo0SOdadwlTURERFS4mHRZnc8//xzvvvsu7t27B7VarfVgsUhERERUuJhUMN6/fx9Dhw6Fu7t7fuchIiIiIoUxqWDs2rUr9u/fn89RiIiIiEiJTDqGceHChXj33Xdx6NAhBAcHw9raWmv6oEGD8iUcEREREcnPpILxp59+wq5du2BnZ4f9+/drXZNRpVKxYCQiIiIqREwqGL/66itERERg9OjRsLAwaa82EVG+uzMx2KD5So8/X8BJiIgKF5OqvfT0dHTv3p3FIhEREdEbwKSKr3fv3ti4cWN+ZyEiIiIiBTJpl3RWVhamT5+OnTt3okqVKjonvcyePTtfwhERERGR/EwqGM+fP4/Q0FAAwIULF7Sm5T4BhoiIiIhefyYVjPv27cvvHERERESyMPSEOeDNPWmOZ60QERERkSRFFIyLFi2Cn58f7OzsULt2bZw4cSLPeb///ns0aNAArq6ucHV1RfPmzSXnJyIiIqJXI3vBuHHjRgwdOhQTJkzA6dOnUbVqVbRq1QoPHjzQO//+/fvRs2dP7Nu3D8eOHYOPjw9atmyJ//77z8zJiYiIiN4MsheMs2fPxoABA9C3b18EBQVh6dKlcHBwwIoVK/TOv27dOnz22WcICQlBhQoVsHz5cqjVakRFRZk5OREREdGbwaSTXvJLeno6Tp06hTFjxmjaLCws0Lx5cxw7dsygPlJTU5GRkYFixYrpnZ6Wloa0tDTN86SkJABARkYGMjIyXiF9wRBCKDIXUDizZVnYGjSfqa/7Td5mgPm3W0G/n4Dp2f6dVseg+UqNMuy770Vv8vsJKDebHJ81pX6vFYb3E1BuNlNzGbqcrAXjo0ePkJWVBXd3d612d3d3XLlyxaA+Ro0aBS8vLzRv3lzv9ClTpiAiIkKnfdeuXXBwcDA+dAFLT0/Hjh075I6hV6HMFjzOoNnOmfi63+RtBsiw3Qr4/QSUm+1Nfj8B5WbjZy2XQvB+AsrNZmqu1NRUg+ZTCSGESWvIB3fv3oW3tzeOHj2KOnX+99f3yJEjceDAARw/flxy+alTp2L69OnYv38/qlSponcefSOMPj4+ePToEZydnfPnheSjUqVK4d9//5U7hl6FMVtBj/q8ydsMMP92K+j3E1Butjf5/QSUm42ftf8pDO8noNxspuZKSkqCm5sbEhMTJesiWUcY3dzcYGlpifv372u1379/Hx4eHpLLzpw5E1OnTsWePXvyLBYBwNbWFra2usO51tbWOneoUQKVSqXIXEDhzGapTnv5TIDJr/tN3maA+bdbQb+fgHKzvcnvJ6DcbPys/U9heD8B5WYzNZehy8l60ouNjQ2qV6+udcJKzgksuUccXzR9+nRMmjQJkZGRqFGjhjmiEhEREb2xZB1hBIChQ4eid+/eqFGjBmrVqoW5c+ciJSUFffv2BQCEhYXB29sbU6ZMAQBMmzYN48ePx/r16+Hn54e4uDgAgKOjIxwdHWV7HURERESFlewFY/fu3fHw4UOMHz8ecXFxCAkJQWRkpOZEmDt37sDC4n8DoUuWLEF6ejq6du2q1c+ECRPw9ddfmzM6ERER0RtB9oIRAMLDwxEeHq532v79+7We37p1q+ADEREREZGGIgpGKtwMvan7m3pDdyIiIqWT/U4vRERERKRsLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIkpXcASh/3JkYbPC8pcefL8AkREREVNhwhJGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpIke8G4aNEi+Pn5wc7ODrVr18aJEyfynPfixYvo0qUL/Pz8oFKpMHfuXPMFJSIiInpDWcm58o0bN2Lo0KFYunQpateujblz56JVq1aIiYlByZIldeZPTU1FQEAA3n33XXzxxRevtO5jx46hSJEiBs9fvnx5lChRQqstPT1dssDVp2jRoggODtZpv3TpEuLj45Geno7Dhw8b1Fe1atXg4OCg1ZaQmolrD9Mkl7vzQv9eXl4ICAjQme/EiRNIT0/XPH9ZNgsLC9StW1en/b+EdNxNzJDM9GKucuXK6XwGMjIycPz4cb3L5pXN2dkZVapU0Wm/fPkyHj9+jPu3U16aKydbaGiozmfmyZMnuHjxYp7L6cvl6emJMmXK6Mz7999/Iy1N+r3LTaVSoV69ejrt//zzD27fvv3S5XNnK1u2LNzd3bWm57W9pbZZEVsLBHnY67TnbG9DpaenIyUlRWd7JyQk4MKFC3kupy9bSScr+Baz1Wk/efIknj9/bnAmAKhfv75O27///otbt269dNnc2XyL2aCkk7XW9MwsgTP/pur8fEpxdHRESEiITvuVK1fw6NEjg/rIyRXkYYcitpZa05KeZyHm/v+2kSHZPDw8EBgYqNN+6tQpPHv2zKBMOUrraYtLysA/T9J12qWylSlTBp6enlptWVlZOHbsmFHfuUWKFEFoaKhOe+yjNMSnZOpdJq9cVatWhZOTk1ZbYmIizp8/r3luSDZ3d3eULVtWp/383Wd4nqGWXPbFbPXq1YNKpdJqu3v3Lm7cuKHV9rJcAQEB8PLy0mpTq9X428Dv25xsDg4OqFatms60q1ev4sGDB3qXyytblSpV4OzsrNWWlJSEc+fOAZD+XsuteBErvZ/L06dPIzU1VXLZF7PVrVsXFhba43b6tvfLspV2tYG7s/b3iRACR44ckVwuR0qKge+LkFGtWrXEwIEDNc+zsrKEl5eXmDJlykuX9fX1FXPmzHnpfM+fPxeJiYmaxz///CMAGP1Ys2aNSE9P13rcvn3b6H4aNmyo0096erpo166d0X2dP39es/yNSdXFjUnVxfL3A43uZ/DgwXozeXt7G9WPg4OD3n6GNvMyOtPKlSt1+vnvv/+M7qdu3bp6M3Xs2NHovs6cOaPTz7Zt24zuZ+DAgXoz+fr6GtWPjY2N3n4mTZpkdKbly5fr9BMXF2d0P6E+RTSfxRuTqmv6euedd4zu6+TJkzqZ/vzzT6P7eb9WCa1MObnKlCljVD+WlpYiPT1dlCxZUivTlClTjM40paOvTqbor0KM7qd69f9t49y5unXrZnRfWz+tqJNpfb9yRvfz4Ycf6rxvJUuWFGXLljW6rxfz3JhUXXzZupTR/SxatEgn05MnT4zuJyQkROc798ak6qJjlWJG93X06FGdTPv27TO6n759++r0c2NSdVG2hJ3RfaWmpur0NXv2bKP7mTdvnk4/T58+NbqfypUr6/2O++CDD4zu6+DBgzr9HDx40Oh+uoQW15upcuXKRvf19OlTnX7mzZtndD/j2/pofd+mp6eL1NRUo/tJTEyUrKdkG2FMT0/HqVOnMGbMGE2bhYUFmjdvjmPHjuXbeqZMmYKIiIhX7ufs2bM6f53Ex8cb3c/jx4+xY8cOnfa8/lqScvDgQcTGxmY/CR4HALiVdhLAN0b1c/PmTb2ZjB19ycrK0ttPnHtjAOuN6is6Ohqurq5abYmJiUb1AWSPAOrLdP/+faP7OnTokM7I3ZkzZ4zu59atW3ozveyv0xep1Wq9/cTExBidKTo6Wqevp0+fGt1PqkMpnPv/zyIAnPv/PuPi4ozu6/Dhw/j33391chrrcfEaOBf8sVbbuR07DP+r+v8JIbBjxw6kp6drbasrV64YnenfUm/jXHALrbbs9/89o/pJTEzUZMmd6969e0Znuhb4IdQvjHzH4jyAcfoXyMOdO3d0Pks5I8bGyv1ZynHvxu8AVhrVz4ULF3QyGfv9BmSPSGn6yZUtYc8cAAeM6uvIkSM63/uXLl0yOtM///yj+z0QPA7P7T4H8I9Rff3555+wtNQeZTYl08WLF3UyZWS8fC/Ti54+far3O+7F7wVDHD16VOd3tik/u/EuVfRmMuX7MjIyEtbW2iODUnus8nLXqxXOBb+t+b4Fsn8f5zfZCsZHjx4hKytLZzeYu7u7SW9iXsaMGYOhQ4dqniclJcHHx8fofkJCQtC2bVutNlO+lIsXL67TDwB8//33RvfVsGFDlC9fHgDw77Q6AIBHt4wvqvz9/fVmsrOzM6ofS0tLvf0cXPCZ0ZmqVq2q09fDhw+N7sfV1VVvppUrjfuFAwANGjRApUqVtNqsrIz/EfLz89Ob6cXDC17GwsJCbz+5d2kZSt/2NuUPIofUf1Hl/CTN81Kjsv/4W7NmjdF91a9fX+dwAltb3V3LL1P88UlUOa/9i7nUKOMOSQGyDwFo27YtbGxstLbV5cuXjc5U6t9tqHL+L622p8+N/4IvWrSoJkvuXOvXG/cHGgCUvb4clVO1P4OpN43/JVi6dGmdz5KNjY3R2xuA1mcpx4l7xv+xV7lyZZ1MphSwzs7Omn5yvnMBwOXJTaP7qlevHmrUqKHVVrRoUaP78fHx0Xlt/06rA7vnxn9ftmnTRuc77cXdo4aoVKmSTiZjDrfJ4eTkpPc7btOmTUb3VbduXbz11ltabcWKFTO6n2IJ5/RmGjt2rNF9tW7dWuc7zZDDiV7kdXcnqpw/o/m+BYDMTP2HSLwKWY9hNAdbW1u9v2QiIyONPobxxb8EPDw8cOjQIaPyFC1aVKcfAJg+fTpGjx6NDh06YOvWrQb1FRAQoOnLUp39w1jT2wq/9vOXXM69r/Yvby8vL72ZNm/erHUM48uyWVhY6O2naxVH1PWVzvRirnLlyun0VaJEiTy3d17ZnJ2d9WaaMmUKhg8fjvsrw16aKydb2bJldfqqW7eu5GdAXy5PT0+9mX755Rejj2HU10/v3r3RuHHjly6fO5u+11asWDG9r01qmxWxtdB8FgFo+vzmm2+MOu64Q4cOqFChgk6mt956S3J768tW0slKK1NOrg0bNhg9ymRtba2z3d9//329xzZKZfMtZqOTydFS4Nd+/jo/n1IcHR01WXLnioiIwOeff25QHzm5Al2hkynY3VLr+8SQbB4eHjrvm0qlwk8//WT0MYyWez/VaetYqQiqeel+n0hlK1OmjE4mJycnHDp0yKjv3CJFiuh85wLA4EbF8UEN/cVeXrkqV66skyk0NFTr821INnd3d51+LNVpmPOO90uPYXwxm52dnc4xjN27d0fNmjW12l6WK/fvJk0mS8uX/m56MZuDg4Pe77ixY8fio48+0rtcXtmqVKmi01fVqlU129vQ3wXFi1jpzbR69eqX7iV6MZuDg4POMYxdu3bVOW7zZdlKu2Z/n+TOZWVlZXB9kpKSgtatW790PpUQQhjUYz5LT0+Hg4MDfv31V3Tq1EnT3rt3byQkJOD333+XXN7Pzw9DhgzBkCFDjFpvUlISihYtisTERJ1dzErg4eFh0u67OxN1T6TJS+nxxo9AAQWfzdRcgHKzmZrLHPhZM41Ss73J7yeg3Gz8rP1PYXg/AeVmMzWXoXWRbJfVsbGxQfXq1REVFaVpU6vViIqKQp06dSSWJCIiIiJzknWX9NChQ9G7d2/UqFEDtWrVwty5c5GSkoK+ffsCAMLCwuDt7Y0pU6YAyB6VzDkANz09Hf/99x/Onj0LR0dHvZdxICIiIqJXJ2vB2L17dzx8+BDjx49HXFwcQkJCEBkZqTkR5s6dO1r79+/evat1DayZM2di5syZaNSoEfbv32/u+ERERERvBNlPegkPD0d4eLjeaS8WgX5+fpDpkEsiIiKiN5bstwYkIiIiImVjwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREkqzkDkD0Jqk+Yo1B852aEVbASYiIiAzHEUYiIiIiksQRRiIiIjKZoXtOtjgVcBAqUBxhJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIklWcgcgym/VR6wxeN4tTgUYhIiIqJDgCCMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCTJSu4Ar5M7E4MNnrf0+PMFmISIiIjIfFgwAqg+Yo1B821xKuAgRERERArEXdJEREREJIkFIxERERFJ4i5pIgLAQzNMYeg2A7jdiOj1xoKRiKgQ4h8ARJSfuEuaiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSTXohI8XgCBxGRvDjCSERERESSOMJIRET0/ziaTaQfRxiJiIiISBJHGImIiBSOdxUiuXGEkYiIiIgksWAkIiIiIkncJU1ERGbFE0uIXj8cYSQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEi+rQ0RERGRmr9vlpVgwKtzr9oEiIiKiwoe7pImIiIhIEgtGIiIiIpLEXdJECnRnYrDB85Yef74AkxAREXGEkYiIiIheggUjEREREUliwUhEREREkhRRMC5atAh+fn6ws7ND7dq1ceLECcn5f/nlF1SoUAF2dnYIDg7Gjh07zJSUiIiI6M0j+0kvGzduxNChQ7F06VLUrl0bc+fORatWrRATE4OSJUvqzH/06FH07NkTU6ZMwdtvv43169ejU6dOOH36NCpXrizDK3hz8RqRREREbwbZC8bZs2djwIAB6Nu3LwBg6dKl2L59O1asWIHRo0frzD9v3jy0bt0aI0aMAABMmjQJu3fvxsKFC7F06VKd+dPS0pCWlqZ5npiYCACIj49HRkYGAMAi85lBWRPSDd9cRR4/Nnje3LKysvA417JvUjZTcwHa2QzNBRR8tjf5/QSUm42fNeNzAcyWGz9rr8f7aag3+bP29OlTAIAQQnpGIaO0tDRhaWkptmzZotUeFhYmOnTooHcZHx8fMWfOHK228ePHiypVquidf8KECQIAH3zwwQcffPDBBx95PP755x/Jmk3WEcZHjx4hKysL7u7uWu3u7u64cuWK3mXi4uL0zh8XF6d3/jFjxmDo0KGa52q1GvHx8ShevDhUKtUrvgIgKSkJPj4++Oeff+Ds7PzK/eUXpeYCmM1USs2m1FwAs5lKqdmUmgtgNlMpNZtScwH5n00IgadPn8LLy0tyPtl3SRc0W1tb2NraarW5uLjk+3qcnZ0V96EClJsLYDZTKTWbUnMBzGYqpWZTai6A2Uyl1GxKzQXkb7aiRYu+dB5Zz5J2c3ODpaUl7t+/r9V+//59eHh46F3Gw8PDqPmJiIiI6NXIWjDa2NigevXqiIqK0rSp1WpERUWhTp06epepU6eO1vwAsHv37jznJyIiIqJXI/su6aFDh6J3796oUaMGatWqhblz5yIlJUVz1nRYWBi8vb0xZcoUAMDgwYPRqFEjzJo1C+3atcOGDRtw8uRJLFu2TJb8tra2mDBhgs5ub7kpNRfAbKZSajal5gKYzVRKzabUXACzmUqp2ZSaC5Avm0qIl51HXfAWLlyIGTNmIC4uDiEhIZg/fz5q164NAGjcuDH8/PywatUqzfy//PILxo4di1u3bqFs2bKYPn062rZtK1N6IiIiosJNEQUjERERESmXIm4NSERERETKxYKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSC0UiZmZmIjo7Gzp07sXPnTkRHRyMjI0PuWESUh5s3byIzM1PuGET0guvXr2Pnzp149uwZgOx7GpN+EydORGpqqk77s2fPMHHiRLNkYMFoILVajbFjx6JEiRIIDQ1FmzZt0KZNG4SGhqJkyZIYN24c1Gq13DEpH8XGxqJp06ayrPvevXv48ccfsWPHDqSnp2tNS0lJMdsXhD67d+/GhAkTsHfvXgDAwYMH0aZNGzRt2hQrV66ULVdeypcvj2vXrskdQ8vdu3cxYcIE9OrVC8OHD8eVK1fkjkRkNo8fP0bz5s1Rrlw5tG3bFvfu3QMA9O/fH8OGDZM1W0BAAB4/fqzTnpCQgICAABkSZYuIiEBycrJOe2pqKiIiIsySgQWjgUaPHo1ly5Zh6tSpuHHjBlJSUpCSkoIbN25g2rRpWLZsGcaMGSN3zDz9888/6NevnyzrfvbsGQ4fPoxLly7pTHv+/DnWrFkjQ6qXS05OxoEDB8y+3r///htBQUEYOHAgunbtikqVKuHixYtaucz1BfGiH3/8EW3btsW2bdvQsWNHrFq1Ch07dkSpUqXg7++PTz75BL/++qss2d555x29j6ysLAwaNEjzXA4ODg54+PAhAODSpUsICgrC+vXrkZGRge3bt6N69eo4d+6cLNle5v79+7L+gSJFzu81KUreZkrI9sUXX8DKygp37tyBg4ODpr179+6IjIyUMRlw69YtZGVl6bSnpaXhv//+kyFRNiEEVCqVTnt0dDSKFStmlgy8cLeBPDw8sHr1arRq1Urv9J07dyIsLAz37983czLDREdHo1q1anp/EArS1atX0bJlS9y5cwcqlQr169fHhg0b4OnpCSD7y8vLy8vsuQBg/vz5ktP/++8/zJw50+zZWrRoAR8fHyxfvhwpKSkYNWoUfv75Z+zevRuhoaGybrPQ0FD07dsXgwYNQlRUFNq3b49vv/0WX3zxBQBg1qxZ2LJlCw4fPmz2bBYWFmjYsCH8/f212tesWYMOHTrAxcUFAGQZBbWwsEBcXBxKliyJTp06Qa1WY/PmzbCysoJarUavXr2QnJyMP/74w+zZXkau7w5DKDWbUnMBysjm4eGBnTt3omrVqnByckJ0dDQCAgJw48YNVKlSRe9IWkHbunUrAKBTp05YvXo1ihYtqpmWlZWFqKgo7N69GzExMWbN5erqCpVKhcTERDg7O2sVjVlZWUhOTsYnn3yCRYsWFXgW2e8l/bp4+vQpvLy88pzu6emJlJQUMybSlvNhz8uNGzfMlETbqFGjULlyZZw8eRIJCQkYMmQI6tWrh/3796N06dKyZMoxZMgQeHp6wsbGRu/0F3cFm8upU6ewaNEiWFhYwMnJCYsXL0bp0qXRrFkz7Ny5U9btdu3aNbRv3x4A0KxZM2RmZqJZs2aa6e3atdPc993c1q9fjxEjRqB3796ae9ED2aOi3377LYKCgmTJ9aLTp09j3bp1sLLK/vq1sLDAyJEj0a5dO1nyvGxk09y/IHNT6veakreZkrPlSElJ0RpZzBEfHy/bvZs7deoEAFCpVOjdu7fWNGtra/j5+WHWrFlmzzV37lwIIdCvXz9ERERoFbI2Njbw8/NDnTp1zBNGkEHatm0rWrZsKR4+fKgz7eHDh6J169aiXbt2MiTLplKphIWFhVCpVHk+LCwszJ6rZMmS4ty5c5rnarVafPLJJ6J06dIiNjZWxMXFyZJLCCH8/PzExo0b85x+5swZWbK5urqK6OhonfYZM2YIFxcXsXnzZtm2mYuLi7hy5YrmuaOjo4iNjdU8v3HjhnBwcJAjmhBCiJs3b4p69eqJd955R8THxwshhLCyshIXL16ULZMQQlhYWIgHDx4IIYTw9fXVeX9v3Lgh7Ozs5Igm+d2R0y7X502p32uv6zaTO1uONm3aiLFjxwohsr9Dbty4IbKyssS7774runTpIms2Pz8/vb/n5bZ//36Rnp4uawaOMBpo6dKlaNu2LTw9PREcHAx3d3cA2btUz58/j6CgIGzbtk22fJ6enli8eDE6duyod/rZs2dRvXp1M6fKPn4xZyQFyP7rbcmSJQgPD0ejRo2wfv16s2fKUb16dZw6dQrdunXTO12lUsly1l7lypVx9OhRVKlSRat9+PDhUKvV6Nmzp9kz5QgMDMSVK1dQvnx5ANm77Z2cnDTTY2NjUapUKbniwc/PDwcPHkRERASqVq2K77//Xu9xP+YmhEC5cuWgUqmQnJyMc+fOab2/169fh4eHhyzZihUrhunTp2uNFOd28eJFzaiyuSn1e03J20zJ2XLk5Dt58iTS09MxcuRIXLx4EfHx8Thy5Iis2W7evCnr+vPSqFEjqNVqXL16FQ8ePNA5ybZhw4YFnoEFo4F8fHw0l9P566+/EBcXBwCoVasWJk+ejJYtW8LCQr5ziHKKn7y+WOUqfipUqICTJ0+iYsWKWu0LFy4EAHTo0MHsmXLkdZmCHEFBQbJ8eYSFheHAgQP45JNPdKaNHDkSQggsXbrU7LkA4Msvv4Srq6vmubOzs9b0kydP5lmAm4uFhQUiIiLQokULhIWFKeI4shePmwwMDNR6/tdff6Fz587mjKRRvXp13L17F76+vnqnJyQkyHa5E6V+ryl9myk1W47KlSvj6tWrWLhwIZycnJCcnIx33nkHAwcO1BzfLqeoqChERUXpLcxWrFghS6a//voL7733Hm7fvq3z/qlUKrN8z/Gkl0Li0KFDSElJQevWrfVOT0lJwcmTJ9GoUSOz5poyZQoOHTqEHTt26J3+2WefYenSpa/FJYmOHDmCGjVqyHaMTV6UmguQP1tycjJiY2NRsWJFnWNV5c4mxZzZtmzZgpSUFLz//vt6pz958gRbt27VOa7LHJT6vabkbabkbK+DiIgITJw4ETVq1ICnp6fOHootW7bIkiskJATlypVDRESE3ly5j20sKCwY31D//vsvvLy8ZB0V1UepuYDs0bSzZ8/Kei0ufZSaC2A2Uyk5m5Ip+fuD/ievE3NUKhXs7OxQunRp2f6Q8/T0xPTp0/HBBx/Isv68FClSBNHR0Tp7J8yJP1X5pGLFirC0tJQ7hsGCgoJw69YtuWPoUGouQLl3IVBqLoDZTKXkbM7OzrKdnfwySv3+UPI2kyNbSEgIQkNDERoaipCQEM3zkJAQVKhQAUWLFkXv3r3x/Plzs+YCsq+OUbduXbOv92Vq166N69evy5qBxzDmkylTpiAxMVHuGAZT6i8kpeYiomxK/hlVajal5gLkybZlyxaMGjUKI0aMQK1atQAAJ06cwKxZszBhwgRkZmZi9OjRGDt2LGbOnGnWbB9++CHWr1+PcePGmXW9+uQeif38888xbNgwxMXFITg4GNbW1lrzvniSZEFgwZhPcq7hRERERHn79ttvMW/ePK0bYQQHB6NUqVIYN24cTpw4gSJFimDYsGFmKRiHDh2q+b9arcayZcuwZ88eVKlSRacwmz17doHnyRESEqJzYlfuOxvlTDPXSS8sGImIiMhszp8/r/csbl9fX5w/fx5AdrGUc4/pgnbmzBmt5yEhIQCACxcuaLWb+xJdSrvEDwvGfHL58mW0a9dOscep0KtTwvX89FFqLoDZTKXkbESvqkKFCpg6dSqWLVumuXpBRkYGpk6digoVKgDIvsZrzvWOC9q+ffvMsh5j5XVpJLmwYMwn6enpuH37ttwxDKbUX0hKzQUo9zgkpeYCmM1USs6m5J9RpWZTai5AnmyLFi1Chw4dUKpUKc2xd+fPn0dWVpbmBhg3btzAZ599ZvZsSpXXbTJzziwPDAyEv79/gWZgwWig3Mc46PPw4UMzJckfSv2FJEeuCRMmoF+/fi/9a+7p06dmSpRNqbkAZjOVkrMZSqnfHYBysyk1FyBPtrp16+LmzZtYt24drl69CgB499138d5772nuHCXXZW06d+6st4jOXZi99957mrtdmUunTp30Xqg+93GM9evXx2+//aZ1c4X8xMvqGGjevHk4cOAAzpw5o/dx5coVuSMiIyMDVlZWOsdd6HPp0iWzDXcrNVeO33//HWXKlEGzZs2wfv16pKWlmXX9eVFqLoDZTKXkbIb6888/4e3tLXcMveT4/jCEkreZXNmcnJzQsGFDtGzZEo0bN4anpyf27duX50iauRQtWhR79+7F6dOnoVKpoFKpcObMGezduxeZmZnYuHEjqlatavZbGO7evRs1a9bE7t27kZiYiMTEROzevRu1a9fGtm3bcPDgQTx+/BjDhw8vuBAFeJ/qQqVcuXJi7dq1eU4/c+aM7Dd0F0IIf39/cfbsWblj6FBqrhynT58Wn3/+uXBzcxMuLi7ik08+ESdOnJA7lmJzCcFsplJitosXL4pPP/1UhISECA8PD+Hh4SFCQkLEp59+Ki5evChrNinXr18XTZo0kWXdd+/eFWvXrhXbt28XaWlpWtOSk5NFRESELLmEEGLXrl1i/PjxIioqSgghxIEDB0Tr1q1FkyZNxIoVK2TLlSM2NlZUqVJFqFQqYWFhofk35yGnUaNGiU8//VRkZWVp2rKyskR4eLgYM2aMUKvV4qOPPhL16tUza65KlSqJI0eO6LQfPnxYBAUFCSGE2L17t/Dx8SmwDCwYDfTee++JIUOG5Dn97NmzQqVSmTGRfsuXLxdt27YVjx8/ljuKFqXmelF6errYtGmTePvtt4W1tbUIDg4Wc+fOFQkJCczFbIUy244dO4SNjY146623xIQJE8TixYvF4sWLxYQJE0TdunWFra2tiIyMNGsmQ509e1aWAuPEiRPCxcVFODs7C3t7exEYGCguXLigmR4XFydb4bN27VphZWUlqlWrJhwdHcXKlSuFi4uL+PDDD0W/fv2EjY2N+OWXX2TJluPtt98WHTt2FA8fPhSOjo7i4sWL4tChQ6JWrVri4MGDsmZzc3MTMTExOu0xMTGiePHiQgghzp07J4oWLWrWXHZ2duL8+fM67efOnRN2dnZCCCFu3bol7O3tCywDC0YD3bt3T9y6dUvuGC8VEhIiHB0dha2trShXrpwIDQ3VejCXtLS0NLFhwwbRsmVLYWVlJRo2bCgCAwOFk5OT2LBhA3MxW6HLVqVKFTFu3Lg8p0+YMEEEBwebLU9u8+bNk3yMHDlSlsKsefPmom/fviIrK0skJSWJTz/9VBQvXlycPn1aCCFvwRgSEiLmzZsnhBBiz549wt7eXsyePVszfebMmWYfHXtR8eLFRXR0tBBCCGdnZ3HlyhUhhBBRUVEiJCREzmjCxcVF/P777zrtv//+u3BxcRFCCHH16lXN/82lXr16onXr1uLBgweatgcPHojWrVuLBg0aCCGyRxjLlStXYBl40ouBPDw8jJr/p59+QocOHVCkSJECSqSfUi8grtRcOU6dOoWVK1fip59+gq2tLcLCwrBo0SLNfTsXLFiAQYMGoXv37szFbIUq29WrV9GrV688p/fs2RPTpk0zS5YXDRkyBJ6enppLr7woPT3dzImynTp1CosWLYKFhQWcnJywePFilC5dGs2aNcPOnTtRunRpWXIBwLVr19C+fXsAQLNmzZCZmYlmzZppprdr1w5TpkyRKx4AICsrS3Nyi5ubG+7evYvy5cvD19cXMTExsmb74IMP0L9/f3z55ZeoWbMmAODvv//G5MmTERYWBgA4cOAAKlWqZNZcP/zwAzp27IhSpUrBx8cHAPDPP/8gICAAv//+OwAgOTkZY8eOLbgQBVaKvuGcnJxEbGys3DHIAJUrVxZWVlaibdu2YsuWLSIzM1NnnocPH5r9kAOl5mK2wpWtQoUKYtasWXlOnzVrlihfvrzZ8uTm5+cnNm7cmOd0uY4dd3V11YyQ5TZjxgzh4uIiNm/eLNsIo4uLi2bETgghHB0dtX4X3bhxQzg4OMgRTaN+/fpiy5YtQgghevbsKVq3bi0OHz4swsLCRKVKlWTNlpmZKb755hvh4eEhVCqVUKlUwsPDQ3z77bean9fbt2+Lf/75x+zZsrKyxJ9//qkZYY+MjNQ61rKgcYSxgAiZL6Nw6tQpXL58GQBQqVIlhIaGyponhxJzdevWDf369ZM8U9DNzQ1qtdqMqZSbC2A2Uykx28SJE/Hee+9h//79aN68ueZiyffv30dUVBQiIyOxfv16s+XJrXr16jh16hS6deumd7q+y4yYQ+XKlXH06FGd+/cOHz4carUaPXv2NHumHIGBgbhy5Yrmsi///fefZjQPAGJjY1GqVCm54gEAxo4di5SUFADZn7+3334bDRo0QPHixbFx40ZZs1laWuKrr77CV199haSkJACAs7Oz1jxyjSBbWFigdevWaN26tSzrVwm5K5tCysnJCdHR0QgICDDreh88eIAePXpg//79cHFxAQAkJCSgSZMm2LBhA0qUKGHWPErPlZGRgQoVKmDbtm2oWLGiLBn0UWougNlMpeRsR48exfz583Hs2DHExcUByD4Mp06dOhg8eDDq1KkjS65Lly4hNTUVNWrU0Ds9IyMDd+/eNfuldJYvX44DBw5g7dq1eqdPmzYNS5culeXWblu2bEHx4sXRsGFDvdOnTp2KlJQUTJo0yczJpMXHx8PV1VXRFzk3t/nz5+Ojjz6CnZ0d5s+fLznvoEGDCjwPC8YCIlfB2L17d9y4cQNr1qzR/FK6dOkSevfujcDAQPz0009mzaP0XADg7e2NPXv2KO6XuFJzAcxmKiVnM9SRI0dQo0YN2Nrayh1Fh1KzKTUXoOxs5lKtWjVERUXB1dUVoaGhkkXr6dOnzZbL398fJ0+eRPHixSXv4qJSqcxyW2IWjAVEroKxaNGi2LNnj+Zg3RwnTpxAy5YtkZCQYNY8Ss8FAJMnT8bVq1exfPlyWFkp5ygNpeYCmM1USs5mKGdnZ5w9e9bs322GUGo2peYClJ3NXCIiIjBixAg4ODggIiJCct4JEyaYKZXyvJ7fWJQntVoNa2trnXZra2tZjtnKodRcQPYZcFFRUdi1axeCg4N1zmzfvHkzc72A2Uyj5GyGUvIYg1KzKTUXoOxs5pK7CFR6QZieno6bN2+iTJkyZv+jkwWjEbKysnDkyBFUqVJFcxxeXnx9ffUWSAWtadOmGDx4MH766Sd4eXkByD7o+YsvvtC6tAJz/Y+Liwu6dOkiawZ9lJoLYDZTKTkbEWVLSEjAr7/+itjYWIwYMQLFihXD6dOn4e7uLtstHlNTU/H5559j9erVALIvhxUQEIDPP/8c3t7eGD16dMGHMNv52IWEra2tuHHjhtwx8nTnzh0REhIirK2tRUBAgAgICBDW1tYiNDRUlssAKD0XERnnxcu0KIlSsyk1lxDKziaH6OhoUaJECREYGCisrKw02+arr74SH3zwgWy5Bg0aJKpXry4OHTokihQposn122+/me1i5xYFX5IWLpUrVzbLwaWm8vHxwenTp7F9+3YMGTIEQ4YMwY4dO3D69GlZL6Wg1FxA9uinvmMok5KS0LRpU/MH+n9KzQUwm6mUnI2IgKFDh6JPnz64du0a7OzsNO1t27bFwYMHZcv122+/YeHChahfv77WSTmVKlVCbGysWTJwl7SRvvnmGwwfPhyTJk1C9erVdY5BevF6TXJQqVRo0aIFWrRoIXcULUrNtX//fr13jHj+/DkOHTokQ6JsSs0FMJuplJzNUEq+7IlSsyk1F6DsbHL4+++/8d133+m0e3t7ay45JYeHDx+iZMmSOu0pKSlmew9ZMBqpbdu2AIAOHTpovUlCCKhUKmRlZZk908uuz5SbOa7VlEOpuXKcO3dO8/9Lly5pfRlkZWUhMjJSluNVlJoLYDZTKTmbsYSCT5JQajal5gKUnU0Otra2mgt253b16lXZrhcMADVq1MD27dvx+eefA/hfob98+XKzXSeVl9Ux0oEDBySnN2rUyExJ/kfq+ky5metaTTmUmiuHhYWF5odO34+Bvb09FixYgH79+jHX/2M20yg5W44JEyagX79+Zr8ItiGUmk2puQBlZ1OyDz/8EI8fP8bPP/+MYsWK4dy5c7C0tESnTp3QsGFDzJ07V5Zchw8fRps2bfD+++9j1apV+Pjjj3Hp0iUcPXoUBw4cQPXq1Qs8AwtGemPdvn0bQggEBATgxIkTWn892tjYoGTJkrC0tGQuZivU2XKEhITgwoULaNSoEfr3748uXboo5mLOSs2m1FyAsrMpWWJiIrp27YqTJ0/i6dOn8PLyQlxcHN566y38+eefOoehmdONGzcwZcoUREdHIzk5GdWqVcOoUaMQHBxslvWzYDTBoUOH8N133+HGjRv45Zdf4O3tjbVr18Lf3x/169eXO55GzlurtGNUlJqL6E135swZrFy5Ej/99BMyMzPRo0cP9OvXT+eC+8ym/FxKz6Z0R44c0SrMmjdvLmuesLAwNGnSBA0bNkSZMmVkycCC0UibNm3CBx98gF69emHt2rW4dOkSAgICsHDhQuzYsQM7duyQOyLWrFmDGTNm4Nq1awCAcuXKYcSIEfjggw+YKw/Xrl3Dvn378ODBA50LiY8fP16mVMrNBTCbqZScLUdGRgb++OMPrFy5Ejt37kSFChXQv39/9OnTB0WLFmW21yiX0rMpUVRUFKKiovT+jK5YsUKWTB9++CEOHjyI2NhYeHl5oVGjRmjcuDEaNWqEsmXLmieEWS7eU4iEhISI1atXCyG0r191+vRp4e7uLmc0IYQQs2bNEg4ODmLkyJHi999/F7///rsYMWKEcHBwELNnz2YuPZYtWyYsLS2Fu7u7qFq1qggJCdE8QkNDmYvZ3ohsuaWlpYkNGzaIli1bCisrK9GwYUMRGBgonJycxIYNG5jtNcql9GxK8/XXXwsLCwtRq1Yt0bFjR9GpUyeth9z+/fdfsX79evHxxx+LChUqCAsLC+Ht7W2WdbNgNJK9vb24efOmEEK7YIyNjRW2trYyJsvm5+enKWhzW7VqlfDz85MhUTal5hJCiNKlS4upU6fKmkEfpeYSgtlMpeRsQghx8uRJMXDgQFGsWDHh6ekpRo0aJa5du6aZPn/+fFGyZElmew1yKT2bUnl4eIg1a9bIHSNPKSkpYufOnWL06NHirbfeEjY2Nma7cDcLRiP5+/uL3bt3CyG0C8bVq1eLihUryhlNCJF9J5rcXwg5rl69KmtBq9RcQgjh5OSkyDsdKDWXEMxmKiVnq1y5srCyshJt27YVW7ZsEZmZmTrzPHz4UKhUKmZTeC6lZ1OyYsWKievXr8sdQ8eYMWNEnTp1hJ2dnQgNDRVDhgwRv/32m4iPjzdbBt7pxUgDBgzA4MGDcfz4cahUKty9exfr1q3D8OHD8emnn8odD4GBgfj555912jdu3Gi+4xz0UGouAHj33Xexa9cuWTPoo9RcALOZSsnZunXrhlu3bmH79u3o1KmT3rO23dzcdI7pepOzKTWX0rMp2Ycffoj169fLHUPH1KlTERsbiwkTJmDDhg2YM2cOOnbsCFdXV7Nl4IW7jTR69Gio1Wo0a9YMqampaNiwIWxtbTF8+HDNBTXlFBERge7du+PgwYOoV68egOyzvaKiovQWbG96LiC7mB03bhz++usvBAcHw9raWmu6HBcVV3IugNlMpdRsGRkZWLVqFbp27aq4C4grNZtScwHKzqZEQ4cO1fxfrVZj2bJl2LNnD6pUqaLzMzp79mxzxwOQfcb7gQMHsH//fsyaNQs2NjaaE18aN26McuXKFXgGniVtovT0dFy/fh3JyckICgqCo6Oj3JE0Tp06hTlz5uDy5csAgIoVK2LYsGEIDQ1lLj2kLjAu10XFAeXmApjNVErO5u3tjT179qBixYqyZciLUrMpNReg7GxK06RJE4PmU6lU2Lt3bwGnMUx0dDTmzJmDdevWQa1Wm+UucywYiYgIkydPxtWrV7F8+XJYWSlr55NSsyk1F6DsbGQ8IQTOnDmD/fv3Y//+/Th8+DCSkpJQpUoVNGrUCHPmzCnwDCwYDfDOO+8YPO/mzZsLMMnL7dixA5aWlmjVqpVW+86dO6FWq9GmTRvmIiIdnTt3RlRUFBwdHREcHKxzRws5v9uUmk2puQBlZyPjubq6Ijk5GVWrVtXsim7QoAFcXFzMloF/dhgg94VNhRDYsmULihYtiho1agDI3tWakJBgVGFZUEaPHo2pU6fqtAshMHr0aNkKM6XmAvDS+/fKdaFWpeYCmM1USs7m4uKCLl26yLZ+KUrNptRcgLKzkfF+/PFHNGjQAM7OzrJlYMFogJUrV2r+P2rUKHTr1g1Lly7VnHWWlZWFzz77TNY3Mse1a9cQFBSk016hQgVcv35dhkTZlJoLAJ48eaL1PCMjAxcuXEBCQgKaNm0qUyrl5gKYzVRKzpb7e05plJpNqbkAZWcj47Vr107uCCwYjbVixQocPnxY6xIFlpaWGDp0KOrWrYsZM2bImC57NPTGjRvw8/PTar9+/bqsN01Xai4A2LJli06bWq3Gp59+Kts9OwHl5gKYzVRKzkZEJIXHMBrJ1dUVq1atQseOHbXaf//9d/Tp00dnBMHcPv74Yxw7dgxbtmzR/AK6fv06unTpgpo1a2L58uXMZaCYmBg0btwY9+7dkzuKFqXmApjNVErJ9uuvv+Lnn3/GnTt3kJ6erjXt9OnTMqXKptRsSs0FKDsbvX544W4j9e3bF/3798fs2bNx+PBhHD58GLNmzcKHH36Ivn37yh0P06dPR5EiRVChQgX4+/vD398fFStWRPHixTFz5kzmMkJsbCwyMzPljqFDqbkAZjOVErLNnz8fffv2hbu7O86cOYNatWqhePHiuHHjhuwnpSk1m1JzKT0bvZ64S9pIM2fOhIeHB2bNmqUZDfD09MSIESMwbNgwmdNl7/o9evQodu/ejejoaNjb26NKlSpo2LAhc+Uh90VbgewTce7du4ft27ejd+/eMqVSbi6A2Uyl5GyLFy/GsmXL0LNnT6xatQojR45EQEAAxo8fj/j4eGZ7jXIpPRu9nrhL+hUkJSUBgCJOdgGyD6C3t7fH2bNnUblyZbnjaCg1V44XL9pqYWGBEiVKoGnTpujXr59s1zBTai6A2Uyl5GwODg64fPkyfH19UbJkSezevRtVq1bFtWvX8NZbb+Hx48fM9prkUno2ej1xhPEVKKVQzGFtbY3SpUub5YrvxlBqrhz79u2TO4JeSs0FMJuplJzNw8MD8fHx8PX1RenSpfHXX3+hatWquHnzJuQeV1BqNqXmUno2ej3xGEYj3b9/Hx988AG8vLxgZWUFS0tLrYfcvvrqK3z55ZeK2+Wg1Fy5PXz4UHNc6sOHD+WOo6HUXACzmUqJ2Zo2bYqtW7cCyD5W+4svvkCLFi3QvXt3dO7cmdleo1xKz0avJ+6SNlKbNm1w584dhIeHw9PTEyqVSmv6i2dPm1toaCiuX7+OjIwM+Pr66lyyRq4z45SaCwBSUlLw+eefY82aNVCr1QCyL5UUFhaGBQsWwMHBgbmYrdBnU6vVUKvVmt3iGzZswNGjR1G2bFl8/PHHsLGxYbbXJJfSs9HriQWjkZycnHDo0CGEhITIHUWviIgIyekTJkwwUxJtSs0FZF/yZ8+ePVi4cCHq1asHADh8+DAGDRqEFi1aYMmSJczFbIU+GxGRFBaMRgoKCsK6desQGhoqdxTKJ25ubvj111/RuHFjrfZ9+/ahW7dusu0yVGougNlMpeRsAJCQkIATJ07gwYMHmhHQHGFhYTKlyqbUbErNBSg7G71+eNKLkebOnYvRo0fju+++07lrCb2eUlNT4e7urtNesmRJpKamypAom1JzAcxmKiVn++OPP9CrVy8kJyfD2dlZ63AblUola4Gh1GxKzaX0bPR64gijkVxdXZGamorMzEw4ODjA2tpaa7ocJ3UUK1YMV69ehZubG1xdXXWOq8zNnPmUmutFzZo1Q/HixbFmzRrY2dkBAJ49e4bevXsjPj4ee/bsYS5mK/TZypUrh7Zt22Ly5MmyHkupj1KzKTUXoOxs9HpiwWik1atXS06X4+K7q1evRo8ePWBra6uofErN9aLz58+jdevWSEtLQ9WqVQEA0dHRsLW1xa5du1CpUiXmYrZCn61IkSI4f/48AgICZMuQF6VmU2ouQNnZ6PXEgpEI2bsK161bhytXrgAAKlasiF69esHe3p658sBsplFqtnfeeQc9evRAt27dZM2hj1KzKTUXoOxs9HriMYwmiI2NxcqVKxEbG4t58+ahZMmS+PPPP1G6dGlZRwhe9Pz5c50bzivhYuNKyzVlyhS4u7tjwIABWu0rVqzAw4cPMWrUKOZ6AbOZRsnZ2rVrhxEjRuDSpUsIDg7WOdymQ4cOMiVTbjal5gKUnY1eU4KMsn//fmFvby+aN28ubGxsRGxsrBBCiClTpoguXbrInE6I5ORkMXDgQFGiRAlhYWGh82AuXb6+vuLIkSM67X/99Zfw8/OTIVE2peYSgtlMpeRsKpUqz4fcP6NKzabUXErPRq8n3unFSKNHj8Y333yD3bt3a134tGnTpvjrr79kTJZt5MiR2Lt3L5YsWQJbW1ssX74cERER8PLywpo1a5hLj7i4OHh6euq0lyhRAvfu3ZMhUTal5gKYzVRKzpZzoWd9D7lv66nUbErNpfRs9HpiwWik8+fP672tUsmSJfHo0SMZEmn7448/sHjxYnTp0gVWVlZo0KABxo4di8mTJ2PdunXMpYePjw+OHDmi037kyBF4eXnJkCibUnMBzGYqJWcjIpLCYxiN5OLignv37sHf31+r/cyZM/D29pYp1f/Ex8drzopzdnbWXK6mfv36+PTTT5lLjwEDBmDIkCHIyMhA06ZNAQBRUVEYOXIkhg0bxlzMVmizzZ8/Hx999BHs7Owwf/58yXkHDRpkplTZlJpNqbkAZWejQkDufeKvm2HDhon69euLe/f+r717DYkq/+M4/j47llm6broumRWOOVlBU7JGqxQSEQQRRQ+KcrMgK2jXWrehZ4V2k7ZVMehKNXahpIIuEGVkDKFZmBEI3Vu26UFQLWQMhdrM2QfSbP61+Tv7L+f49/OCQM+cZt4zD8YvZ86c33MzLi7OfPTokVlXV2empaWZxcXFkc4zJ0yYYHo8HtM0TXPGjBnmunXrTNM0zcrKSjMlJUVd3QgEAub69evNQYMGBc+pHDx4sFlSUqIutf1ft6WmppqvXr0K/vypf3a7XW0W77J6m/R9uqxOmNra2vjpp5+oqqrC7/cTFRXF+/fvycvLo6qqCpvNFtG+iooKbDYba9as4cqVK8yZMwfTNGlvb6e8vJy1a9eq6xN8Ph/37t0jJiYGh8NBdHR0pJMA63aB2v4tK7cBfPizEOpi+5Fi1TardoG126Tv0MD4Lz179ozm5mZ8Ph+ZmZk4HI5IJ3Xr6dOnNDU1kZ6ejtPpjHROkFW7RPqzgwcPUlFRwaNHjwBwOBz88ssvFBQURLjMum1W7QJrt0nfo3MYw/Trr7922Xbjxg0Mw2DQoEGkp6czd+5cEhISIlDXoba2ltra2m4XnD906FCEqqzbJSKwceNGysvLKSwsJDs7G4CGhgaKiorwer1s2rRJbX2ky+pt0jfpCGOYpk+fzu3bt/H7/WRkZADw8OFDbDYbY8eO5cGDBxiGQV1dHePHj+/1vpKSEjZt2kRWVhbJycldPoI4c+ZMrzdZuUtEOiQlJbFz504WLVrUafuJEycoLCyM6FUgrNpm1S6wdpv0TTrCGKYPRw/dbndwdZKWlhYKCgqYOnUqK1asYPHixRQVFVFTU9PrfXv37qWqqoolS5b0+mOHYtUuEenQ3t5OVlZWl+3ff/8979+/j0DRP6zaZtUusHab9E26DmOYduzYwebNmzstZRcfH09xcTG//fYbgwcPZuPGjTQ1NUWkr62tjZycnIg8dihW7RKRDkuWLGHPnj1dtu/fv5+8vLwIFP3Dqm1W7QJrt0nfpCOMYWppaeHFixddPm5++fIlb968ATqu1fifayX3loKCAo4fP86GDRsi8vifYtUukf7s43OyDcPgwIEDXL58mR9++AGAmzdv4vV6yc/PV5vFu6zeJn2fzmEMU15eHg0NDZSVlTF58mQAGhsbcblc5OTkcPToUaqrq/n999+5detWrzR9/CYRCAQ4fPgwTqcTp9PZZcH58vLyXmmycpeIdJg+fXqP9jMMg6tXr37hms6s2mbVLrB2m/R9GhjD5PP5KCoq4siRI8HzQKKioli6dCkVFRUMGTKEO3fuADBp0qReabLqm4RVu0RERCQ8Ghj/JZ/Pxx9//AFAWloasbGxES4SERER+TI0MIqIiIhISPqWtIiIiIiEpIFRRERERELSwCgiIiIiIWlgFBEREZGQNDCKiHyCaZqsXLmShIQEDMMIXjJLRKS/0bekRUQ+4eLFi8ydOxePx0NaWhrffvstUVH/2wJZy5Yt4/Xr15w9e/bzRIqI9AItDSgi8glPnjwhOTnZkuug+/1+DMPgq6/0QZGIfHl6pxER6cayZcsoLCzE6/ViGAapqakEAgFKS0ux2+3ExMQwceJETp8+Hfw/fr+f5cuXB2/PyMigsrIyeHtxcTGHDx/m3LlzGIaBYRh4PB48Hg+GYfD69evgvnfu3MEwDP78808Aqqqq+Oabbzh//jzjx48nOjoar9dLa2srLpeLlJQUhgwZwpQpU/B4PL30KolIf6EjjCIi3aisrGT06NHs37+fxsZGbDYbpaWlHDt2jL179+JwOLh27Ro//vgjSUlJ5ObmEggEGDFiBKdOnSIxMZHr16+zcuVKkpOTWbBgAS6Xi3v37vHmzRvcbjcACQkJXL9+vUdNb9++Zfv27Rw4cIDExES+++47fv75Z+7evUt1dTXDhw/nzJkzzJo1i+bmZhwOx5d8iUSkH9HAKCLSjfj4eOLi4rDZbAwbNozW1la2bdvGlStXyM7OBjqWBa2rq2Pfvn3k5uYyYMAASkpKgvdht9tpaGjg5MmTLFiwgNjYWGJiYmhtbWXYsGFhN7W3t7N7924mTpwIgNfrxe124/V6GT58OAAul4tLly7hdrvZtm3bZ3glREQ0MIqI9Mjjx495+/YtM2fO7LS9ra2NzMzM4O+7du3i0KFDeL1e3r17R1tbG5MmTfosDQMHDsTpdAZ/b25uxu/3M2bMmE77tba2kpiY+FkeU0QENDCKiPSIz+cD4MKFC6SkpHS6LTo6GoDq6mpcLhdlZWVkZ2cTFxfHjh07uHnzZsj7/vDFlY8vWtHe3t5lv5iYGAzD6NRks9loamrCZrN12jc2NjaMZyciEpoGRhGRHvj4iya5ubnd7lNfX09OTg6rV68Obnvy5EmnfQYOHIjf7++0LSkpCYDnz58zdOhQgB5d8zEzMxO/38+LFy+YNm1aOE9HRCQsGhhFRHogLi4Ol8tFUVERgUCAqVOn0tLSQn19PV9//TVLly7F4XBw5MgRampqsNvtHD16lMbGRux2e/B+UlNTqamp4cGDByQmJhIfH096ejojR46kuLiYrVu38vDhQ8rKyv5r05gxY8jLyyM/P5+ysjIyMzN5+fIltbW1OJ1OZs+e/SVfEhHpR3RZHRGRHtq8eTMbNmygtLSUcePGMWvWLC5cuBAcCFetWsX8+fNZuHAhU6ZM4a+//up0tBFgxYoVZGRkkJWVRVJSEvX19QwYMIATJ05w//59nE4n27dvZ8uWLT1qcrvd5Ofns27dOjIyMpg3bx6NjY2MGjXqsz9/Eem/tNKLiIiIiISkI4wiIiIiEpIGRhEREREJSQOjiIiIiISkgVFEREREQtLAKCIiIiIhaWAUERERkZA0MIqIiIhISBoYRURERCQkDYwiIiIiEpIGRhEREREJSQOjiIiIiIT0N2wh+i+Q4QaJAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 750x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAL5CAYAAADMnGVQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8Huzm0IgofdikN6rQIgFFAy9yIcogqACFlAgEREMLQlBBBEQBBsixgiKgYTygogUgdBCUQSRIBhQ6SWhZXd29/tj3SWbnZkt2b7377re6zUzs7tnhk2eeeac8xyFXq/Xg4iIiIiIiIg8LsjTDSAiIiIiIiIiAybpRERERERERF6CSToRERERERGRl2CSTkREREREROQlmKQTEREREREReQkm6URERERERERegkk6ERERERERkZdgkk5ERERERETkJZikExEREREREXkJJulEREREREREXsKjSfrOnTvRu3dvVKtWDQqFAmvXrrX6mu3bt6N169YIDQ1F3bp1sXz5cpe3k4iIiBzDWE9ERGQfjybpt2/fRosWLbB48WKbjj9z5gx69uyJzp0748iRIxg3bhxGjBiBzZs3u7ilRERE5AjGeiIiIvso9Hq93tONAACFQoE1a9agX79+ksdMnDgRGzZswLFjx0zbnnnmGdy4cQObNm1yQyuJiIjIUYz1RERE1qk83QB7ZGVloUuXLmbbYmNjMW7cOMnXFBQUoKCgwPSzTqfDtWvXUL58eSgUClc1lYiIyGZ6vR75+fmoVq0agoICu1yMI7EeYLwnIiLvZk+s96kk/cKFC6hcubLZtsqVKyMvLw93795FiRIlLF4za9YszJgxw11NJCIicti5c+dQo0YNTzfDoxyJ9QDjPRER+QZbYr1PJemOmDRpEuLi4kw/37x5E7Vq1cKZM2cQERHhkTZpNBps27YNnTt3RnBwsEfa4C14LczxetzHa2GO1+M+V1+L/539H1IOpAAAlHo9BuXfwmvX8tGy4FPJ16x9oSYeqF7P4c/Mz89H7dq1PRaX/IE3xntH+PPvOs/NN/HcfJO/npugE3D9znUs+WkJthRsKdZ79ci/jclXb+IrbVe8Lzxt9Xh3xnqfStKrVKmCixcvmm27ePEiIiMjJZ+sh4aGIjQ01GJ7uXLlEBkZ6ZJ2WqPRaBAeHo7y5cv71S+NI3gtzPF63MdrYY7X4z5XXov0U+mYfWw2lCWU6JN/CzOvXAMAfKLqiSCEWxw/vlMF9GoaiQeq1IVK5XhbjOfBYdmOxXrAO+O9I/z5d53n5pt4br7Jn85N0AnIU+dh/en1mHNwjmFjEKAsoXT4Pfvn30LzvGZojVcBJRAk81bxnSuiR5MIt8Z6n0rSo6OjsXHjRrNtW7ZsQXR0tIdaREREvs4Y/DNzMvF+9vsADME78b8EfZXQCSnCcxavm9yjIUY9WsetbQ0EjPVERCSamBeTUq9HpE6HXvl3UeZyNN4Uie1Gk5+ojgHt66N0yTColO6vFePRJP3WrVvIyckx/XzmzBkcOXIE5cqVQ61atTBp0iT8/fffWLFiBQDglVdewaJFi/DWW2/hxRdfxE8//YRvv/0WGzZs8NQpEBGRjxJ0AtJOpFkE/6IJ+kRhlOjrX4yp7fI2+gPGeiIiEmNMxItyRmI+oe0E9KrTy/CDTkDowS9R8qdkrNY+gjc1r8q+9r129/B015bF+vzi8miSfvDgQXTu3Nn0s3Eu2bBhw7B8+XL8+++/yM3NNe2vXbs2NmzYgPHjx2PBggWoUaMGPvvsM8TGxrq97URE5LsycjKQsDvBbJtSr8eQvHy8ee0GAPkEfe7AFh55su6LGOuJiAKbWDLuzB5ys4QcQGRIJFR6APduAL+sAjZPBiAf143mDmiK/3voAae0qzg8mqR36tQJcsu0L1++XPQ1hw8fdmGrDOXxBUGAVqt1yftrNBqoVCrcu3fPZZ/hK3gtzMn9PhBR8Qk6AanHU03D2o0Kzz8H5AP5ewOa4//aBHYFdnsEaqx3lD/HRZ7bfcHBwVAqHZ9PS+TNCiflzkzGC+se1h1v9ngT5UqWgyrov5RWKxgS830fmxJzABD0QVim7S46dc1oco+GeDGmttc8gPepOenuoFar8e+//+LOnTsu+wy9Xo8qVarg3LlzAV8kiNfCnF6vR9myZaHRaHy+yAeRN5Ea2g5YJuirtY/IJuhPP1TTZe0k93BHrHeUP8dFntt9CoUCNWrUQKlSpdzQOiLXckdSDtzvMS+hKIEfNv2AsmFlDQm6VgD2myfmRrYMb587sIXXPXxnkl6ITqfDmTNnoFQqUa1aNYSEhLgkiOh0Oty6dQulSpWyupC9v+O1uE+v16OgoAA6nQ65ubmoX79+wF8TImcQG9oOGIa3l9XqzBJ0QR8kGcyZoPsHd8V6R/lzXOS5Gej1ely+fBnnz59HvXr12KNOPkvuAbizGBPzyJBIU4+5RqO5f8CRNGCtZdy2qfe8W328+Egdr+k9L4xJeiFqtRo6nQ41a9ZEeLjlUjvOotPpoFarERYW5ndByl68FuZCQ0NRsWJFXL161XRdiMgxUkPblXo9Bufl463/5p4XtkzbXfS9mKD7D3fFekf5c1zkud1XsWJFnD17FhqNhkk6eT13zyk3KpyYm9EJCNHkIWjvImDrdIvdNhWH8/K4ziRdhL8FDvIt3tSjQ+SrpHrPe926jSlXriG8yBxpuSfuk3s09OpATo5hrCdPYqwnX+DsnnKxZFwyEZdyJA3Ba19FdwA4ZrnbpuJwXji8vSgm6URE5FfST6Vj2p5pFtuVer1ogr5GG4N3NC/hDsRHrnCpNSIiCjRSD7vtUTgptzsZF3NoBZD5uuRuawm6txWHk8MknYiI/IZYgq7U6xGp02HozXzRHvSpmuGSCTqXWiMiokAiNVXMFk5Pyo20ArD3I2DLFNHdtsw/94Xe88KYpJPTdOrUCS1btsT8+fO94n2IKHAUvakwJua9bt0WnXtudBMlkY+Sovu41BqROMZ7Iv/kaO/5hLYTMLjRYOcl5YVJFIYzsjb/3Jd6zwtjkk4es337dnTu3Blnz55FZGSkaXt6ejqXHyMim607vQ5Je5NwV7grWxROzPedfwI2nbLY7mtP3Im8mTHeX7161awWAOM9kXewtffcKXPKbWWl9xwAvqk3D5N+rSK539uLw8lhkk5ep1y5cp5uAhH5CEEnIGlvEtSaOxhqR3IOAKuafYYUkQR9/+QnUCmSKysQuRrjPZHnGCu221KlPb5NPIY0HuKaZFyMld5zQR+EpIhp+NJPE3QA8K1+fxLVqVMnjBkzBmPGjEHp0qVRoUIFTJkyBfr/5l5ev34dzz//PMqWLYvw8HB0794dp07dvzFdvnw5ypQpg7Vr16JevXoICwtDbGwszp07Zzpm+PDh6Nevn9nnjhs3Dp06dZJs11dffYW2bdsiIiICVapUweDBg3Hp0iUAwNmzZ9G5c2cAQFRUFJRKJYYPH246n3Hjxpnex9b2b968GY0aNUKpUqXQrVs3/Pvvv45cTiLyIanHU9H1+mUcOXvOrgR9dYvPMPGA+PJb5UqGOKl1RM7l6/G+fPnyKFu2LF544QXT+TDeE7lfRk4GWn3VCo+tesxqgp4ck4zhTYe7L0E/tMLq8Pa6Ban48ko9yWPmDmzh0wk6wCTdb3z55ZdQqVTYv38/FixYgHnz5uGzzz4DYAi4Bw8eRGZmJrKysqDX69GjRw9oNBrT6+/cuYOZM2dixYoV2L17N27cuIFnnnmmWG3SaDRISkrC0aNHsXbtWpw9e9aUiNesWRPff/89AODAgQP4+++/sWDBAtH3sbX9c+fOxVdffYWdO3ciNzcXb775ZrHaT0Tebe3ptfhz+wzMvHLNthfEpgATTkOYfBlv7hNP0FkojrydL8f7EydO4Pfff5ecg854T+Ragk7A8mPLbZp3Ht8mHoeHHkbfun3d0LL/WKve3mC+1fnnOTO7+8V0NQ539xM1a9bEBx98AIVCgQYNGuDXX3/FBx98gE6dOiEzMxO7d+9Gx44dAQBff/01atasibVr12LgwIEADAF20aJFaN++PQDDTUCjRo2wf/9+tGvXzqE2vfjii6b/fvDBB7Fw4UI89NBDuHXrFkqVKmUa5laxYkVUqVJFdM3aU6dO2dz+pUuXok6dOgCAMWPGIDEx0aF2E5F3Mg7NEzQCdt3bhRI/rkaitQQ9NgVoPggIKwMoDSFv2c7TooeyUBz5Al+O95UqVUJQUJBZHRojxnsi17F3vfPkmGT3Jue2VG9v9ClSjpSQfAtfH95eFLsL/ESHDh2gUChMP0dHR+PUqVM4fvw4VCqVKRgDhuFmDRo0wIkTJ0zbVCoVHnroIdPPDRs2RJkyZcyOsVd2djZ69+6NWrVqISIiAo899hgAIDc31+b3OHHihE3tDw8PNwVsAKhatappqB0R+b51p9fh0ZWP4rFVj+HJ7x9H5YvfyifosSnAlKtA9GigZAVTgr7qQC5SNv5ucfjkHg39KriT/2K8Z7wnspVWr0Xq76lo9VUrmxL0CW0nuLf3XCsAWYuBpPKSCfrqhvNRtyBVNkH3h+HtRbEnnWwSFBRkmvNmVHj4WVG3b99GbGwsYmNj8fXXX6NixYrIzc1FbGws1Gq109tXtDqsQqGwaC8R+SZjcbi7wl30yb8lP7y9axLQ4TVTUl7Y6uzzmPj9r6IvezGmtrOaS+TTGO+J/MOGMxsw8+ZMqA/J/x7Gt4lHn7p9XFelXYqV4nAAsKrpJ5h4sJTk/omx9THy0Tp+OU3N/84oQO3bt8/s571796JevXpo3LgxBEEw23/16lWcPHkSjRs3Nm0TBAEHDx40/Xzy5EncuHEDjRo1AmAYkl60MMuRI0ck2/P777/j6tWrePfdd/HII4+gYcOGFk+6Q0IMxZm0Wq3k+zRq1Mim9hOR/0o9noq7wl30t5ag91kExLwhmqALWh3e/O6o6Ms4D518CeM9EVmj1qoxJWsK1JBP0I1F4cqFlXNfgq4VgN0LrVZv/6T+Z7IJ+rN1tBjxcJTfxm//PKsAlJubi7i4OJw8eRLffPMNPvzwQ4wdOxb16tVD3759MXLkSOzatQtHjx7FkCFDUL16dfTte38oS3BwMF5//XXs27cP2dnZGD58ODp06GCan/b444/j4MGDWLFiBU6dOoVp06bh2LFjku2pVasWQkJC8OGHH+LPP/9EZmYmkpKSzI554IEHoFAosHnzZly+fBm3bt2yeB9b209E/in9VDrez34f/fNvyQ9v77MIaD1Ucvey3WdEt3MeOvkaX47369evx5UrVxjviVxA0Am4du8aVvy2Am1S28ge69Zh7VoBuH3F8D8rQ9uB+9XbU34RL/AKALOfaoIOlfx7BA2TdD/x/PPP4+7du2jXrh1Gjx6NsWPHYtSoUQCAL774Am3atEGvXr0QHR0NvV6PjRs3mg0ZCw8Px8SJEzF48GDExMSgVKlSWLVqlWl/bGwspkyZgrfeegsPPfQQ8vPz8fzzz0u2p2LFili+fDm+++47NG7cGO+++y7mzp1rdkz16tUxffp0zJgxA1WrVsWYMWNE38uW9hOR/xB0Aq7duYRvshdh/s8JGHYzTz5B77dENkHnPHTyJ74a72fMmIHJkyejfv36eP118erNjPdE9imcmNuypJoxOX++yfOu7zkvPN98Th3D/zZPljxc0AfhkzqLbKre/lSr6q5osVdR6ANsIk9eXh5Kly6NmzdvWlQXvXfvHs6cOYPatWsjLCzMZW3Q6XTIy8tDZGSkaEVze3Xq1AktW7aUXNLEmuXLl2PcuHG4ceNGsdtiL2dfC1+n0+lw5coVXLlyBQ8++KBLv4feTqPRYOPGjejRowdv0BA412Pd6XU4tGUixl/6B5E6+fCkfWI6lB1fFx3ebrQ6+7zkMPecmd29ZpicXGwix0hdU3fFekfJxUVfjveAf8d8e8/N27+Hhflz/PHVc7O3WjsAZA/JRogyxIWt+o9WAPZ/LJuQF7W64Xy8eaSS7DGFq7f76r+bPbGeheOIiMgrqLVqTPt5Eg5d+NvqsYdrvYSmHcZAKZOgcx46ERH5E0eS83BVOBI6JLg+QXcgOQeAVc0+w8QD0kPbAUPMDrSpaUzSiYjIo4w3HSe3TcMha+ueAxB6LkDuP2XR1MpxnIdORET+IiMnAwm7E+x6Tfew7pjRbwZKhEovX+YUR1cB68cDmtu2vyY2BauCemLimt8kD5ncoyFejKkdkA/VmaT7ge3btxfr9cOHD8fw4cOd0hYiInusO70OKVmJGHDtEmZeu2H9Bf2WQN9kIPDPRtnDOA+d/BHjPVHgEXQCUo+n4v3s9206fkLbCehVpxdKKErgh00/uG7uuVYA7t0AdAKwZpT142NTgOaDAABCcCSW7T2HlI3SCXog9p4XxiSdiIjcTtAJuH7vOvZsGoutV64hXKY8ijD+N6hUYUBYGcP8c5k1mwGuh05ERL7PnqHtxsS88FrnGiux0iHGxPyXVbYPa49NAdq9DChVELQ6LN9zFskb9kkeHsi954UxSSciIrcQdALy1HlYf3o95hycA6Vejz0yCbqgCoOq90KoStv+JJ3z0ImIyNetO70OSXuTcFe4K3vchLYTMLjRYPdUard3vnmh5ByQL+RqVLg4XKBjkk5ERC637vQ6zNo3C/mafACAUq/H6Os3JRN0bZcZUEWPka3cLobz0ImIyFcZR5lN3iWfDMe3iceQxkNcn5wDwJE0YK30smiiEi4BqlDTj6sO5EqOcDNigm6OSToREbmUoBPMEvRet25jitwQ935LoGw52O7P4Tx0IiLyVUUfZktJjklG37p9XdcQ45B2wJCgb5li+2tDSwM95tidoAf6/HMxTNKJiMil8tR5ppuOYL0esy5flT64yNN3W8ndBHAeOhEReStbe8/dMrTdkV7zQgXhTLVjYJh+tmz3GdGH50YJPRtheMcoTkUTwSSdiIhcKjMnE4ChB102Qe+3xKEEXa5QHOehExGRt7K19zx7SLZr1znXCsDej2zvNTcm5oWS8sKszT9ncTjreGXILlFRUZg/f77sMWq1GnXr1sWePXvc0ygvolAosHbtWsn9x48fR40aNXD7th3rSBL5KEEnYPmx5Xg/+30o9XpMkVsDvd8SwIEh7nKF4jgPncgxjPXyGOvJGQSdgKS9SbIJekRwBFIeTnFNgq4VgNtXgKzFQFJ52xL0rknAlKtA9GigZAXRBH3VgVzZBP29Ac0x6tE6TNCt4NUhp1u6dClq166Njh07eropDjt79iwUCgWOHDni1Pdt3LgxOnTogHnz5jn1fYm8iaATsOK3FWj1VSvMPzgXZbVa2SJxSLjkUIIOyBeK4zx0ItdhrJfGWE9yBJ2Aa/euYfGRxbLV238a+BN2PrMTvev0dn4jjqQZEvM5dWyv2N5vCRDzhmRBV0Grwyc7T8vOP2dsth2Hu8vQ6fS4fkftgvfVIf+OBpqgAgQFyT8nKRsegqAghdPb4Cp6vR6LFi1CYmJisd9Hq9VCpfK/r+gLL7yAkSNHYtKkSX55fhTYMnIykLA7AQDQJ/8WZsr1ngNA/08cGuIOAN9ln2ehOCo2V8V6ezDW+18sZKynwoouQSonIjgCk9pPQsXwis5thLEgnK3F4Lom3X+ALjGs3ciW5dVYHM4+/Ksh4/odNdok/+jRNmQndEH5UtZvYDt16oSmTZsCAL766isEBwfj1VdfRWJiIhQKQ+C/fv06xo4di3Xr1qGgoACPPfYYFi5ciHr16pne5/vvv8fUqVORk5ODqlWr4vXXX0d8fLzt7c3OxunTp9GzZ0/TtrNnz6J27dr45ptvsHDhQhw6dAh169bF4sWL8cgjjwAAtm/fjieeeAIbN25EQkICfv31V/zwww949NFHMXv2bHzyySe4cOEC6tevjylTpuD//u//TK/r3LkzNm3ahLfffhu///47oqOjsXLlSmRnZyMuLg5///03evXqhc8++wzh4eEAgE2bNiE5ORnHjh2DUqlEdHQ0FixYgDp16gAAatc2FJpq1aoVAOCxxx7D9u3bAQDLli3D+++/j5ycHJQrVw4DBgzAokWLTOd75coV9O/fH5s3b0b16tXx/vvvo0+fPqb9Xbt2xbVr17Bjxw488cQTNl9bIm+Xfiod0/ZMAwD0z7+FRGsJuoNF4gBg/yUFvs46LrqPheLIHoz1ro/1jz32GID7sX79+vWYOnWqX8X6OXPmoFOnTqb9jPVkVPjhtTU/DfwJZcPKOqc4nE5AiCbPMKT9RLp9a5zbMQXNWvV2zj93DK+WH/nyyy+hUqmwf/9+LFiwAPPmzcNnn31m2j98+HAcPHgQmZmZyMrKgl6vR48ePaDRaAAYgu7TTz+NZ555Br/++iumT5+OKVOmYPny5Ta34eeff0b9+vURERFhsW/ChAmIj4/H4cOHER0djd69e+PqVfMiUm+//TbeffddnDhxAs2bN8esWbOwYsUKLF26FL/99hvGjx+PIUOGYMeOHWavmz59OhYtWoQ9e/bg3LlzePrppzF//nykpaVhw4YN+OGHH/Dhhx+ajr99+zbi4uJw8OBBbN26FUFBQejfvz90Oh0AYP/+/QCAH3/8Ef/++y/S09MBAEuWLMHo0aMxatQo/Prrr8jMzETdunXN2jJjxgw8/fTT+OWXX9CjRw8899xzuHbtfrISEhKCli1b4ueff7b5uhJ5M+Pcc2OC3seWBN3BInGAYUjd16eVovtYKI78nT/E+smTJ/tdrB86dCiuX79u2s9YT4Dh4bWtCXpyTDIqhlcsfoKuFYCsxQieVQXdj41B8PyGtifosSmGOec2JOi2Dm/n/HPHsCfdj9SsWRMffPABFAoFGjRogF9//RUffPABRo4ciVOnTiEzMxO7d+82zR/7+uuvUbNmTaxduxYDBw7EvHnz8MQTT2DKFMMQmPr16+P48eOYM2cOhg8fblMb/vrrL1SrVk1035gxYzBgwAAAhgC4adMmLFu2DC+//LLpmMTERHTt2hUAUFBQgJSUFPz444+Ijo4GADz44IPYtWsXPv74Y9OTeQBITk5GTEwMAOCll17CpEmTcPr0aTz44IMAgP/7v//Dtm3bMHHiRAAwtcNo2bJlqFixIo4fP46mTZuiYkXDEKPy5cujSpUqZp8THx+PsWPHmrY99NBDZu81fPhwPPvsswCAlJQULFy4EPv370e3bt1Mx1SrVg1//fWX/MUk8gHrTq9D0t4k07y6YL3e+hB3B4vEGS3PyhXdzkJxFAh8MdZ//vnneOutt0zHTJ8+3S9jfXZ2Nh544AHTMYz1ga3w6DJrnLL2uVYA9n9sX485cH9Yu5Uh7YVxeLvr8bGGH+nQoYNpuBsAREdH49SpU9BqtThx4gRUKhXat29v2l++fHk0aNAAJ06cAACcOHHCFPyMYmJiTO9hi7t37yIsLEx0nzH4AoBKpULbtm1Nn23Utm1b03/n5OTgzp076Nq1K0qVKmX634oVK3D69Gmz1zVv3tz035UrV0Z4eLgpaBu3Xbp0yfTzqVOn8Oyzz+LBBx9EZGQkoqKiAAC5ueI3/wBw6dIl/PPPP1aHrRVuS8mSJREZGWn22QBQokQJ3LlzR/Z9iLydsTKtMUHvk38Lh86eEz+4axIw4bTNT+ilrDqQi9mb/7DYznnoFCgY6w28MdZfuXLF7BjG+sCVkZNhNUGf0HYCdgzagcNDDxcvQf+v5xxJ5e1P0I3F4CQqtYuxVr19co+GyJnZnQl6MbEnXUbZ8BBkJ3Rx+vvqdDrk37qFiFKlbCoc50sqVKiAX3+VHvZiTcmSJU3/fevWLQDAhg0bUL16dbPjQkPNh8kGBweb/luhUJj9bNxmHN4GAL1798YDDzyATz/9FNWqVYNOp0PTpk2hVksXDypRooRN52DtswHg2rVrpjlxRL4q9XiqKUGXnYPeNclwE1BMcvPeOA+dHOWqWG9vG3wJYz1jPUlTa9WSQ9zj28SjT90+iAyJdM6wdkd6zq2scS7H2vxzVm93HibpMoKCFDYVcrGXTqdDsK4AkaVCrSbp9ti3b5/Zz3v37kW9evWgVCrRqFEjCIKAffv2mYbAXb16FSdPnkTjxo0BAI0aNcLu3bvN3mP37t2oX78+lErx+Z9FtWrVCkuWLIFerzd70m9sz6OPPgoAEAQB2dnZGD16tOR7NW7cGKGhocjNzTUb7lZcxvP+9NNPTYXrdu3aZXZMSIjhhqlwr0JERASioqKwdetWdO7cuVhtOHbsmKkgDpGvEXQCUo+n4v3s9wFYSdBDSgEdXiv2Z67OPi95Y8B56FQcror1ruKLsX7MmDGS78VYT/5C0AlIO5EmWb09sWMi+tfr75wPO5IGrH3VpkO1XZKgbGVblXYpglaHZbvPiK6oYsTh7c7FJN2P5ObmIi4uDi+//DIOHTqEDz/8EO+/b7iJrlevHvr27YuRI0fi448/RkREBN5++21Ur14dffsahtjEx8fjoYceQlJSEgYNGoSsrCwsWrQIH330kc1t6Ny5M27duoXffvvNVIHWaPHixahXrx4aNWqEDz74ANevX8cLL7wg+V4RERF48803MX78eOh0Ojz88MO4efMmdu/ejcjISAwbNsyBqwSULVsW5cuXxyeffIKqVasiNzcXb7/9ttkxlSpVQokSJbBp0ybUqFEDYWFhKF26NKZPn45XXnkFlSpVQvfu3ZGfn4/du3fj9ddft/nzz549i7///htduni254bIEUWr1MoWiQspBfSc59ANQWGCVic5tI7z0CnQ+GKsf/HFFyXfi7Ge/IG1Cu7xbeKdl6AfWgFkWv8uarskYcOVGujevjeURUZ+2MPa/HNWb3cNXk0/8vzzz+Pu3bto164dRo8ejbFjx2LUqFGm/V988QXatGmDXr16ITo6Gnq9Hhs3bjQN2WrdujW+/fZbrFy5Ek2bNsXUqVORmJhocyEZwDD3rX///vj6668t9r377rt499130aJFC+zatQuZmZmoUKGC7PslJSVhypQpmDVrFho1aoRu3bphw4YNpmVTHBEUFGRatqVp06YYP3485swxf+qpUqmwcOFCfPzxx6hWrZrp5mbYsGGYP38+PvroIzRp0gS9evXCqVOn7Pr8b775Bk8++aRZcRkiX1C0Sq1skbiuScDEv4AWg4r9uct2nxHdntKvCYfVUcBhrLcNYz25mqATcO3eNSw/tlw2QQ9XhWNI4yHO+VBbEvT/KrTr2r8KvcK20TFSrM0/Z/V211Ho9Xq9pxvhTnl5eShdujRu3ryJyMhIs3337t3DmTNnULt2bcmCKM6g0+mQl5eHyMhIpw1379SpE1q2bIn58+c75f2K45dffkHXrl1x+vRplCpVyrR26uHDh9GyZUuzY11xLbyZWq1GvXr1kJaWZlG4BzBcjytXruDKlSt48MEHXfo99HYajQYbN25Ejx49LOb+BSJPX4+iVWr75N+STtD7LAJaD3XK50rNf+v7gBZzR3T3m++GXGwix0hdU3fFekfJxUVfjfVG/hzzC5+bIAiysR7w/u9hYZ6OP67k6LmtO70Os/bNQr4mX/a4cFU4EjokoHed3sVtqvUEPTYFaPeyafRacf/dvHn+ua9+J+2J9RzuTk7XvHlzzJ49G2fOnEGzZs083Ryvkpubi8mTJ0sGbSJvVLRKrdUicU5K0OXmoT9WNaCeLxN5HcZ6aYz1/k2tVWPyLuvF2ia0nYDBjQY7p0Dc3o+ALVPE93dNMtR+KebUMiPOP/cOTNLJJewZNhdI6tati7p163q6GURWCToBeeo8aHVas2F87igSB8jPQ5/9VBMo/5Vfn5WIXI+xXhxjvX+yVhjOKL5NPIY0HlL85BwAjq4C1o8HNLfF9ztx5BrA+efehEm6n9i+fbunmyApKioKATargsiniRXAUer1GJKXjzev3RB/kZOKxAGGBH3eFsu10AHD8Lr+LatgI5N0CkCM9USeYa0wnFFyTHLx1jwHDD3n924AOgFYM0r6OCcm6Lb0nnN5Nfdikk5ERCZF554r9XoMzsvHW1LJOeDUoXZrDp/HO2uO4Y5aa7Fvco+GePqhmtBoNMX+HCIiIlsUjYtifhr4E8qGlS1+77mtS6s5MUGXi7tGTNDdj0k6EVGAMw5tz8zJNK19DlgpDmc6yLlP8uVuFF6McbzSMxERkb2K1mQpylgYrmJ4xeJ/mK0Jer8lQMvBxf88AAWCFuNXyY9M4/xzz2CSTkQUwBwa2m7k5Llwy3afkUzQ5w5swTlwRETkNmqtWnaIu1MLw925YluCnnAJUIUW7/P+w/nn3o1JOhFRgCqaoNs0tN3IiU/yAcNSL1Jz4fgUn4iI3EluDrrTCsNpBWD/x8Bm65XiEVoa6DHHaQm6teXVGHc9j0k6EVEAEnSC2Q2ITUPbAYt1WJ1B7mbhZHI3hKqUTvssIiIiOXJz0OPbxGN40+HF+wBbk/OH44Do0Yb/DivjtMKs1grEMe56BybpREQBRtAJWHxkseln2WXVjJy8DquR3Frocwe24I0CERG5haATkHo81aw2S2HhqnAMaTykeB9i67zzkFJA53ecuvb58j1nkbzhhOQxJUOUSO7flHHXSzBJJ5tFRUVh3LhxGDdunKebQkQOKjqEz6YE3clD243k1kJ/b0BzDrUj8gDGegpE6/5ch2l7rReIK9YQ90MrgMzXrR9nHNrupAQ9/fDfmJj+m+wxnH/ufZikExEFiKJD+PpYS9BdMLS9sGW7z4hu51IvRETkDoJOwK57u7Bp7ybJY5wyB92WBD02BWg+yGlD2wEg66ICK7PkE3TGXO/EJF2OTgfctWGOpgPvq7iTDyjVQJCVJ1Ylylk/hohIRtEhfEq9HmW1Ouk56C4a2l6YVKE441roRG7jqlhvD8Z6IreTKw5nlNgxEf3r9XfsA7QCcO+GYYj7linSx7nggbig1eGzXWex8k/5oessEOe9mKTLuXsNmFPH6W8bBKC0rQdPOA2UrGD1sE6dOqFp06YAgK+++grBwcF49dVXkZiYCIVCgevXr2Ps2LFYt24dCgoK8Nhjj2HhwoWoV6+e6T2+//57TJ06FTk5OahatSpef/11xMfH23+CROQ1Ct+E2FS93cnLqomRm4fOtdDJ7VwU6+3CWE/kVrYk6Mkxyehbt69jH2DL3HMX1nqRW1oNABJ6NsLwjlEc3u7FPP4vs3jxYkRFRSEsLAzt27fH/v37ZY+fP38+GjRogBIlSqBmzZoYP3487t2756bWercvv/wSKpUK+/fvx4IFCzBv3jx89tlnAIDhw4fj4MGDyMzMRFZWFvR6PXr06AGNRgMAyM7OxtNPP41nnnkGv/76K6ZPn44pU6Zg+fLlHjwjInKUoBOw/Nhy001Ir1u3seev8/IJetcklyfocvPQuRa6f2O8dw7GeiLHCToBl+9clk3Q49vE4/DQw44n6IdWWE/Q+ywCYt5weu/5JztPW137PGdmd4x45EHGWy/n0Z70VatWIS4uDkuXLkX79u0xf/58xMbG4uTJk6hUqZLF8WlpaXj77bexbNkydOzYEX/88QeGDx8OhUKBefPmeeAMvEvNmjXxwQcfQKFQoEGDBvj111/xwQcfoFOnTsjMzMTu3bvRsWNHAMDXX3+NmjVrYu3atRg4cCDmzZuHJ554AlOmGIbj1K9fH8ePH8ecOXMwfPhwD54VEdlLbP3zKVeuIVyvl35RSCnDE30Xk5uHziF3/ovx3nkY64kcs+70OszaNwv5mnzJY4rVew7YNvfcBSPWbOk959xz3+LRRyjz5s3DyJEj8cILL6Bx48ZYunQpwsPDsWzZMtHj9+zZg5iYGAwePBhRUVF48skn8eyzz1p9Gh8oOnToAIVCYfo5Ojoap06dwvHjx6FSqdC+fXvTvvLly6NBgwY4ccKwFMOJEycQExNj9n4xMTE4deoUtFqte06AiIot/VS6RQ/BkLx8+QQ9tDTQc55L56ADnIceyBjvnYexnsh+aq0ak3dNlkzQX2j8QvF6zwHbEvR+S5yeoK86kGs1QZ87sAXjrI/xWE+6Wq1GdnY2Jk2aZNoWFBSELl26ICsrS/Q1HTt2RGpqKvbv34927drhzz//xMaNGzF0qPSXvaCgAAUFBaaf8/LyAAAajcY0/MtIo9FAr9dDp9NBp9MZqivGnyrGWYrT6/W4desWSpUqZRZoRYWVMRS1sfF9dYWONf534f8v+nmFXyP3euPrih5TXPr/Egdnv6+vKnw9NBoNlMrAXavS+PtZ9Pc0UNlyPdaeXovEfYlm2/rk38KbEkPctV2SoGs6EChRBghSAS681nJLwAxtV8Ouf2d//G7407kU5W3x3l2x3i6FYr21uOiLsb5wO1z5/p5k77npdDqfifW+/jfX2vJqIQjBiEYjoNfqodHacY46Abh7AwAQ9OtKKLdOFz1M+8R06Jo945JY+132eUxee1xyf98HtEga+jhKhIb67L+fGF/9TtrTXo8l6VeuXIFWq0XlypXNtleuXBm//27Z0wIAgwcPxpUrV/Dwww9Dr9dDEAS88sormDx5suTnzJo1CzNmzLDY/sMPPyA8PNxsm0qlQpUqVXDr1i2o1er/tobYd2K2Cg9Fvi3xKf+WTW8nCAL27t1ruikBgJ07d6JOnTqoVasWBEHATz/9ZHrCfu3aNZw8eRJRUVHIy8tDnTp1sHPnTrPXb9u2DXXq1MHt27cBGALKvXv3zI5xlvx86aFHgejevXvYuXMnBEHwdFM8bsuWLZ5ugleRuh6H1IeQfifdbJtSr5es4L6uxefQXQ0Gdri+Z1KrBybuFQ83z9XR4ofN0kvfyPGn78adO3c83QSX8bZ479ZYbyuRWC8WF3091sudm7+w9dzUajXu3r3rU7HeF//misXGwsIQhl7hvbBt6zab3k+h1yJYuI0a1/eg2d9pVo8/XOsl5F570OmxVqsHdvyrQMZf0g94nqujRbtKemzbutWpn+1NfO07aU+s96nq7tu3b0dKSgo++ugjtG/fHjk5ORg7diySkpJM86uKmjRpEuLi4kw/5+XloWbNmnjyyScRGRlpduy9e/dw7tw5lCpVCmFhYS47D71ej/z8fERERFjvSbeRSqXC+fPnMWPGDIwaNQqHDh3Cp59+ijlz5qBVq1bo06cP4uLisGTJEkRERGDSpEmoXr06nnnmGQQHB2PixIlo3749Fi5ciKeffhpZWVn47LPPsGjRItN1CgoKQlhYmMV1Kw5XXAtfptfrcfXqVYSFheHRRx916ffQ22k0GmzZsgVdu3ZFcHCwp5vjcXLXQ61VI2GVZRGcwXniN4tC70Xo1rwYQ/rsdPW2Gti73WJ7Sr8mGNimut3v54/fDVcmRL7IlfHeXbHeUXJx0VdjvS3n5uvsPbd79+6hRIkSPhHrffVvrqATkLBSukDc5v6bUSqoFLZt3SZ/bv/1mAcd+w7KH2WWUiv6+T0XoGnL59DU3oZbkXHkH0xddwJ31OJTVCbG1sfw6FrQ67Q++e9mC1/9TtoT6z2WpFeoUAFKpRIXL140237x4kVUqVJF9DVTpkzB0KFDMWLECABAs2bNcPv2bYwaNQrvvPMOgkTWGA0NDUVoaKjF9uDgYIt/VK1WC4VCgaCgINH3chbjMCjjZznL888/j3v37qFDhw5QKpUYO3YsXnnlFSgUCixfvhxjx45Fnz59oFar8eijj2Ljxo2ma9O2bVt8++23mDp1KpKTk1G1alUkJibixRdfNPsMZ7fZVdfCVxW+HmLf0UDE62Cu6PWQWkZGqdeLV3LvmgRVG9dWcC8q85dci22TezTE4A5RxXpff/pu+Mt5iPG2eO+uWO8oa3HRF2O9refmy+w9t6CgIJ+L9b7UVgD4+tjXotvDVeFI6JCAapHVTMOPJc/t6Cpg4wSg4KZ9H95nEVQuWC2lQNDize+PSe4vXBzO6rn5AV87N3va6rEkPSQkBG3atMHWrVvRr18/AIY/cFu3bsWYMWNEX3Pnzh2LP3zGeTzGuUCBLDg4GPPnz8eSJUss9pUtWxYrVqyQff2AAQMwYMAAyf1nz54tbhOJyInST6Vj2h7LeXZKvR4rQhsAOGf5IjdUcC9MqljcgNas5B4oGO+di7GeyLr0U+l4P/t9i+0jmo3A6JajoQqyIQXSCsD68YDmtn0f3m8J0HKwfa+xgbUK7qze7l88Otw9Li4Ow4YNQ9u2bdGuXTvMnz8ft2/fxgsvvADA8LS4evXqmDVrFgCgd+/emDdvHlq1amUa/jZlyhT07t3b64tuEBE5U0ZOhmiC3if/1n/z0EUS9NgUl1dwL2zVgVxM/P5X0X2lS/jOk28qPsZ7InIXqQfYAOxL0LfNtC1Bj00Bmg8y/HdYGafHWUGrw7LdZ0QfeBvNHdiCy5j6GY8m6YMGDcLly5cxdepUXLhwAS1btsSmTZtMxWVyc3PNnqQnJCRAoVAgISEBf//9NypWrIjevXtj5syZnjoFIiK3E3SC6BD3/vm3kChRKA4A0O5lF7bK3Ors85IJ+tyBLaBS+tdQV5LHeE9E7iCXoCfHJNuWoB9JA9a+Kn+MMTF3QVJuJGh1WL7nLJI3nJA97mRyN4Sq+PDS33i8cNyYMWMkh7tt377d7GeVSoVp06Zh2jTpZRQCVdFrRUT+K09tXnhEqddjSF6+5FJrAAzD79zUiy5odZJD8t4b0JxP+wMU433xMdYTiRN0AlKPp4oOcQeAxI6J1tdA1wrA3o+ALTLF4eJPAuEVXB5PrQ1tB4CSIUok92/KBN1PeTxJJyIi+2TmZJr+u9et25hy5RrC5ebpumh+nJTle86Kbud8OSIicjapAqpGiR0T0b9ef/GdOgEhmjwE7VsCWKvc3m8JECFe7NJZbBnaDhiKr74YU5uj0vwYk3QiIh+y9vRaU0+BUq+XT9C7JhkKxblxHrqg1YkOzZvcoyETdCIiciq54e2AlQT9SBqC176K7gAgXTDdwA0Pu9ccPo931hyTXFrNiPPPAwOTdCIiH3FIfQjp+9IBGBL00ddvSifofRYBLlj+xZplu8+Ibn8xprabW0JERP7M4QTdlmHtRm562C1odVYT9ISejTC8YxR7zwMEk3QiIh8g6ASk3zEk6PcruEtw8/B2o9XZ50WH6CX0bMSbCiIicgpr888BQ5E40TnoR1fZvqyaG2Ppst1nJBN0Dm0PTEzSiYh8QNrJNAA2VHBPuASoQt3UqvvkisUN7xjl3sYQEZFfsjb/PL5NPIY0HiJexd3Wdc9jUwyrobhpqtiqA7mSc9A5tD1wMUknIvJixh6DDw99gGG2VHD3QIIOSBeL43JrRETkDMWafw4YhrhLJOjaJ6ZD2XqoS5dUK8pakTgurRbYmKQTEXkhQScg7UQa5hycgz75t3BErvcc8NgQd0C+WBx7AIiIqDhsGd4um6BbmYN+qNZINOswBsrgYGc01ybWllibO7AFE/QAxyTdT3Tq1AktW7bE/PnzPd0UAN7XHiJvJ+gE0/rn60+vx5yDcwDYMP/cAxXci2KxOCL38LbY6m3tIf9jbXg7IDP/HACOpAFrX5V8rWbi3zj3w1Y0K04j7bTqQC4mfv+r5P73BjTnA25iki5Hp9fhRsEN57+vTof8gnwI9wQEBckPAy0TWgZBCvcMFVWr1QgJCXHLZxGRQeEe86KUer18gu6hCu6FsVgc+TpXxXp7MNYTWSrW/HMAOLQCyHxd+gPcPEXMljXQ3xvQnMuVEgAm6bJuFNzAY6se82gbdgzagXJh5WSPGT58OHbs2IEdO3ZgwYIFAICcnBykpKTgp59+woULF1CrVi289tprGDt2rNnrbty4gYceegiLFy9GaGgozpw5gz179uC1117D77//jqZNmyIhIQH9+/fH4cOH0bJlSwDAsWPHMGHCBPz8888oWbIknnzySXzwwQeoUKGCaHvOnDmDqKgol1wjIl9l7QZkSF6+9Is9OLzdqEDQslgc+TzGesZ68j6CTpCNj8UZ3g7A8JC75WBAoylmS21jbXg7wCJxZI5Juh9YsGAB/vjjDzRt2hSJiYkAgLJly6JGjRr47rvvUL58eezZswejRo1C1apV8fTTT5teu3XrVkRGRmLLli0AgLy8PPTu3Rs9evRAWloa/vrrL4wbN87s827cuIHHH38cI0aMwAcffIC7d+9i4sSJePrpp/HTTz+JtqdixYruuRhEPsJagt4n/5ZokThtx3FQPjHFo8PbAfkbDhaLI3I+xnoKJKnHUyX3yQ5vt2WJNTc/5LY2vJ1LrJEYJul+oHTp0ggJCUF4eDiqVKli2j5jxgzTf9euXRtZWVn49ttvzQJ3yZIl8dlnn5mGvi1duhQKhQKffvopwsLC0LhxY/z9998YOXKk6TWLFi1Cq1atkJKSYtq2bNky1KxZE3/88Qfq168v2h4iMlBr1bIJerDMMHfdY29D6eEEXe6Gg8XiiFyDsZ4CRfqpdNEicSOajcDolqOll1e7cwVYM0r6jd1cw4XD26k4mKT7scWLF2PZsmXIzc3F3bt3oVarTUPYjJo1a2Y2N+3kyZNo3rw5wsLCTNvatWtn9pqjR49i27ZtKFWqlMVnnj59GvXr13fuiRD5EWs96B9V7IRH9q8Q3Xeo1kg0k5p75yars89LJuglQ5QsFkfkZoz15E8ycjIkl1mTTNCtFIcD4PYaLmsOn8c7a47hjloreQyHt5McJukyyoSWwY5BO5z+vjqdDvn5+YiIiLCpcJwjVq5ciTfffBPvv/8+oqOjERERgTlz5mDfvn1mx5UsWdLu97516xZ69+6N2bNnW+yrWrWqQ+0lCgRyCfqIZiMwuvnLUM0Rv/HVPjEd56496NYKtEUJWp3kEPeSIUok92/K4Xrkc1wV6+1tgyMY68mfyM1DT45JFk/QrRWHA9w+vF3Q6mQTdA5vJ1swSZcRpAiyWsjFETqdDiq1CpFhkVaTdFuFhIRAq73/x2D37t3o2LEjXnvtNdO206dPW32fBg0aIDU1FQUFBQgNNVS8PHDggNkxrVu3xvfff4+oqCioVOJfoaLtIQp0cjcf4apwQ4J+/S+g4KblASGloGv3CrDpBxe3Up7UUmu84SBf5qpY7wqM9eTPpOahJ3ZMFJ+DbkuCnnDJrRXcAUOslErQObydbMU7Kj8RFRWFffv24ezZs7hy5Qrq1auHgwcPYvPmzfjjjz8wZcoUiwAsZvDgwdDpdBg1ahROnDiBzZs3Y+7cuQAAhUIBABg9ejSuXbuGZ599FgcOHMDp06exefNmvPDCC6ZgXbQ9Op3OdSdP5AOkbj7CVeFYUqmToQd9cTvRY9BzHuDhYe6rDuSKzqub3KMhRj1ahwk6kRsw1pO/kpqHHt8mXryK+5E0+QQ9tDTQ/xO3L7H2yc7TknPQ5w5swQSdbMa7Kj/x5ptvQqlUonHjxqhYsSJiY2Px1FNPYdCgQWjfvj2uXr1q9qRdSmRkJNatW4cjR46gZcuWeOeddzB16lQAMM1dq1atGnbv3g2tVosnn3wSzZo1w7hx41CmTBnTyICi7cnNzXXdyRN5MUEnYPmx5ZJFcHYP2oHW+78S70EHgPiTQItBLm6lPLl56JyDTuQ+jPXkj9JPpUvOQx/SeIjlRq0gPQe9axIw4TTw1p9ujZ2rs8+j7jv/k0zQTyZ34/xzsguHu/uJ+vXrIysry2zbF198gS+++MJs26xZs0z/vXz5ctH36tixI44evT/v9Ouvv0ZwcDBq1apl2lavXj2kp6fb1R6iQLPu9Dok7U3CXeGu6P7RLUdDlfWR9FIxoaWB8AoubKF1cvPQudQakXsx1pO/kUvQJeeh37ki/mZuLg4H2FbBfe7AFghVKd3YKvIHTNLJwooVK/Dggw+ievXqOHr0qGld1BIlSni6aUQ+Q9AJsgl6ckwyVEfSgC1TxN8gtDTQY47H10OXmof+3oDm7BUg8mGM9eRpcgm65Dx0qUruXZPcnqDbUsGdsZIcxSSdLFy4cAFTp07FhQsXULVqVQwcOBAzZ870dLOIfEraiTTJBD2xYyL63rotPZ8u/qShB90L1kOXmofOeXVEvo2xnjzJWoJuMQ9dKwB7P5J+sO3G6u0AUCBoMX6V+CgzIy6xRsXBJJ0svPXWW3jrrbc83QwinyXoBMw5OEd0X3JMMvrW7gkklRd/cb8lQEQVF7bONpyHTuTfGOvJU+xO0K2tgx5aGggr47wGWrE6+7zkNDCAK56QczBJJyJyMqlK7tlDshGiDAGyFou/sM8it/cGiOE8dCIicjZBJyD1eKpoIVVAIkG3tsxaSCm3Tg2zlqCz95ychUm6CL1e7+kmUADj98+3ZeRkiN6ATGg7wZCgCwXA5smWL/TAfDopnIdOgYB/a8mTAu37Z62QqkMJetckoMNrbkvQCwStbIJ+MrkbC8SR07A7pJDg4GAAwJ07dzzcEgpkarUawP3vI/kOQScgYXeC6L7BjQYDR1cByZXEX9zB+rJJ7sB56OTvGOvJGxhjvVLp/0mdoBMwa98s2xN0rQDsXiifoPdbAsS84ZYEXdDq8NnPf6JBwibR/SVDlPhgECu4k3OxJ70QpVKJMmXK4NKlSwCA8PBwKBQKp3+OTqeDWq3GvXv3TGuNBipei/v0ej1u3bqFK1euoGLFigERuP2JoBOw+Ij4MPbkmGSo9ADWjxd/cWyKx4vEAYYEnfPQyd+5K9Y7yp/jIs/t/rGXL19GeHg4VCrP/+13tTx1HvI1+aL7LBL0o6sMsVJqaVI3955bq+D+Wqc6iOtan9PAyOn8/y+DnapUMRRsMgZvV9Dr9bh79y5KlCjhVTcGnsBrYU6v1+P69eto0qSJp5tCdsjIyZDsQY9vE29YRmb3QvGbjpBSQLuXXdxC6+QKxXEeOvkbd8R6R/lzXOS53RcUFIRatWr53XUQk5mTKbo9OSbZfJk1rQBsnCCdoLt5HXRBq5NN0EuGKJmgk8swSS9CoVCgatWqqFSpEjQajUs+Q6PRYOfOnXj00UcDfkgzr4WlU6dOBUTQ9hdyVWoBYEjjIYZ5dVLLxvSc5/FedLlCcZyHTv7IHbHeUf4cF3lu94WEhPjdaAIx6afSReu0/DTwJ1QMr2i+8d4NoOCm+Bt5IEGft+UP2QQ9uX9TJujkMkzSJSiVSpcNN1YqlRAEAWFhYX4XpOzFa2HO224WSZq1KrXAf8Pcj6RJz6tLuASoQl3UQtvJFYrjPHTyZ66M9Y7y57jIcwsc1mJk2bCylhuPpIm/Wb8lbl35xNoQ94SejTC8YxQTdHIpJulERHYQdALSTqRJroNulByTjL55N6UT9H5LvCJBZ6E4IiJyJrkpYMB/D7CDiqQgUiPO4k8CEVWc3EJpBYIW41exgjt5HpN0IiIbWbvxAAxz0Ic0HgLVL99KJ+hesh663Dx0FoojIiJ7WZsCltgx8f48dK1gGOJ+JE16Slh4Bec3UoIta6AzQSd3YZJORGQDWxJ0U5VaoQBY+6r4QW6eVydFbh46C8UREZG9MnIyrCbopkruR9Kk46RRvyVuq9nyXfZ5TF57XHL/3IEtWJ+F3IpJOhGRFWqt2mqCbqpSK3fj4SUJOiA/D503IkREZA9BJ1gd4m7qQT+0Qn4NdMCtI86yLiqwMks6QecQd/IEJulERDLWnV6HybsmS+6f0HYCBjcabJhfJ3fj0TXJaxJ0zkMnIiJnSj2eKrrdNAUsSGUY3r73I+mh7UZueqAtaHX4bNdZrPxTPAE3VnBngk6ewCSdiEiCoBOQtDdJdN+IZiMwuuXo+8Vv5BL0kFJAh9dc1Er7cB46ERE5k9Qya/Ft4jG86XDDD7YMbwfcVsndWgX3yT0a4sWY2pz6RR7DJJ2ISELq8VTcFe5abA9XhduXoHvBWugA56ETEZHzWFtmbUjjIbb1nndNMiTmYWXcEiutVXDn8qPkDTx/10hE5IWkegYAIKFDwv0EXW4d9K5Jhh50L0jQAc5DJyIi55ArpqrU6zGr7USo9n0MbJaeLgbA7bVarFVwZ4JO3sI77hyJiLyI3BIy2UOyEaIMMfygFXyiSBzAeehEROQcUgm6Uq/H4Lx8vHXtBnB2jPU3ctPQdiNblljjA2vyFkzSiYgKkVtCJjkm+X6CDhiG8InxwgSd89CJiKi4pKq497p1G1OuXEO4Xm/9TTwwyqxA0Mom6MemdUGpEqFuaw+RNUzSiYj+I7fUWmLHxPvLxwCGeehic+y8qIo7IF8ojvPQiYjIHkWruCv1epTV6jDr8lXb3sDNveeAfA96yRAl+tdSI1TFWEjehd9IIiIYetDbpLYR3ZfYMRH96/W/v0FuHrqXVHEH5AvFcR46ERHZSqvXYsWJFaZaLUq9HkNv5uHI2XPYdu5v628QmwJMuer2BH3VgVzJOPhapzo4OLkzHqpoQ+8/kZuxJ52IAp7cHPT4NvHmCbrcPPR+S7ymSBwgXyiO89CJiMgWG85swMybM6E+rAZgx9D22BSg+SC3VW0vSm6qV8kQJeK61odeJ74EG5Gnec/dJBGRB8jNQQ9XhRuWkClMbh66m3sI5LBQHBERFZegE5ByIAVqGBL0YL3etqHtCZcAlWfmeAtaHZbtPiMaAwFDgp7cvylUyiBomKSTl2KSTkQBS6oADmBI0M2WWgMMw9x9fB46C8UREZGt0k6k4a5w17xyu5zQ0kCPOR5L0K1VcJ/coyFejKnNeizk9ZikE1HAKloAxyi+TTyGNB5inqDLDXP3kXnoLBRHRES2UmvVmHNwDvrk38LMK9fkD/bw0HZrvecAp3qRb2GSTkQBKf1UuqkATmHxbeIxvOlwyxfs/1j8jXxoHjoLxRERkS0y/0jH3F0JGHbrNt601nvuwaHtALDm8Hm8s+YY7qilh64zQSdf4z13lkRELiboBOSp85CZkymaoAOwnIMOGHrRN0+23N41yavmoa/OPs956ERE5DBBJyBr4xvoc/Br9LF2cEgpoOc8jyboBYIW41dJD28HDKPI+JCafA2TdCIKCBk5GZLzz42SY5LNh7gDhgR920zxF/jIMHfOQyciImsycjKQvWkcEq0NbQcMw9vbvezRkWScf07+jEk6Efk9uSXWjBI7JqJv3b7mG4+kSc9Dj03xqmHuy/ecFd3OeehERCRH0AlIPZ6KU9tnWJ973jXJ8IDaw/FPbnk1gL3n5Pu85w6TiMgF5JZYM0rsmGi5Fvrej8QruRu1e9lJLSw+QatD8oYTFtsn92jImxQiIpJkHGUWrNfjkJUEXei9CKo2nl/JxFqCfjK5G0JVSje2iMj52L1CRH5LrVXbNMTdLEE/ugp4t5Z8gu4jxeI4zJ2IiKSkn0pHwu4E9Mm/hUNnz4kec6z1M9CM+x2ZLb+Avvkzbm6hJbkEvWSIEh8MasEEnfyC99xlEhE50brT6zB5l0ixNxgquPep2weRIZGWy6ytHw9obku/cb8lXlUsbtWBXNFicQk9G3GYOxERiTJOA+uff0tyDrq2yww0fXgcNBoN9ArPJr7Wlljj/HPyN0zSicjvqLVq2QRddIk1wDDEXSpB95J5eIXJ9SgM7xjl3sYQEZFPMCbofWQSdISUgjJ6jHsbJsFagTgur0b+yOOPmxYvXoyoqCiEhYWhffv22L9/v+zxN27cwOjRo1G1alWEhoaifv362Lhxo5taS0TeLiMnA21S24juC1eFSy+xtnuh9BD3fkuAmDe8KkFfnX1eMkFnsTjyRoz3RJ6XfiodibunooKglS4SZ1xazQti3qoDuUzQKSB59Ldv1apViIuLw9KlS9G+fXvMnz8fsbGxOHnyJCpVqmRxvFqtRteuXVGpUiWsXr0a1atXx19//YUyZcq4v/FE5FWM1Wml1j8HgIQOCZbD2/d/LL4GuulFlzy6BqwYueXW3hvQnMXiyOsw3hN5XkZOBg788CZ2Xr2GSJ1e/CAvGTVmbXg7wASd/JtDv4Hbtm1D586di/3h8+bNw8iRI/HCCy8AAJYuXYoNGzZg2bJlePvtty2OX7ZsGa5du4Y9e/YgODgYABAVFVXsdhCRb7NlDfTsIdkIUYbc3yC3vJpRvyVel6AD0oXieMNCzsZ4T+QfBOEe5u+YhG2Xr0of1DXJMGrMw6wNbwe4xBr5P4eS9G7duqFGjRp44YUXMGzYMNSsaf9NoVqtRnZ2NiZNmmTaFhQUhC5duiArK0v0NZmZmYiOjsbo0aORkZGBihUrYvDgwZg4cSKUSvGCFgUFBSgoKDD9nJeXBwDQaDTQaDR2t9sZjJ/rqc/3JrwW5ng97rP1Wqw9vRaJ+xIl94erwjHpoUlQ6BTQ6AzvpfhlJVTr5OfaCT0XQN9kIOAl/xbG67By/19I2XjSYv/E2Pro37JKQHx3/PH3xFvPhfHe/fzx+23Ec/MMY8zbJnOMPqQkhLYjRWOeO8/tu+zzmLz2uOT+ibH1MTy6FlTKIKe0x5v/3YqL5+Z97GmvQq/XS4x3kXblyhV89dVX+PLLL/Hbb7/h8ccfx0svvYR+/fohJCTE+hsA+Oeff1C9enXs2bMH0dHRpu1vvfUWduzYgX379lm8pmHDhjh79iyee+45vPbaa8jJycFrr72GN954A9Omia+DPH36dMyYMcNie1paGsLDw208YyLyRofUh5B+J11yf7ewbogOjYayUFXaIJ0GvY++JP++tUbiXPlHnNZOZ9l/SYGvT4snKPM6CFAq3Nwgcpo7d+5g8ODBuHnzJiIjIz3dHBPGeyLfpdBr8eClzWj6z0rZ4zTKcPxSYyjOl4txU8ssafXAjn8VyPhLuor8s3W06FDJ7rSFyGvYE+sdStILO3ToEL744gt88803AIDBgwfjpZdeQosWLWRf50jQrl+/Pu7du4czZ86YnqTPmzcPc+bMwb///iv6OWJP1mvWrIkrV6547EZIo9Fgy5Yt6Nq1q2kYX6DitTDH63GftWuh1qrRYVUHydfP6DADvR/sbbbNWg+6tksSdA+NBII8XyynqLsFBWievEN03+ynmuCpVtXd3CLP8cffk7y8PFSoUMHrkvTCGO/dwx+/30Y8N/exZcQYAGjeOAaUrCAb91x9bhlH/sHUdSdwR62VPMZVcc7b/t2ciefmfeyJ9cW+E23dujWqVKmC8uXL491338WyZcvw0UcfITo6GkuXLkWTJk1EX1ehQgUolUpcvHjRbPvFixdRpUoV0ddUrVoVwcHBZkPdGjVqhAsXLkCtVos+1Q8NDUVoqOWc0uDgYI//o3pDG7wFr4U5Xo/7xK6FtTXQhzQeYl4gDjDMQZe6YXk4Duj8DpRKFTy7Eqy0z3adFd0eyPPQ/en3xBfOg/HevXy13bbgubnYoRXAutdlD9EEhyO413wEl7M9frji3AStTjZBd9f6517x7+YiPDfvYU9bHf7GazQarF69Gj169MADDzyAzZs3Y9GiRbh48SJycnLwwAMPYODAgZKvDwkJQZs2bbB161bTNp1Oh61bt5o9aS8sJiYGOTk50Ol0pm1//PEHqlatavOwOyLybYJOQNLeJNF9xjXQLRJ0rSBdJC6kFND5HY9XspWz6kAuZm/+w2L75B4NAzZBJ/dhvCfyIYdWAJnSCfrccmWwYcBCBL99DmgxyI0NsyRodZi35Q/JBP29Ac0x6tE6XFKUApJD3/rXX38dVatWxcsvv4z69evj8OHDyMrKwogRI1CyZElERUVh7ty5+P136WUTACAuLg6ffvopvvzyS5w4cQKvvvoqbt++bar++vzzz5sVmnn11Vdx7do1jB07Fn/88Qc2bNiAlJQUjB492pHTICIflHYiDXeFuxbbJddABwzLrInxorVgpaw6kCu5HvqLMbXd3BoKNIz3RD7kSJpsgv5OhXKo8PgM9Gw2zONxb3X2edR953/4aPtp0f1zB7bgQ2gKaA79hh4/fhwffvghnnrqKdGhZYBheNu2bXJ1JIFBgwbh8uXLmDp1Ki5cuICWLVti06ZNqFy5MgAgNzcXQUH3nyPUrFkTmzdvxvjx49G8eXNUr14dY8eOxcSJEx05DSLyMYJOwJyDc0T3WayBbqQVxNdB/2+Iu6dvVOTIJehzB7Zg7wK5HOM9kY+QGTE2t1wZpEZGIDS4JGZIPcx2I7nYBgAnk7shVOWtk8+I3MOhu9Np06ahY8eOUKnMXy4IAvbs2YNHH30UKpUKjz32mNX3GjNmDMaMEZ8nun37dott0dHR2Lt3ryPNJiIfl6fOE91usQZ6YfduiG/34QT9vQHNuT4suQXjPZEP0ArAtpmiu6ZUKIe1EaUQrgqXfpjtRtYS9LkDWzBBJ4KDSXrnzp3x77//olKlSmbbb968ic6dO0Orla7OSETkTBPaTpBO0AHD8L+iYlN8NkFP6deEQwDJbRjvibzc0VXA+vGA5rbFrrnlymBtRCmMaDYCo1uO9okEnQ+giQwc+m3V6/VQKCwX5L169SpKlixZ7EYREYnJzMm02NarTi/pFxxaAWyZYrm9uWeL5chZnX1e8ibm2TpaDGwTOEutkecx3hN5Ma0gmaADQGpkBAB4fYLurgruRL7Ert/Yp556CgCgUCgwfPhws/lpWq0Wv/zyCzp27OjcFhIRAUg/lY73s9+3/QVyBXTCyjilTc5WIGjx5ndHRfel9GuCkhfF9xE5G+M9kZfSCvencWUtlkzQ36lQDlqFAskxyR5N0AWtDst2n0HKRvHikoG8jCiRHLt+a0uXLg3A8GQ9IiICJUqUMO0LCQlBhw4dMHLkSOe2kIgCXkZOBqbtmSa6LzIk0nKj3JJr/ZZ45VD31dnnJRP09wY0R/+WVbBxI5N0cg/GeyIvoxUMK5WIFUIt4p0K5ZAZUQrJMcnoW7evGxonbs3h83hnzTHZJdaYoBOJs+tO9YsvvgAAREVF4c033+RQNyJyOUEnIGF3gug+yR4CqSXX+iwCWg52YuucQy5BN66FrtFo3NwqCmSM90Re5Eia9IPnIlpH1YRGoZAvqOoGBYIW41dJP1hmgk4kz+Hq7kRE7nC94Lro9sSOieI9BEKBeE9D1ySg9VAnt674BK1OMkEvGaLkWujkUYz3RB52aIXs2ueFvVOhHDT/DXH3ZIIu9+AZYIJOZAubk/TWrVtj69atKFu2LFq1aiVaSMbo0KFDTmkcEQW2Q+pDSFhj2Yse3yYe/ev1t3zB0VXAmlHib9bhNSe3zjmW7T4jur1kiBLJ/ZuykA65HeM9kZewM0HPjCgl/QDbTVjBncg5bE7S+/btayoc069fP1e1h4gIALD29Fqk30kX3denbh/LjcYqt2K8dMm1VQdyRYvpvNapDuK61meCTh7BeE/kBeSKnwJ4r1wZrC9lmIaSFxQErUKBxI6J4g+w3cRagn4yuRvXQCeykc13rYWHvHH4GxG5UkZOBhL3JYruiwiOEC8Wt/cj8Sq3IaWAdi87uYXFJ7fUGhN08iTGeyIPkyl+OrdcGaRGRkBbZISLJxN0axXcjSPDmKAT2c77upaIKKDJFYoLV4VjUvtJlsXipNZDB4Ce87yuF11uHvrcgS2YoBMRBbK9H4lunlKhHNZGlLLY7skq7tYquHMNdCLH2HznWrZsWdl5aYVdu3bN4QYRUWDLU+eJbo9vE48hjYeIJ+hSQwITLgGqUPF9HiQ1D/29Ac05V488jvGeyEO0giFBF3no/HPjJ7H2rmVPtSeruLOCO5Hr2Jykz58/34XNICIyyMzJtNgW3yYew5sOtzxYbs5evyVemaBLzUM3LrVG5GmM90QeYGWZtdfvnACKPDyb0HaCxxJ0VnAnci2bk/Rhw4a5sh1EREg/lY73s9+32C5ZKE7qhsaL10OXmofOpdbIWzDeE7mZlSru71QoZzEHHQAGN/JMnGMFdyLXszlJz8vLQ2RkpOm/5RiPIyKyVUZOBqbtES9SJVkoTkyfRT63HjrnoZM3YbwnchOZ4e1GU/5bWq2o5Jhky+lfLiZodfgi67RkgTiAFdyJnMWuOen//vsvKlWqhDJlyojOV9Pr9VAoFNBqxYtHEBGJkSsWN6PDDMsbkSNp4jc1XZO8MkEHOA+dfAfjPZEbHF1lWDZUbFWS//zc9jmsvfqzxXZPFIrbf0mBsdN/lNzPCu5EzmVzkv7TTz+hXLlyAIBt27a5rEFEFHikisX1L9EfvR/sbb5Rbph7h9ec3DLn4Dx08iWM90QuphXkE/SuScisWAPvZFmOLvtp4E+oGF7RxQ009132eXx9Wjr5ZgV3IuezOUl/7LHHRP+biKg4BJ2Ar45/ZbF9XKtxqHCmguULpIa591vidUutAfJz9zgPnbwR4z2RC2kFYNtM6QS9zyIILZ/FO1+1Et1dNqysCxtnadWBXExee1xyPwvEEbmGw3e0169fx+eff44TJ04AABo3bowXXnjB9PSdiMiadafXIWlvEu4Kdy329a7dG1lnssw3yg1z97FCcZyHTr6C8Z7ISawNce+3BGg5GKnHlovudvc8dBaII/Ich+4Qd+7ciaioKCxcuBDXr1/H9evXsXDhQtSuXRs7d+50dhuJyA8JOgGz9s0STdABICIkwnyDjw1zlysUx3no5CsY74mcRCsAGydIJ+gJl4CWgyVXOYlvE+/WeehyCfrkHg2RM7M74xiRCzn0OG706NEYNGgQlixZAqXSMEdFq9Xitddew+jRo/Hrr9JP3YiIAMM89HxNvug+0d4CHxvmLlcojkMDyVcw3hM5yZ0rQMFN8X39lkAIUiL12HLRBB0AhjQe4sLG3SdodVi2+4xkBXfGMCL3cOjONicnB6tXrzYFbABQKpWIi4vDihUrnNY4IvJPUvPQgftVazUajWGDTgB2L/GpYe4sFEf+gvGeyAmOpEmPBOu3BOsiIpD0TUfJkWXuGua+Ovu85AgwAEjp14QxjMhNHPqNb926NU6cOIEGDRqYbT9x4gRatGjhlIYRkX/KyMmQXG6taNXamld/RvCs56XfzAuHucvNQ2ehOPI1jPdExXRoBZD5uvi++JMQSlbArJWPSiboiR0T3TLM3dr882fraDGwTXWXt4OIDGxO0n/55RfTf7/xxhsYO3YscnJy0KFDBwDA3r17sXjxYrz77rvObyUR+YX0U+mYtsdySRmjwlVrFUdS0Tr3U+k388Jh7nLz0FkojnwF4z2RkxxJk07QQ0sD4RVw/d51yalfiR0T0b9efxc20PrwdsDQg17yonQPOxE5n813uC1btoRCoYBerzdte+uttyyOGzx4MAYNGuSc1hGR37CWoJsN5zu0AqoN46TfrM8irxzmLjcPnQV2yFcw3hM5gVAgPcQ9pBTQYw7Wnf0fJu+aLHqIceqXK1kb3g4YHjD3bV4ZGzcySSdyJ5uT9DNnxG8+iYisycjJsJqgm25G5IYGAqYlarwN56GTv2C8JyomuTnoXZOADq9BUABJ33QUPaTo1C9XsDa8fXKPhngxpjZUyqD7NWKIyG1sTtIfeOABV7aDiPyUoBMk56DHt4nHkMZDzHrQJRP0/25svG2IO8B56ORfGO+JHKf4ZSWwboz4zq5JQMwbAIC031aIzkOPCI4wm/rlCtYSdFZwJ/K8Yt3tHj9+HLm5uVCr1Wbb+/TpU6xGEZH/SD2eKrrdYq6dXILeZxHQeqgLWld8nIdOgYDxnsi6IJ0GKqkEPaSUqdipoBMw5+Ac0cMmtZ/k0kru1hL0uQNbcHoWkRdw6K/An3/+if79++PXX381m7emUCgAGNZQJSJKP5UuuuZrfJt4mxN0oecCqLw0QQc4D538G+M9kQ20AoL2LUHvoyJLhQKGBL3nPECpgqATsPjIYtHDsodkI0QZ4pImWisQV3h4OxF5nkO/iWPHjkXt2rVx6dIlhIeH47fffsPOnTvRtm1bbN++3clNJCJfJFcobkjjIfd/kEnQD9d6CfqWz7mieU7Beejk7xjviaw4kgYklYfyR4kE/eE4YOJfQItByMjJQKuvWuGzXz+zOGxC2wkuS9BXZ59H3Xf+J5mgvzegOUY9WocJOpEXcagnPSsrCz/99BMqVKiAoKAgBAUF4eGHH8asWbPwxhtv4PDhw85uJxH5CEEnIPV4qmgPOlCkirvM8jRCzwXI/acsmrqqocUkN2SQ89DJXzDeE8mwVug0pBTQ+R1AqbK6wsngRq4piMr550S+yaFHZlqtFhEREQCAChUq4J9//gFgKDZz8uRJ57WOiHyGoBOw4rcVaPVVK8kEPbFj4v0q7nLL0/RZ5PU96FI3PZyHTv6E8Z5Igi0J+n9D3O1agtRJBK0On+w8zQSdyEc59BehadOmOHr0KGrXro327dvjvffeQ0hICD755BM8+OCDzm4jEXkxQScg7USaZBEcI7NCcXLL0xiLxHnpki9yCTrnoZO/YbwnKkIrAHs/ArZIDG8HgNgUoN3LEBRA6rHlkg+uAdesh27r+ueMV0Tey6EkPSEhAbdv3wYAJCYmolevXnjkkUdQvnx5rFq1yqkNJCLvlZGTIbm8WmFmCbq1Zda8uEictQSdPRLkbxjviQqRe8AM4Fi1Z9Bg2HwEh5bAutPrkLQ3SXSZNUBkCVInsWf9cyLyXg79ZYiNjTX9d926dfH777/j2rVrKFu2rKniKxH5N1sTdLNeArkEvdDyNN5Ibi10Jujkrxjvif5jZXi70HMBTv9TFg2CVFBr1Zi8a7LksRZLkDoJ558T+Y9iP747d+4cAKBmTf7SEwUKtVZtNUGf0HYCBjcafL+XwFqC/t/cPW8ktxY6b3ooUDDeU8CyNv+8zyLomz0D/LMRG85swJQs6aHwrkrQ5R4kAxzeTuRrHBrrIggCpkyZgtKlSyMqKgpRUVEoXbo0EhISoPHSeaRE5BwZORlok9pGcv+EthNweOhhPN/keZuquKNrkml5Gm8ltxY6E3TyZ4z3FPDk4hcA9Ftimqal1WuRciBF8tDkmGSXJOgFglbyQfLkHg2RM7M7E3QiH+NQt9Xrr7+O9PR0vPfee4iOjgZgWKZl+vTpuHr1KpYsWeLURhKRd5CrUDui2QiMbjnacn6dVrBeJM6LcS10CmSM9xTQ5OJX1yTDFK1CI8CyCrIk56BnD8l2yTrockXi+CCZyHc5lKSnpaVh5cqV6N69u2lb8+bNUbNmTTz77LMM2kR+SC5BD1eFiyfogKEKrhgfSNDlhg9yLXQKBIz3FND2fyy+XSR+rftzHTbd2yR6eMrDKS5J0OXmoPNBMpFvcyhJDw0NRVRUlMX22rVrIyTE+X+EiMhzBJ2A1OOpkkvIhKvCkdAhQTxBP5ImvkyNl1dxB+TnoXMtdAoUjPcUsIQCYLNI8TeR+CXoBEzbK/4Q21U96HIJeskQJR8kE/k4h+4yx4wZg6SkJBQUFJi2FRQUYObMmRgzZozTGkdEniPoBKz4bQVafdVKMkGPbxOP3c/uRu86vS13yg0T9OIq7kZy89A5t48CBeM9BaSjq4DkSuL7isQvQSdg8ZHFoocmxyQ7PUEXtDp8svO0bIKe3L8pHyQT+Tibe9Kfeuops59//PFH1KhRAy1atAAAHD16FGq1Gk888YRzW0hEbmfL8mpWK9RKDXPvt8Rrq7gbcR46BTLGewpoQgGwZpT4vtgUs/gltxZ6fJv4+8uPOsmaw+fxzppjuKPWiu7nGuhE/sPmO+XSpUub/TxgwACzn7kkC5F/cEqCLjfMveXgYrbQteSGEHL4IAUCxnsKWEdXSSfoIaWAdi+bfhR0gmSCDgBDGg9xatMKBC3GrxKfggWwSByRv7E5Sf/iiy9c2Q4i8gK2rH+eHJMs3zvgw8Pc5QrFcR46BQrGewpIcj3oANBznlkvetqJNMkEPTkmWbxOi4PkKrgDTNCJ/FGx/oJcvnwZJ0+eBAA0aNAAFStWdEqjiMi9BJ2AtBNpmHNwjuQxE9pOwOBGg63feNy7Ib7dy4e5yxWK4zx0CnSM9+TXjqRJP1wGgIRLgCrU9KOgEyTj5YwOM5w6zF1udBdgeIDM+ETkfxy6Y759+zZef/11rFixAjqdDgCgVCrx/PPP48MPP0R4eLhTG0lEriM3pw6QWf9cypE0y20+MMxdrlAceygoUDHek987tALIfF16f/9PzBJ0AEg9nip66PTS09H7QZFCqg6ylqCfTO6GUJXSaZ9HRN7DobGbcXFx2LFjB9atW4cbN27gxo0byMjIwI4dOxAfH+/sNhKRi1ibUye7/nlRWgHYvVB8LrqXJ+gsFEckjvGe/JYxZskl6AmXgBaDzDaln0oXXfEkrnUcVArnjRaztsTaB4NaMEEn8mMO/TX5/vvvsXr1anTq1Mm0rUePHihRogSefvppLFmyxFntIyIXSj2eKpugS65/XphWAPZ/LL6erFFYGccb6WIsFEckjfGe/JK14e0hpQxz0Iv0oKefSse0PeLroT9T/xn88OcPTmmeXFxiBXeiwOBQkn7nzh1UrlzZYnulSpVw586dYjeKiFxPqjcAsGP++dFVwPrxgOa29DFePBdd7kaIheKIGO/Jz2gFw/KgYiO+jLomGYqcFolbcgm6swrFCVodlu0+IzqyC+D0K6JA4tBflOjoaEybNg0rVqxAWFgYAODu3buYMWMGoqOjndpAInK+jJwMyZuN7CHZCFGGWH8TrWA9Qe+zyGuHussl6CwUR2TAeE9+w5aHyn0WAa2HWmyWS9ATOyaib92+0Gg0xWoeK7gTUWEOJenz589Ht27dUKNGDbRo0QIAcPToUYSFhWHz5s1ObSAROZegEySXWUuOSbaeoGsFQwX3rMXWe9B9NEHnjRCRAeM9+QVry6sBkjHLWoLev17/YjfPWoE4xiWiwONQkt6sWTOcOnUKX3/9NX7/3TAk59lnn8Vzzz2HEiVKOLWBRORcUlVpjb0Bso6uAjZOAApuSh8TmwK0e9knh7jzRojIHOM9+TRbaqZIDG8H5EedMUEnIley+y5ao9GgYcOGWL9+PUaOHOmKNhGRi2TkZIjOQ49vE2/9ZsOW4e1F1pL1NkzQiWzHeE8+zdaaKRIjvtRateSoM3cl6FwDnShw2V0VKTg4GPfu3XNqIxYvXoyoqCiEhYWhffv22L9/v02vW7lyJRQKBfr16+fU9hD5I7lh7kMaD5F+oVYAbl8Bts20frPDBJ3Ibzg73jPWk9vY+lBZIkHPyMlAm9Q2ovuclaCvzj4vW8E9Z2Z3JuhEAcyh0sWjR4/G7NmzIQhCsRuwatUqxMXFYdq0aTh06BBatGiB2NhYXLp0SfZ1Z8+exZtvvolHHnmk2G0gCgRSw9xlq9IeXQW89yAwpw6wa570m3vx/HNA/maICTqRNGfFe8Z6chutIP9QOaQU0P8TyYfKGTkZkg+0bRp1ZoMCQStZJO69Ac0x6tE6XF2EKMA5NGn0wIED2Lp1K3744Qc0a9YMJUuWNNufnp5u83vNmzcPI0eOxAsvvAAAWLp0KTZs2IBly5bh7bffFn2NVqvFc889hxkzZuDnn3/GjRs3HDkNooAg6ASkHk+VHOYuOQ/dlkI78SeB8ApeO/8cMCxpI3czxASdSJqz4j1jPbmFtSHuVmqmyA1xD1eFy486s5FcFXfGJCIycujOukyZMhgwYECxP1ytViM7OxuTJk0ybQsKCkKXLl2QlZUl+brExERUqlQJL730En7++WfZzygoKEBBQYHp57y8PACGuXbFXS7DUcbP9dTnexNeC3POvh4bzmxAyoEU3BXuiu4fVG+Q6GcpflkJ1boxsu8t9F4EfVh5QKcHdM7/93PGtRC0Oiz46bTovpR+TdC/ZRWf+e7xd+U+f7wW3nouzoj37oj1gHfGe0f44/fbyKXnphOgWj8eCokEXTPxb0PvuUTMWvfnOkzbK14kLlwVjkkPTYJeq4dGK952W87tu+zzmLz2uOi+ibH1vTYm8Tvpm3hu3see9tqVpOt0OsyZMwd//PEH1Go1Hn/8cUyfPt3hCq9XrlyBVqtF5cqVzbZXrlzZVEW2qF27duHzzz/HkSNHbPqMWbNmYcaMGRbbf/jhB4SHh9vdZmfasmWLRz/fm/BamCvu9dDqtbijv4PZebMlj3kq/Cn8sOkHi+21ru5Aq9zPZd//UK2ROHc+Eji/sVjttIWj1+LAZQW+/TMIap3CYl/fB7QoefEoNm6UXpPWW/F35T5/uhZ37tzxdBPMODPeuyPWA94d7x3hT9/vopx9bgq9Fg3/TUd9iQT9UK2ROPfDVsnXH1IfQvod8VEhj4Y+iifCnoDihAIbT1iPeVLnlnVRgZV/KkX3hQbpUfnmcWzcKJ7Aewt+J30Tz8172BPr7UrSZ86cienTp6NLly4oUaIEFi5ciMuXL2PZsmV2N9IR+fn5GDp0KD799FNUqFDBptdMmjQJcXFxpp/z8vJQs2ZNPPnkk4iMjHRVU2VpNBps2bIFXbt2RXBwsEfa4C14Lcw543psOLMBcw7OwS3NLcljprafin51+plv1AkI2r8UysPSCbrmjWNAyQpoFqRCM4daZ7viXAtBq8OklG1Q67Si+999Idbn5vvxd+U+f7wWxl5fb+HJeO9IrAe8M947wh+/30ZOPzedgKADn0L54xTJQ4Tei9Cs+TOSMUvQCUhYKT3EfW7/udJ1WwqROjdBq8PyrFyszPpD9HUlQ5SY0bsReresZvUzPIXfSd/Ec/M+9sR6u5L0FStW4KOPPsLLL78MAPjxxx/Rs2dPfPbZZwgKsv+Gt0KFClAqlbh48aLZ9osXL6JKlSoWx58+fRpnz55F7969Tdt0Op3hRFQqnDx5EnXq1DF7TWhoKEJDLYuDBAcHe/wf1Rva4C14Lcw5ej0EnYD3Dr4nm6AnxyRbzkO3No8vpBTQcx6Cy7l/rpwj1+KLrNO4oxZP0OcObIESYd5bhd4a/q7c50/XwtvOw5nx3h2xHvDueO8IX223LZxybkfSgLWvyh+TcAkqK6uOfPPbN6Lbw1XhSOiQgBKh9o0eKXxucvPPAUMV9xdjavvMQ2N+J30Tz8172NNWu5L03Nxc9OjRw/Rzly5doFAo8M8//6BGDfuXiQgJCUGbNm2wdetW09IqOp0OW7duxZgxlvNhGzZsiF9/Na/QnJCQgPz8fCxYsAA1a7LYBgUuQScgNy8X+Zp8yWOyh2QjRBlivtHaUjVdk4AOr3l1cbjCVh3IRcpG8SG0XHOWyDbOjPeM9eR0h1YAma/LH2PDsqBqrRpzDs6x2D6i2QiMbjnaph50KdbWQGeROCKSY9dfH0EQEBYWZrYtODi4WJP24+LiMGzYMLRt2xbt2rXD/Pnzcfv2bVMF2Oeffx7Vq1fHrFmzEBYWhqZNm5q9vkyZMgBgsZ0okMgtGQMAEcERmNR+kmWCDgD7P5ZO0PssAloPdVIrXU9uqbWTyd0QqhKfD0hE5pwd7xnryWlsTdCtLAsqFzeZoBORp9n1F0iv12P48OFmw8nu3buHV155xWxZFnuWYBs0aBAuX76MqVOn4sKFC2jZsiU2bdpkKjCTm5vr0FB6okBhLUHP6JuBWpG1xG84tAKwebL4C7187fOi5NadnTuwBRN0Ijs4O94z1lOxaQVg70fAFun559aWWDOSi5sT2k4oVoIuV8Ed4IguIrKNXX+Fhg0bZrFtyJDirxk5ZswY0SFvALB9+3bZ1y5fvrzYn0/kq+TWdAUMPeiSCTpguOERk3DJ6jBBb2Jt3VneEBHZxxXxnrGeHGatbood07KsrYU+uJFjD6cFrQ4//aNARpZ4gu5r88+JyLPsStK/+OILV7WDiOxk6xB3iwRdKwD3bhiK7oj1SMSm+FSCLjescHKPhhxSSOQAxnvyGkIBsGaU9H47pmXJxU1joThHetHXHD6Pd9Ycwx21+IgtDm8nInv5RiUoIjIjd6MxotkIDG08FJEhkZY3G7ZUw233spNa6Xpyc9BLhijxYkxtN7eIiIic5ugqpyXo6afSMW3PNNF9xSkUJ2h1/yXo4iuKMEEnIkcwSSfyMYJOkO0JkLzRsLXYjo9UcZebg14yRInk/k05rJCIyFcZVx6RYkfdlIycDMkEXTZuWiFodZi35Q8m6ETkdL5xN05EJqnHU0W3yw7VsyVB77PIZwrFyc1B57w/IiI/ILfyiB11U6zNQXd0iLu1NdBZII6IioNJOpEPST+Vjvez37fYLjtU70iaU5ar8RbWEvRRj9Zxc4uIiMip5FYe6f+JzQm63NSw+DbxGNJ4iEMJurUl1rjkJxEVF5N0Ih8hN59OMkEXCqTnoHdNMiTmYWV8Zoi7oNXJDnHnHHQiIj/ghJVHrCXow5sOt7tZglaHZbvPIGXj75LHzH6qCRN0Iio237gzJwpwcgl6ckyydA+6VIJuR7Edb7Js9xnR7ZyDTkTkJw6tKPbKI9ZqtwxpbP9ygvcruIvPPweA5+po8VSr6na/NxFRUUzSibycXIKe2DERfev2tdwhNwe9a5JPJuirDuSK9l681qkO4rrWZ4JOROTr5GKXHSuPpJ1IE93u6Bz0AkGL8auk559P7tEQQ9vVwA+bN9n1vkREUpikE3kxawl6/3r9LXfIzUEPKQV0eM2JLXQPufl/TNCJiPyAXOyyY+URtVaNOQfnWGx3dJk1awXijBXcNRqNXe9LRCSHd7ZEXkpuyRjJBF0rSA9xDykF9JznM/PPjb6TWQt97sAWTNCJiHydXOyyY+WRdafXoU1qG9F9jiToqw7kWq3gziXWiMgVfOtunShAyM2nk0zQAeDeDfHtXZMMPeg+lKALWh1++keBjKzjovvfG9Ccy9sQEfkDqdhlR/0UQSdg1r5ZovsmtJ3gUILOCu5E5Cm+c8dOFECuF1wX3S6boAOG4YJFdU0CYt5wUsvc4/7wQvEbIOPwQiIi8gNSscuO+inX711HvibfYnu4KhyDG9m3xKhcgm4sVMoEnYhciUk6kZc5pD6EhDWWvejxbeLlE3Spirg+sv65kbXeCyboRER+xAmxS265NXsKxVlbYm1yj4Z4MaY2p1kRkcsxSSfyEoJOwIoTK5B+J110f5+6faRfLFcRN6xM8RvnJkzQiYgCiFyxOBtjl1yC/tPAn1AxvKJN72NrgTgiIndgkk7kBeRuMgAgIjgCkSGR4judVBHX06wl6HMHtuAcdCIifyFXLM7G2CVXvyUiOAJlw8ra1BQ+ICYib+Mbd+9Efsxagh6uCsek9pPEh+s5qSKup8ndIE2MrY+Rj9bh8EIiIn+y9yPx7XbErjx1nuh22bhZBBN0IvJGTNKJPEiuFwAwzEMf0niI9I2G3E2OHQV3PEnuBunZOlqMeDiKCToRkR9RHEkVn4duY7E4QScgT52Hr45/ZbHPnvXQOYKLiLwVk3QiD0o9niq5LzkmGX3r9pV+sVSxHTsr4nrSapk10FP6NUHJi9LzA4mIyPfUuroDqsOfi+/s8JrV11sbfTa08dBiJ+gsEEdEnsa/PkQekn4qHe9nv2+x/dHQR7H/mf3yCbrcPHQbbnK8gaDVSRbpeW9AcwxsU93NLSIiIldSHElFq1yJBN2Geejpp9JlE3QA0vVbCpFL0N8b0ByjOMWKiDyMf4GIPCAjJwPT9kwT3fdE2BPyvQBOKLbjaYJWh3lb/hDdx/l/RER+6NAKqDaME99nwzz09FPpknHTKDkm2WovurUEnfGHiLyB99/NE/kZuXnoMzrMgPJ3pfwb3Lkivt1HCsXJLXMzuUdD3iAREfkbuWVCbaihIvdg28jqFDEwQSci38EkncjNpOahJ3ZMRK+oXtj4+0bpFx9JE+9F95F56NbWoX0xprYbW0NERC4nNz3LhgRd7sF2fJt49KnbB5EhkexBJyK/wiSdyE0EnYDU46mi89Dj28Sjf73+0Gg00m8glaADPtGDXiBoZRP0uQNbcA4gEZE/sbZMqA0Jem5erui+xI6J6F+vv9UmCFodlu0+g5SNv4vuZ4JORN6ISTqRG1irRjuk8RD5NxAKpG90QksDYWUcb5wbWOtB5zI3RER+6N4N0c1CzwVQWUnQ151eh1n7ZiFfk2+xz/hg2xprsYcJOhF5KybpRC5mrdiNbKEbrQDs/xjYPFl8f0gpoMccry4WJ3eT9FqnOojrWp896ERE/kYrAFmLLTYfq/YMGrR8Tvalgk6QTNABoE/dPlY/3toa6EzQicibee+dPZEfsJagJ3ZMlC50c3QVsH48oLktvv/hOKDzO16doMsNcS8ZomSCTkTkj2Ti17lyD6OBlZfnqfMkE/SI4Airy6wxQSciX+e9d/dEPkxu/rmRbCVanQBsnCCdoIeU8voEXa4HvWSIEsn9mzJBJyLyN0IBsGaU5G6NqqTVt8jMyRTdHhEcgUntJ8kWibOWoHN6FRH5Au+9wyfyUdbmn8e3iceQxkPkK9HevQEU3BTfF1IK6DnPqxN0uZskDnEnIvJTcgVOAQi9F0F/XnqZUbkH3Bl9M1ArspZs7FydfV4y9kzu0RAvxtRm7CEin+C9d/lEPsiW4e22FLuRFJsCtHvZZxN0DnEnIvJTcmuhA0C/JdA3GQicF19mdN3pdUjam4S7wl3R/dYSdLnpVRzeTkS+xnvv9Il8iC3D221N0BV6LYL2L7XcEX8SiKhSnGa6nLUEnUPciYj8kLUEPeESoAoFJJYZFXSCbIIuW2AV8tOrmKATkS9ikk5UTNaGtwNW5p8XovhlJfocGSO+U254vBeQS9A5zJCIyE/JJejG6VmqUNm3SD2eKpmgyxZYhfXYwwSdiHyRd9/1E3k5p8w/Nzq0Aqp1Mj0RXrwWutxNEnsxiIj8lFyC3jUJ6PCa1elZ6afSJUehyT3gFrQ6LNt9BikbfxfdXzJEiRdjast+NhGRt2KSTuQgQSfIJuh2zT+3YS6ft85DZ4JORBSA5OJWn0VA66FW3yIjJ0Oyjkv2kGyEKENE98kNbwc4vYqIfJ933vUT+YDU46mS+2wd3g7AUA3XWoLecrCdrXMPJuhERAFGKwB7PwK2TBHfb2OCLvegOzkmWTRBt9Z7DnB6FRH5BybpRA7IyMkQHZ43otkIjG452rbh7YBhPVmp5WpsHCroCdZulJigExH5oaOrgPXjAc1t8f02JugAkHYiTXS71Bx0a73nAGMPEfkP77v7J/Jyck//7UrQZdaTFXougOqh4Q620LWs3SjxJomIyA9pBacl6IJOwJyDcyy2x7eJF50mJjdqy2juwBb4vzY1bPp8IiJvxySdyE5ST/+tLRFjRmYu37Fqz6BBy+ccbZ5LMUEnIgpQez9ySoIOAGknxePokMZDLLZZS9A5vJ2I/BGTdCI7yD39t3kOukyCrg8piT8rxaJBcRrpIoJWxwSdiCgQHVohPQfdzroph9SHkH443WL7hLYTLB50W0vQ2XtORP6KSTqRHaSKxYk9/RclVyQupBS03d6D/pzSwda5jqDVYd6WPyT380aJiMhPyVVxT7hkdQ30wtRaNdLvWCboADC4kXmib239c/aeE5E/Y5JOZANBJyD1eKposTixp/8WtAJw54rVInF6nR44t9EJLXYeuSHur3Wqg7iu9XmjRETkj+QS9H5LbE7QBZ2AtBNpoiPRAMvpYlw5hIgCHZN0IivWnV6HpL1JuCvcFd1f9Om/Ga0A7P8Y2DxZ+pjCc/l0mmK01PmsDTVkgk5E5KesrYNu4xB3azG08HQxrhxCRGTAJJ1IhqATZG8uZIvFyVRvN+maZFexHXeyZS4gE3QiIj9kLUG3MW6ptWpM3iX9kDpcFW6aLrbm8Hm8s+YY7qi1oscyQSeiQMI7bCIZaSfSJBN0qbVcARhucKwl6CGlDOugeyEW6yEiClBytVPsSNAzcjLQJrWN5P5wVTgSOiRAFaSCoNUxQSciKoQ96UQSpCq5A4YedNkEXeoGxyi0NNBjDqD0rl9Ba0MNWayHiMiPCQXSD5jtSNDTT6Vj2p5pkvvjWsdhaJOhpgR93pY/mKATERXiXRkCkZcQdAJy83JF92UPyUaIMkT8hdYS9NgUoPkgIKyM1yXoXAOdiCiAyU3RsrMHXS5Bn156Ovo07ANVkMrqEHeO2iKiQOVdWQKRF8jIyUDC7gTRfRPaThBP0LUCsPcj6XVk/6ve7m2JuZG14e1M0ImI/JQt8cuOOehS8TNcFY5JD02C4oQCAFAgaDF+lfSD4ZPJ3RCq8r4lSYmI3ME7MwYiD7E2RK9XnV6WG60ViLOjB8ITmKATEQUoa/HLjtop606vkywSF98mHkMaD4Feq8fGExuRfvhvTEz/TfK95g5swQSdiAIak3Si/1hL0COCIxAZEmm+0drwdh9P0DnUkIjIT9mSoPecZ9MIMEEnYNa+WaL74tvEY3jT4QAAjVaDrIsKrMyST9AZd4go0DFJJ4JtCfqk9pPMl1vz4QSdBeKIiAKYVpBP0O2conX93nXka/ItthdeYg0Avss+j5V/SveQc4g7EZEBk3QKeHIJenybePSp2weRIZH2Jej9lgAtBzu5pc7BAnFERAHuzhXpfXbGL7k6LoWXWJN7MFwyRInk/k2ZoBMR/YdJOgU0uSq0iR0T0b9ef8sdcmvIskAcERF5K60A7P8Y2Cwyd/zhOKDzO3bFL7mH3D8N/AkVwytareDOkVtERJa8M5MgcgO5KrSSCbqT1pB1N2u9GAATdCIivyWXnBtFj3Zagh4RHIGyYWWtVnBn3CEiEucVjy0XL16MqKgohIWFoX379ti/f7/ksZ9++ikeeeQRlC1bFmXLlkWXLl1kjycSk5GTgTapbUT3yfagJ1cSf0MvTtBXZ59H3Xf+J5ugzx3YgjdKRORSjPUecnQV8G4t+QQ9tDQQVsamtxN0ApYfWy6ZoIerwjGp/SSsPXwBDRI2Sb4PE3QiImkeT9JXrVqFuLg4TJs2DYcOHUKLFi0QGxuLS5cuiR6/fft2PPvss9i2bRuysrJQs2ZNPPnkk/j777/d3HLyNYJOwLV717D82HLJHvT4NvHSCbpUD7oda8i6k6DV4ZOdp2Xnn0/u0RA5M7uzki4RuRRjvYdoBWD9eEBzW/qYkFJAjzk29aKvO70OHb/piPez3xfdH98mHruf3Y0711rIxp7ZTzVhgk5EJMPjw93nzZuHkSNH4oUXXgAALF26FBs2bMCyZcvw9ttvWxz/9ddfm/382Wef4fvvv8fWrVvx/PPPu6XN5HvkCtsYFa1CayJXBdeONWTdyVpxOIC9GETkPoz1HrL/Y/kEPTYFaPeyzcusJe1Nwl3hruh+4yg0a7VP3m8voE+r6lY/j4gokHk0SVer1cjOzsakSZNM24KCgtClSxdkZWXZ9B537tyBRqNBuXLlRPcXFBSgoKDA9HNeXh4AQKPRQKPRFKP1jjN+rqc+35u441qs+3Mdpu2VXl4N+G943kOToNfqodGatyVo3xKI1ZvVh5SEttt70Ov0gM457XfG9fgu+zwmrz0ue8zsp5qgf8sqXv0d5O+JOV6P+/zxWvjTuRTljlgPeGe8d4TTvt86AcESQ9y1XZKge2gkEKQCbIxhqb+nSiboU9tPRa+oXkjbe0Yy/pQMUWJKj/pQXfzVp/49bOWPf5eMeG6+iefmfexpr0Kv1+td2BZZ//zzD6pXr449e/YgOjratP2tt97Cjh07sG/fPqvv8dprr2Hz5s347bffEBYWZrF/+vTpmDFjhsX2tLQ0hIeHF+8EyOsJegHTb06XPaZbWDdEh0ZDqbBMxRV6LfocecFi+x+Ve+P3qk9BL/IaT8q6qJBdg7bvA1o8VlUPpcKNjSIiq+7cuYPBgwfj5s2biIyM9HRznModsR5gvC/qwUub0OzvNIvt61p8Dl1QsF3vpdVrMe2m+MPup8KfQuuQ1rLxh7GHiMi+WO/x4e7F8e6772LlypXYvn27ZNCeNGkS4uLiTD/n5eWZ5rZ56kZIo9Fgy5Yt6Nq1K4KD7QuU/sZV10LQCVj5x0rMOzRP9rgZHWag94O9xXfqBATteFd0V+0XP0XtIOf/+jh6PQStDsuzcrEy6w/JY2Y/1QRP+dAQQ/6emOP1uM8fr4Wx15cs2RLrAe+M945wyvdbJyB4luW0AG2XJHRr39fut1txYgVw2HL73kF7EaIMwXfZ57EyS7wHPaVfEwxsY4g9/vi7a8Rz8008N9/kq+dmT6z3aJJeoUIFKJVKXLx40Wz7xYsXUaVKFdnXzp07F++++y5+/PFHNG/eXPK40NBQhIaGWmwPDg72+D+qN7TBWzjrWgg6AWkn0jDn4BzJY0Y0G4GhjYciMiQSKqlEW65QXGwKgkNLFLutcuy5Hv6+Bi1/T8zxetznT9fCX85DjDtiPeDd8d4RxWr37iWim5XRr0FpxzJrgk5A6vFUzD8832LfhLYTEBpcQnZ5T6naJ776b2ILnptv4rn5Jl87N3va6tG79pCQELRp0wZbt241bdPpdNi6davZkLii3nvvPSQlJWHTpk1o27atO5pKPiAjJwOtvmolm6CHq8IxuuVolAsrJ56gawVg90LpBB0wFNnxEsY1aKUS9PcGNMeoR+v4bIJORL6Psd6NjDFsyxTLfbEpdq2Dbq2Se9jdx2SX92RxUiIix3l8uHtcXByGDRuGtm3bol27dpg/fz5u375tqgD7/PPPo3r16pg1axYAYPbs2Zg6dSrS0tIQFRWFCxcuAABKlSqFUqVKeew8yLNsrd6e0CFBuvf86CrrS9X0W2LXTY4rWavgzhskIvIWjPVuYC2G2fGAWdAJmLVvlmihOL0+CE9EJuGt1cckX8/4Q0RUPB7PNgYNGoTLly9j6tSpuHDhAlq2bIlNmzahcuXKAIDc3FwEBd3vBVyyZAnUajX+7//+z+x9pk2bhunTp7uz6eQlBJ1gNUGf0HYCBjcabJmgawXg3g1AJwBrRsl/UL8lQMvBxWusk1hb4mbuwBZc+5yIvAZjvYtZWw/dzgfMeeo85GvyLbZrbrTGvX+fRobMa5mgExEVn8eTdAAYM2YMxowZI7pv+/btZj+fPXvW9Q0in5J6PFVyn2RyDhh6HTZOAApuyn9A1yTDWuhe0oNuLUE/mdwNoSrvqjpPRMRY7yJaAdg2UzpB77PI7gfMmTmZFtvUN9qi4N//Ezn6Pj4gJiJyDu/IOogcYCxoIzZfbkSzERjdcrT00HZrvQ5GXtR7Dsgn6CVDlEju35QJOhFRINAKwP6PAYm10AE4FMMycjIs4qq1BN3XC5QSEXkbJunkk6zNQbeaoMv1OhglXAJUlpWCPUHQ6mQr6PIGiYgogNhSQ8WBGCY2fcxags7ecyIi52OSTj4n/VQ6pu2ZJrk/OSZZeu75L6vkex0AILQ00GOOVyToglaH5XvOInnDCcljOP+PiCiA2DISrN8Sh2JY4eljen0QNNdiUHCpp+ixfDhMROQ6TNLJZ8gNbzdK7JiIvnX7mm+0de55/EkgSAWElfGK+efWqrcDTNCJiALO3o+sJ+gOTNNKP5Vuiq/GAnFSGHuIiFzL85kIkQ1sWWItOSbZMkG3Z+55RJVittI5tHrgs11nMXvzH7LH8SaJiCjAHFohvgY6YFgHvd3LDj1kzsjJMI1Qsza8nbGHiMj1mKST17M2vD2+TTyGNB5iPsTdOLw9a7FPFYdLP/w3Ju5VAZBP0DkHkIgowBxaAWS+Lr6vGDVUjPPQrQ1vB5igExG5C5N08lq2Dm/vX6+/+cYjacDaV61/QDF6HZzNWmE4o4SejTC8YxTnABIRBRK5BN3B+edGqcdTobnZEvf+7Q/opd+HD4eJiNzH89kJURGCTkDaiTTMOThH9jiL4e1awTBXT2oooFH8SSC8glck54Btc89ZoIeIKEDJJegOrIFeWEZOBuYemI97/8yUPIbxh4jI/bwjSyGC7cm56PB2W3vPvWjuua295+y9ICIKUNYS9NZDHX5rQSdg4oZ03PtXOkHn8HYiIs9gkk4ep9Vrkfp7KuYdmmf1WIvh7bb2ngNeNfecvedERCRHcSQV2DBOfGcxE3QAiMtcLVvBnQ+IiYg8h0k6edS6P9dh2s1pwCHrx1oMbz+6ynrl9q5JhsTcS5ZVs7X3fPZTTTCoXZR7GkVERF6l1tUdUB3+XHxnMRP0exo1Xl+zBlsORUgeczK5G0JVSoc/g4iIisfzWQsFrPRT6Zi2V7pqu9GEthMwuNFgy+rt1hJ0L+o5F7Q6LN9zFskbTsgeNzG2PirfPI7eraq7qWVERORNFL+sRKtc1yTo72zMxNc7lQBKie4vGaJEcv+mTNCJiDyMSTq5nS1V2wGJ5BwwJOjbZkon6F2TgA6veU3PuS3JOWAYWti3eWVs3HjcDS0jIiKvoxWgWjdGfF8xE/S31q/Ft7uCJff3bafF+327c4oVEZEX8HwWQwElIycDCbsTZI+RTM4B6wXivKj33JZ554D53HONRuOGlhERkVfa/7H49mIk6IJOQFzmamTulR7e/swjAt7t2VdyPxERuReTdHIbawm6aNX2wuSq3AJAwqVirRXrLLbOOwdYmIeIiP6jFYDNky23d01yKEE3rpgy88dtKPj3/ySPe+5RLWb2YIJORORNmKSTywk6AdfvXZdN0Ke2n4qBDQdKv4m1BL3fEq9I0G3tPU/o2QjDO0ZxWCEREd2fxiWmw2t2v53xobj6RlvJBL1r61v4sH9/hAWH2P3+RETkWkzSyaXWnV6HWftmIV+TL3nMU+FPoV+dfuYbtQJw74bhv4+kyS+x5uEh7oJWh5t3Nfj+0HmrvedMzomIyIzcSiWxKXbVVylc80UuQTcMbx/kaIuJiMjFmKSTy6i1akzeJTJ07z8jmo3AqCaj8MOmH8x3WJt3buQFBeIcmXdOREQEABAKgDWjpPe3e9nmtyo8pUwuQX/2ES1mcf45EZFXY5JOLmFt/nm4KhyjW46GXqNBiCYPuH0FCA623mtuVMwqt8XFeedERFQsR1fJJuhC70VQ2fgQ2hhz9fogaK7FoOBST9HjZj3VBM+2i3KktURE5EZM0snp0k+lY9oe6fXPI4IjMKn9JKh++RZY+yq6A8AxOz7Agwm6PUuqsfeciIhEaQXDEHcJh2qNRLPmz9j0VmqtGgm7E6C50Rr3/n1a8rj3BjTH0w/VtLupRETkfkzSyWlsWf/8p4E/oWxIBFT7PrGtx7woD80/tyc5B9h7TkREMvZ/LD4HHYBm4t8498NWNLPhbWwpEAcwQSci8jVM0qnYjMu8zDk4R/KYcFU4EjokoOIfW2ybb27UNel+Uh5WxiPzz+2Zdz6gdQ2ULhHM3nMiIhIntdQaAPT/xOaVStJPpWPq7hnQXHtEcng7wASdiMgXMUknh9mSnAP/rX/e8Bn7e8+9oGo7550TEZFT3bkivj3hkiFB12isvkVGTgYmb8zAvX9TZI9jbCIi8k1M0skh1grDGSV2TET/23eB5Mqyx2mfmA5l4XnmHuo1Ny6ntubw3zYNbeeSakREZBOtYBjmLtaLHpticw+6oBPw1oa1KJCZf86aKEREvo1JOtlM0AnIU+chMydTdt650czoGehz6ZzV3vNDtUaiWYcxUAYHO6updrE3MQeYnBMRkR3k1kIHgObya5Yb4y8ATFy/lvPPiYj8HJN0ssm60+swa98s5GvyrR47oe0EPKdWQJn2gvyBXZOgaTsS5zb9YFOBHFewdb65EXsniIjILsZK7lIJemhpw+gxCYXjr7UCcRzeTkTkH5ikk1VqrRqTd0kUuSnkrdZxeDaqu2FpNWtzz43zzW2Ye+dsxp7z7w+dt2m+uRFvfoiIyC5aAdg2UzpBDykF9JgjOb1L0AlI2puEO5oC2QJxb3evjxEP1+EDZCIiP8EknUQZh9atP73epsJwQzVKKL8fA2Cc/Bt3TQI6vOb2+eaODGk34tB2IiKym7Uh7rEpQLuXZeNh2ok05F1pJLv++bOPaPHKY/WK21oiIvIiTNLJgq1F4QAgOSYZffNuApljrB/soWrt9g5pBwyJef9W1bmcGhER2U8rABsnSCfoxkruUi/Xa3H57mXM/HGbbIG4Zx/RYlbPPsVtLREReRkm6WQm/VQ6pu2ZZvW4nwb+hLIhEbYtq+aB3nNHhrRznXMiInKKezeAgpvi+/otkU3Q1/25DlNvzIDmsxgUXJKefz7rqSZ4tl1U8dpJREReiUk6ATAMb089nmq1anu4KhxT2k1CxaPfii8jU5Sbe88FrQ7L95y1e0g755sTEZHLWYmJGTkZmLyJ658TEQU6Julk8/D2t1rHYXD+LSi/HiZ/YNckw02IG9Y6N/aYA7B7vjmHtBMRkUscSbPcFn8SiKgi+RJb1j9ngTgiosDAJD3AWRveHt8mHn0e7IHSR1ZB+f0462/YZxHQeqjzGijB0R5zDmknIiKXOrRCfBpYkPwtV1zmatnl1QY/qmOBOCKiAMEkPYBZS9ATOyai/+27wHs23hS4YWi7o8k5wOGBRETkYkfSgMzXxffJrIX+1vq1yNwbIbn/vf9riqfbPlDMxhERka9gkh6grCXoM6NnoM+lc9aLwgE2LSPjqOIMZwc4pJ2IiNxEKwBrXxXf12+JZIx8a/1afLsrWHQfh7cTEQUmJukBxLj2eWZOpmSBONOa52kvWH9DFyTnxU3Kjbi2ORERudW9G+Lb+ywSHWUmaHUYn7EO6/aLJ+iDYjQc3k5EFKCYpAeIdafXYda+WcjX5FvsU+r1iNTpMPGhieh586b13nMnJeeCVoert9W4pQGu3lZj/a/nipWU929VHQDYa05ERO73yyrLbV2TROu0rM4+jze/Owqp27DoWn8iudsrTm4gERH5Cibpfk7QCbh+7zom7zJfLs2YmPe6dRtvXbth2Jj7hvybOWm9c8t55Sq8c3C7Q+/FHnMiIvI4rSC+LGmRHnRBq8Nnu07j3f/9IflWA2MK8LCulrNbSEREPoRJuh8TW1pNqddjcF7+/cTcVsUoCuesIeyFMTknIiKvsfcj8e2FisV9e/AvvLX6mOzbPPOIgKQne2Pjxo1ObBwREfkaJul+RmreucPJuYO958bE3JlJOYezExGR1zmSJj5NLDYFUKog6ATEZ36PjL2lZN/m2UcFzOrRFxqNxkUNJSIiX8Ek3Q8YE/P1p9djzsE5Fvv75N/CzCvX7H9jO3vPnZmYMyknIiKvJ1fRvd3LSP8jA5PWb0bBpZ6SbxFaaQNm9uyK/2vQ30WNJCIiX8Mk3cdZKwg3JC8fb9raex6bAjQfZPjvsDJWe8+dNYy93wNavP3sEwhWGT6PSTkREfmE/R+Lb++3BO9s3oivd6oASCfoYVW/xeyeT6Fv3b6uaR8REfkkJuk+TNAJSNqbhLvCXYt9vW7dxpQr1xCu18u/iTExtyEpB5zfW/7cQ9Xxw+ZNKF8yBMHB4svQEBEReR2pYnFdk5Cm7oivd/4m+dLQShvwdtcOGNrkc6iCeCtGRETmGBl8WOrxVNEEPVivx6zLV+VfbOMyas4s+iY2hJ1z74iIyCdJrIuepuyFyenSCXq/6FuY23shk3MiIpLECOGDBJ2A1OOppsJwxuXUAJgvqSbGhkJwrphbziHsRETkV3SCxaZ5Nd7GwrXScfO9/2uKp9s+4MpWERGRH2CS7iOKFodT6vUoW3Sdc2tECsEV7ikHnLNEGhNzIiLya0fSLArGrRI6YWFOc9HDQyttwNHX5yMsOMQdrSMiIh/HJN2LiSXmkTodhtqTmBslXIKgCMbNWwWmTVwejYiIyE5FEnRBH4Rl2u5IEZ4TPTys6mrM7tmPCToREdmMSbqXKZyYzzvwnmkYuyOJuaAPws3gSkDXRKzJck5CbsTeciIiCjhFllxbo43BO5qXcAdhoocbE3RWbyciInswSfcGWgG4dwP/O/M/zNo/C4BhbvkRO5JyQR+Emyhp+nmN9mEkC0OBAgBrAIDrlhMRERVLoWJxBXoVxmtGSx4aVnU1fhnzMUKU7EEnIiL7MEl3M0En4PqdyxDUF3DjWg7CT65HyZ+SAQDd//uf6OuKJOGFmRJyJ2NvORERkaXV2kfwpuZVyf2R1TMxs8dTTNCJiMghTNLdQNAJyLt3DVt+/w5/7XoPb127gQEAUGSFFqlE3FVJeGGFe8oB9pYTERFZOJKGVUInTBRGSR7SLzoPc3sv5hJrRETkMEYQJzHOJTfRCVDcu4kfzv6Av3a9h7ireejyXwJ+FREWr3dHIm7EhJyIiMg+wqE0LPvfXqTIJOhzhqsxsOGzbmwVERH5I69I0hcvXow5c+bgwoULaNGiBT788EO0a9dO8vjvvvsOU6ZMwdmzZ1GvXj3Mnj0bPXr0cFt7dXodbhTcMP1srL6u1wdBry2BbrduY/K169AD6AJDAl7XTQm4GM4nJyIiT/O1WA8AglaLv25cwYajFzHvh9IAxCu4I6gAQx5RYWDD/m5tHxER+SePJ+mrVq1CXFwcli5divbt22P+/PmIjY3FyZMnUalSJYvj9+zZg2effRazZs1Cr169kJaWhn79+uHQoUNo2rSpW9p87e5V9E01v1FQ5nfEjct9AADf//c/T2AvOREReRtfjPUA8Nf1S3hi7iHZY0IrbcDhMfMQHiJe4Z2IiMheHk/S582bh5EjR+KFF14AACxduhQbNmzAsmXL8Pbbb1scv2DBAnTr1g0TJkwAACQlJWHLli1YtGgRli5d6pY237x2BX//Od0tn1VU0SS8MCbkRETkjXwx1gMwq+YuxrjEGhN0IiJyJo8m6Wq1GtnZ2Zg0aZJpW1BQELp06YKsrCzR12RlZSEuLs5sW2xsLNauXSt6fEFBAQoKCkw/37x5EwBw7do1aDQah9p989pN6AruOPRaW8R3rYseTatYbI8MUxmS8IJb4u0qEN3s1TQaDe7cuYOrV68iODjY083xOF6P+3gtzPF63OeP1yI/Px8AoNfrPdwS53NHrAfcH+9LVPkeCQ/3wsNlH8bVq1cden8x/vj9NuK5+Saem2/iuXkfe2K9R5P0K1euQKvVonLlymbbK1eujN9//130NRcuXBA9/sKFC6LHz5o1CzNmzLDYXrt2bQdb7Xrj5gPjPN0IIiJyu/z8fJQuXdrTzXAqd8R6wDPxfihWuey9iYjIP9kS6z0+3N3VJk2aZPY0XqfT4dq1ayhfvjwUCoVH2pSXl4eaNWvi3LlziIyM9EgbvAWvhTlej/t4Lczxetznj9dCr9cjPz8f1apV83RTfJY3xntH+OP324jn5pt4br6J5+Z97In1Hk3SK1SoAKVSiYsXL5ptv3jxIqpUsRzuDQBVqlSx6/jQ0FCEhoaabStTpozjjXaiyMhIn/piuRKvhTlej/t4Lczxetznb9fC33rQjdwR6wHvjveO8Lfvd2E8N9/Ec/NNPDfvYmus92iVsZCQELRp0wZbt241bdPpdNi6dSuio6NFXxMdHW12PABs2bJF8ngiIiLyHMZ6IiIi+3h8uHtcXByGDRuGtm3bol27dpg/fz5u375tqgD7/PPPo3r16pg1axYAYOzYsXjsscfw/vvvo2fPnli5ciUOHjyITz75xJOnQURERBIY64mIiGzn8SR90KBBuHz5MqZOnYoLFy6gZcuW2LRpk6lgTG5uLoKC7nf4d+zYEWlpaUhISMDkyZNRr149rF271q3rphZXaGgopk2bZjEsLxDxWpjj9biP18Icr8d9vBa+JxBjvaP8+fvNc/NNPDffxHPzbQq9P673QkREREREROSDPDonnYiIiIiIiIjuY5JORERERERE5CWYpBMRERERERF5CSbpRERERERERF6CSbqLzJo1Cw899BAiIiJQqVIl9OvXDydPnjQ75t69exg9ejTKly+PUqVKYcCAAbh48aKHWuw6S5YsQfPmzREZGYnIyEhER0fjf//7n2l/oFwHKe+++y4UCgXGjRtn2hYo12T69OlQKBRm/2vYsKFpf6Bch8L+/vtvDBkyBOXLl0eJEiXQrFkzHDx40LRfr9dj6tSpqFq1KkqUKIEuXbrg1KlTHmyxa0RFRVl8NxQKBUaPHg0gML8b5Nt27tyJ3r17o1q1alAoFFi7dq3Z/unTp6Nhw4YoWbIkypYtiy5dumDfvn1mx1y7dg3PPfccIiMjUaZMGbz00ku4deuWG8/CkrXzKuyVV16BQqHA/PnzzbZ743kB1s9t+PDhFn+junXrZnaMr54bAJw4cQJ9+vRB6dKlUbJkSTz00EPIzc017ffWv8PWzk0stigUCsyZM8d0jK/+u926dQtjxoxBjRo1UKJECTRu3BhLly41O8ZX/90uXryI4cOHo1q1aggPD0e3bt0s7n+89dwcwSTdRXbs2IHRo0dj79692LJlCzQaDZ588kncvn3bdMz48eOxbt06fPfdd9ixYwf++ecfPPXUUx5stWvUqFED7777LrKzs3Hw4EE8/vjj6Nu3L3777TcAgXMdxBw4cAAff/wxmjdvbrY9kK5JkyZN8O+//5r+t2vXLtO+QLoOAHD9+nXExMQgODgY//vf/3D8+HG8//77KFu2rOmY9957DwsXLsTSpUuxb98+lCxZErGxsbh3754HW+58Bw4cMPtebNmyBQAwcOBAAIH33SDfd/v2bbRo0QKLFy8W3V+/fn0sWrQIv/76K3bt2oWoqCg8+eSTuHz5sumY5557Dr/99hu2bNmC9evXY+fOnRg1apS7TkGUtfMyWrNmDfbu3Ytq1apZ7PPG8wJsO7du3bqZ/a365ptvzPb76rmdPn0aDz/8MBo2bIjt27fjl19+wZQpUxAWFmY6xlv/Dls7t8L/Xv/++y+WLVsGhUKBAQMGmI7x1X+3uLg4bNq0CampqThx4gTGjRuHMWPGIDMz03SML/676fV69OvXD3/++ScyMjJw+PBhPPDAA+jSpYv/5lZ6cotLly7pAeh37Nih1+v1+hs3buiDg4P13333nemYEydO6AHos7KyPNVMtylbtqz+s88+C+jrkJ+fr69Xr55+y5Yt+scee0w/duxYvV4fWN+NadOm6Vu0aCG6L5Cug9HEiRP1Dz/8sOR+nU6nr1Klin7OnDmmbTdu3NCHhobqv/nmG3c00WPGjh2rr1Onjl6n0wXkd4P8CwD9mjVrZI+5efOmHoD+xx9/1Ov1ev3x48f1APQHDhwwHfO///1Pr1Ao9H///bcrm2szqfM6f/68vnr16vpjx47pH3jgAf0HH3xg2ucL56XXi5/bsGHD9H379pV8jS+f26BBg/RDhgyRfI2v/B225Xetb9+++scff9z0sy//uzVp0kSfmJhotq1169b6d955R6/X++6/28mTJ/UA9MeOHTNt02q1+ooVK+o//fRTvV7vO+dmK/aku8nNmzcBAOXKlQMAZGdnQ6PRoEuXLqZjGjZsiFq1aiErK8sjbXQHrVaLlStX4vbt24iOjg7Y6wAAo0ePRs+ePc3OHQi878apU6dQrVo1PPjgg3juuedMQ+kC7ToAQGZmJtq2bYuBAweiUqVKaNWqFT799FPT/jNnzuDChQtm16R06dJo3769314TAFCr1UhNTcWLL74IhUIRkN8NCixqtRqffPIJSpcujRYtWgAAsrKyUKZMGbRt29Z0XJcuXRAUFGQxLN6b6HQ6DB06FBMmTECTJk0s9vvqeRlt374dlSpVQoMGDfDqq6/i6tWrpn2+em46nQ4bNmxA/fr1ERsbi0qVKqF9+/Zmw4/95e/wxYsXsWHDBrz00kumbb767wYAHTt2RGZmJv7++2/o9Xps27YNf/zxB5588kkAvvvvVlBQAABmIzmCgoIQGhpqGoHpq+cmhUm6G+h0OowbNw4xMTFo2rQpAODChQsICQlBmTJlzI6tXLkyLly44IFWutavv/6KUqVKITQ0FK+88grWrFmDxo0bB9x1MFq5ciUOHTqEWbNmWewLpGvSvn17LF++HJs2bcKSJUtw5swZPPLII8jPzw+o62D0559/YsmSJahXrx42b96MV199FW+88Qa+/PJLADCdd+XKlc1e58/XBADWrl2LGzduYPjw4QAC63eEAsv69etRqlQphIWF4YMPPsCWLVtQoUIFAIbvfaVKlcyOV6lUKFeunFd/72fPng2VSoU33nhDdL+vnhdgGOq+YsUKbN26FbNnz8aOHTvQvXt3aLVaAL57bpcuXcKtW7fw7rvvolu3bvjhhx/Qv39/PPXUU9ixYwcA//k7/OWXXyIiIsJsSLSv/rsBwIcffojGjRujRo0aCAkJQbdu3bB48WI8+uijAHz3382YbE+aNAnXr1+HWq3G7Nmzcf78efz7778AfPfcpKg83YBAMHr0aBw7dsxsrm2gadCgAY4cOYKbN29i9erVGDZsmOkPfaA5d+4cxo4diy1btpg9EQxE3bt3N/138+bN0b59ezzwwAP49ttvUaJECQ+2zDN0Oh3atm2LlJQUAECrVq1w7NgxLF26FMOGDfNw6zzn888/R/fu3UXnshL5k86dO+PIkSO4cuUKPv30Uzz99NPYt2+fRcLgK7Kzs7FgwQIcOnQICoXC081xumeeecb0382aNUPz5s1Rp04dbN++HU888YQHW1Y8Op0OANC3b1+MHz8eANCyZUvs2bMHS5cuxWOPPebJ5jnVsmXL8Nxzz/nN/diHH36IvXv3IjMzEw888AB27tyJ0aNHo1q1ahYjN31JcHAw0tPT8dJLL6FcuXJQKpXo0qULunfvDr1e7+nmuQR70l1szJgxWL9+PbZt24YaNWqYtlepUgVqtRo3btwwO/7ixYuoUqWKm1vpeiEhIahbty7atGmDWbNmoUWLFliwYEHAXQfAcNNy6dIltG7dGiqVCiqVCjt27MDChQuhUqlQuXLlgLsmRmXKlEH9+vWRk5MTkN+NqlWronHjxmbbGjVqZJoCYDzvopVK/fma/PXXX/jxxx8xYsQI07ZA/G5QYChZsiTq1q2LDh064PPPP4dKpcLnn38OwPC9v3TpktnxgiDg2rVrXvu9//nnn3Hp0iXUqlXLFO/++usvxMfHIyoqCoBvnpeUBx98EBUqVEBOTg4A3z23ChUqQKVSWY1Hvv53+Oeff8bJkyfN4gvgu/9ud+/e/f/27j6+5rrx4/j77N4wcz9Ek3u5J4yKihS5q0siuelKV6EIJXJPdEcq4uoGl1CuiqH8SEJh7sZ0Q8tES7nJ7TC2nXO+vz927WR2ztnZdrZzzvZ6Ph4e2ffz/X7O57MzOW+fO40bN06zZ89W165d1ahRIw0bNky9e/fWG2+8Icm337fmzZsrLi5OFy5c0IkTJ7R+/XqdPXtWt9xyiyTf7ps9hPR8YhiGhg0bplWrVumbb75R9erVM5U3b95cgYGB2rRpk+1afHy8EhMTFRUVVdDNLXBWq1UpKSlF8vtwzz336IcfflBcXJztV4sWLfToo4/afl/UvicZLl++rCNHjqhSpUpF8mejbdu2WY5q/OWXX3TzzTdLkqpXr66IiIhM35OkpCTt2rWr0H5PFi1apAoVKqhLly62a0XxZwNFU8bflZIUFRWlCxcuKDY21lb+zTffyGq1qlWrVp5qolOPPfaYvv/++0x/31WuXFnPP/+8NmzYIMk3++XI8ePHdfbsWVWqVEmS7/YtKChIt912m9O/jwrD/4c//PBDNW/e3LbvQwZffd/S0tKUlpYmP7/M8c7f3982O6IwvG+lSpVS+fLldfjwYe3du1fdu3eXVDj6lomHN64rtJ5++mmjVKlSxpYtW4wTJ07YfiUnJ9vueeqpp4xq1aoZ33zzjbF3714jKirKiIqK8mCr88eLL75obN261Th69Kjx/fffGy+++KJhMpmMr776yjCMovN9cOb63d0No+h8T0aNGmVs2bLFOHr0qLF9+3ajQ4cORrly5YzTp08bhlF0vg8Zdu/ebQQEBBgvv/yycfjwYWPZsmVGaGiosXTpUts9r7zyihEeHm6sXr3a+P77743u3bsb1atXN65everBlucPi8ViVKtWzRgzZkyWsqL2swHfd+nSJWP//v3G/v37DUnG7Nmzjf379xu//fabcfnyZWPs2LFGTEyMcezYMWPv3r3GoEGDjODg4Ey7Gd93331G06ZNjV27dhnbtm0zatWqZfTp08eDvXLeL3tu3N3dMLyzX4bhvG+XLl0yRo8ebcTExBhHjx41vv76a6NZs2ZGrVq1jGvXrtnq8MW+GYZhrFy50ggMDDTee+894/Dhw8Y777xj+Pv7G999952tDm/9/7ArP5MXL140QkNDjfnz59utw1fft3bt2hm33nqrsXnzZuPXX381Fi1aZISEhBjvvvuurQ5ffd/++9//Gps3bzaOHDliREdHGzfffLPx4IMPZqrDW/uWG4T0fCLJ7q9FixbZ7rl69aoxZMgQo3Tp0kZoaKjRs2dP48SJE55rdD55/PHHjZtvvtkICgoyypcvb9xzzz22gG4YRef74MyNIb2ofE969+5tVKpUyQgKCjKqVKli9O7d20hISLCVF5Xvw/XWrl1rNGjQwAgODjbq1q1rvPfee5nKrVarMWHCBKNixYpGcHCwcc899xjx8fEeam3+2rBhgyHJbv+K4s8GfNvmzZvtfi4YMGCAcfXqVaNnz55G5cqVjaCgIKNSpUpGt27djN27d2eq4+zZs0afPn2MEiVKGGFhYcagQYOMS5cueahH6Zz1yx57Id0b+2UYzvuWnJxs3HvvvUb58uWNwMBA4+abbzYGDx5snDx5MlMdvti3DB9++KFRs2ZNIyQkxGjcuLERHR2dqQ5v/f+wK33797//bRQrVsy4cOGC3Tp89X07ceKEMXDgQKNy5cpGSEiIUadOHWPWrFmG1Wq11eGr79tbb71l3HTTTUZgYKBRrVo1Y/z48UZKSkqmOry1b7lhMoxCutoeAAAAAAAfw5p0AAAAAAC8BCEdAAAAAAAvQUgHAAAAAMBLENIBAAAAAPAShHQAAAAAALwEIR0AAAAAAC9BSAcAAAAAwEsQ0gEAAAAA8BKEdAAAAKCQaN++vUaMGJHr5ydPnqwmTZoU6GsCyIyQDgAAAECSNHr0aG3atMnt9ZpMJkVHR7u9XqAwCvB0AwAAAAB4hxIlSqhEiRKebgZQpDGSDiCL9evX6/bbb1d4eLjKli2rBx54QEeOHLGV79ixQ02aNFFISIhatGih6OhomUwmxcXF2e758ccfdf/996tEiRKqWLGiHnvsMZ05c8YDvQEAoGixWq164YUXVKZMGUVERGjy5Mm2sgsXLuiJJ55Q+fLlFRYWprvvvlsHDhywld843d1sNuvZZ5+1fSYYM2aMBgwYoB49erj8mpGRkZKknj17ymQy2b4GYB8hHUAWV65c0ciRI7V3715t2rRJfn5+6tmzp6xWq5KSktS1a1c1bNhQ+/bt07Rp0zRmzJhMz1+4cEF33323mjZtqr1792r9+vU6deqUHn74YQ/1CACAouM///mPihcvrl27dum1117T1KlTtXHjRklSr169dPr0af3f//2fYmNj1axZM91zzz06d+6c3bpeffVVLVu2TIsWLdL27duVlJRkd9q6s9fcs2ePJGnRokU6ceKE7WsA9pkMwzA83QgA3u3MmTMqX768fvjhB23btk3jx4/X8ePHFRISIkn64IMPNHjwYO3fv19NmjTR9OnT9d1332nDhg22Oo4fP66qVasqPj5etWvX9lRXAAAo1Nq3by+LxaLvvvvOdq1ly5a6++679cADD6hLly46ffq0goODbeU1a9bUCy+8oCeffFKTJ09WdHS0bXZcRESERo8erdGjR0uSLBaLbrnlFjVt2tQW1p295iuvvCIpfU36qlWrsozAA8iKNekAsjh8+LAmTpyoXbt26cyZM7JarZKkxMRExcfHq1GjRraALqX/RXy9AwcOaPPmzXbXtB05coSQDgBAPmrUqFGmrytVqqTTp0/rwIEDunz5ssqWLZup/OrVq5mWtWW4ePGiTp06lenveX9/fzVv3tz22SC71wSQc4R0AFl07dpVN998s95//31VrlxZVqtVDRo0UGpqqkvPX758WV27dtWrr76apaxSpUrubi4AALhOYGBgpq9NJpOsVqsuX76sSpUqacuWLVmeCQ8Pz5fXBJBzhHQAmZw9e1bx8fF6//33dccdd0iStm3bZiuvU6eOli5dqpSUFNtUuRvXljVr1kyff/65IiMjFRDA/2YAAPAGzZo108mTJxUQEODS5m2lSpVSxYoVtWfPHt15552S0qe779u3L8dnqQcGBspiseSi1UDRw8ZxADIpXbq0ypYtq/fee08JCQn65ptvNHLkSFt53759ZbVa9eSTT+rQoUPasGGD3njjDUnp/2ouSUOHDtW5c+fUp08f7dmzR0eOHNGGDRs0aNAg/oIGAMBDOnTooKioKPXo0UNfffWVjh07ph07duill17S3r177T7zzDPPaObMmVq9erXi4+M1fPhwnT9/3vZ3vqsiIyO1adMmnTx5UufPn3dHd4BCi5AOIBM/Pz998sknio2NVYMGDfTcc8/p9ddft5WHhYVp7dq1iouLU5MmTfTSSy9p4sSJkmRbp165cmVt375dFotF9957rxo2bKgRI0YoPDxcfn78bwcAAE8wmUxat26d7rzzTg0aNEi1a9fWI488ot9++00VK1a0+8yYMWPUp08f9e/fX1FRUSpRooQ6deqUaW8aV8yaNUsbN25U1apV1bRpU3d0Byi02N0dQJ4tW7ZMgwYN0sWLF1WsWDFPNwcAAOQTq9WqevXq6eGHH9a0adM83RygUGKxKIAcW7JkiW655RZVqVJFBw4c0JgxY/Twww8T0AEAKGR+++03ffXVV2rXrp1SUlI0d+5cHT16VH379vV004BCi5AOIMdOnjypiRMn6uTJk6pUqZJ69eqll19+2dPNAgAAbubn56fFixdr9OjRMgxDDRo00Ndff6169ep5umlAocV0dwAAAAAAvAQ7OAEAAAAA4CUI6QAAAAAAeAlCOgAAAAAAXoKQDgAAAACAlyCkAwAAAADgJQjpAAAAAAB4CUI6AAAAAABegpAOAAAAAICXIKQDAAAAAOAlCOkAAAAAAHgJQjoAAAAAAF6CkA4AAAAAgJcgpAMAAAAA4CUI6QAAAAAAeAmPhvRvv/1WXbt2VeXKlWUymRQdHZ3tM1u2bFGzZs0UHBysmjVravHixfneTgAAAAAACoJHQ/qVK1fUuHFjzZs3z6X7jx49qi5duuiuu+5SXFycRowYoSeeeEIbNmzI55YCAAAAAJD/TIZhGJ5uhCSZTCatWrVKPXr0cHjPmDFj9OWXX+rHH3+0XXvkkUd04cIFrV+/vgBaCQAAAABA/gnwdANyIiYmRh06dMh0rVOnThoxYoTDZ1JSUpSSkmL72mq16ty5cypbtqxMJlN+NRUAAJcZhqFLly6pcuXK8vNjuxgAAIoynwrpJ0+eVMWKFTNdq1ixopKSknT16lUVK1YsyzMzZ87UlClTCqqJAADk2u+//66bbrrJ080AAAAe5FMhPTfGjh2rkSNH2r6+ePGiqlWrpqNHj6pkyZJ5qjstLU2bN2/WXXfdpcDAwLw21avQN99E33wTfSsgVrN09aL8DkXLf8t0p7dGW6I0Pu0Jl6uOHlRVN1epleumXbp0SdWrV8/z30sAAMD3+VRIj4iI0KlTpzJdO3XqlMLCwuyOoktScHCwgoODs1wvU6aMwsLC8tSetLQ0hYaGqmzZsp7/8Olm9M030TffRN/ygcUsXbvw99ffr5A2jPv76+Csy53Mhp8uqrg+t9ypGcaj8sv6V4fNc+3L6f46xRUTE6OoqCjdUrWOAgJy37+M7w3LsAAAgE+F9KioKK1bty7TtY0bNyoqKspDLQIAeBWLWdr978yBPBtmw0+LLZ003fyYS/e/0aux/tH8JqWlpelQ8SOqflPeAjoAAMD1PBrSL1++rISEBNvXR48eVVxcnMqUKaNq1app7Nix+uOPP7RkyRJJ0lNPPaW5c+fqhRde0OOPP65vvvlG//3vf/Xll196qgsAAG9QAOF8fJd6GtgmUgH+bOwGAADyj0dD+t69e3XXXXfZvs5YOz5gwAAtXrxYJ06cUGJioq28evXq+vLLL/Xcc8/prbfe0k033aQPPvhAnTp1KvC2AwA86Prp7DdOZXciY0r7KsvtLofzcZ3r6vG21QnnAACgQHg0pLdv317OjmlfvHix3Wf279+fj61KPwrHbDbLYrE4vS8tLU0BAQG6du1atvf6GvrmGf7+/goICGBdKuBILkbMM3xmuUOj057O0TMZU9sBAAAKik+tSS8IqampOnHihJKTk7O91zAMRURE6Pfffy90oYq+eU5oaKgqVaqkoKAgTzcF8LxcjphneK1MuNYWL6lL5+/QhTMPuPTM+C711LNpFZUqFsjoOQAAKHCE9OtYrVYdPXpU/v7+qly5soKCgpyGOKvVqsuXL6tEiRLy8ytcH+ToW8EzDEOpqan666+/dPToUdWqVcur2gcUuAMrpHXPSykXc/zoa2XCtaxkKV0731Yph10P56w5BwAAnkZIv05qaqqsVquqVq2q0NDQbO+3Wq1KTU1VSEhIoQtT9M0zihUrpsDAQP3222+2NgJFjsUsJZ+RVj2Z40d3N+qhJ5Nide1ic12Lf9ilZwjnAADAmxDS7fC24IaihZ8/FFm5WW/eaYb+r2SYZu6eqSQ/P5mT4pR27k6lnO7i9LFxnevqoWY3MaUdAAB4HUI6AKDgXb/WXMr5evNOM2S+7Z9a+vMnmhX7mgy/QKWda6OU09lPbWczOAAA4M0I6QCA/Gc1S1f+t7Y8FxvASdL5YbskP38ZIaX0xdH1en3ZbZKktAvNdO1E9lPbmdYOAAB8ASEdbtO+fXs1adJEc+bM8Yp6AHiHqme/U+DM/rl+PsnPpJlly+iLL3tlum4Yfko719alqe2ccw4AAHwFIR0es2XLFt111106f/68wsPDbddXrlypwMBAzzUMQN5cN5Xdb99Hapb4fq6qea1MuL4oUVxJfn6yXHfSRno4Z2o7AAAonAjp8DplypTxdBMA5Iadjd/8c1HNm+XK6z8lQjIFcyln4Zyp7QAAwFfx6aUQaN++vYYNG6Zhw4apVKlSKleunCZMmCDDMCRJ58+fV//+/VW6dGmFhobq/vvv1+HDh23PL168WOHh4YqOjlatWrUUEhKi++67T8ePH7fdM3DgQPXo0SPT644YMULt27d32K6PPvpILVq0UMmSJRUREaG+ffvq9OnTkqRjx47prrvukiSVLl1aJpNJAwcOtPVnxIgRtnpcbf+GDRtUr149lShRQvfdd59OnDiRm28ngJyymKWYedK0sjlfa95phvT8Een5IzKPildUzdpaWLJYloCedrGJLsdPyjagj+tcVwkv368n7riFgA4AAHwSn2AKif/85z8KCAjQ7t279dZbb2n27Nn64IMPJKUH7L1792rNmjWKiYmRYRjq3Lmz0tLSbM8nJyfr5Zdf1pIlS7R9+3ZdvHhR//znP/PUprS0NE2bNk0HDhxQdHS0jh07ZgviVatW1eeffy5Jio+P14kTJ/TWW2/ZrcfV9r/xxhv66KOP9O233yoxMVGjR4/OU/sBuCBuec7CecdptlCuCWelqKEyFwvXOX8/zTu8Qpct17I8Ylj9de3PRyQj2GnVb/RqrCfvrEE4BwAAPo3p7oVE1apV9eabb8pkMqlOnTr64Ycf9Oabb6p9+/Zas2aNtm/frjZt2kiSli1bpqpVqyo6Olq9eqVvxJSWlqa5c+eqVatWkqRFixbp1ltv1e7du9W6detctenxxx+3/f6WW27R22+/rdtuu02XL19WiRIlbNPaK1SokGlN+vUOHz7scvsXLFigGjVqSJKGDRumqVOn5qrdAJy4/ui0uOXSxgmuP9tjvtSkb6ZLa4+s1cxdM3Up7ZLdR1zZuZ2p7QAAoDAhpBcSrVu3lum66aFRUVGaNWuWDh48qICAAFv4lqSyZcuqTp06OnTokO1aQECAbrvtNtvXdevWValSpXTo0KFch/TY2FhNnjxZBw4c0Pnz52W1WiVJiYmJql+/vkt1HDp0yKX2h4aG2gK6JFWqVMk2tR6AG9hZb56tTjOUVu9Bff311+rQ9R8KDC4mSTJbzUpKTZLFatG4bfbrc2XndsI5AAAojAjpcImfn59tjXuG66eb3+jKlSvq1KmTOnXqpGXLlql8+fJKTExUp06dlJqa6vb23bgbvMlkytJeADmUMWqe03PNO82QWv5L8g+Q0tKUGhgm+QXIbDVr+aHlen3v604fd2X0PH76fQoOyM22dAAAAN6NkF5I7Nq1K9PXO3fuVK1atVS/fn2ZzWbt2rXLNl387Nmzio+PzzSabTabtXfvXrVs2VJS+jrxixcvql69epKk8uXL68cff8z0GnFxcQ6PSvv555919uxZvfLKK6pataokae/evZnuCQoKkiRZLBaH/apXr55L7QfgZnHLpeinc/ZMx2lS6yHp4fwGa39dq0k7J2VbReqFFko58Q+H5cWD/DW9ZwMCOgAAKLSYI1hIJCYmauTIkYqPj9fHH3+sd955R8OHD1etWrXUvXt3DR48WNu2bdOBAwfUr18/ValSRd27d7c9HxgYqGeeeUa7du1SbGysHn/8cd1222220H733Xdr7969WrJkiQ4fPqxJkyZlCe3Xq1atmoKCgvTOO+/o119/1Zo1azRt2rRM99x8880ymUz64osv9Ndff+ny5ctZ6nG1/QDcxGKWtr+d84DeY77U9tksAd1sNWvbtW3ZBnTD8FPq2TucBvRxnevqwKR71bMp554DAIDCi5BeSPTv319Xr15Vy5YtNXToUA0fPlxPPvmkpPRN4Jo3b64HHnhAUVFRMgxD69atyzQKHhoaqjFjxqhv375q27atihcvrg8//NBW3qlTJ02YMEEvvPCCbrvtNl26dEn9+/d32J7y5ctr8eLF+vTTT1W/fn298soreuONNzLdU6VKFU2ZMkUvvviiKlasqGHDhtmty5X2A3CDjJ3aXdkM7rqj0zThbJYN4SRpdcJqtfykpdZfW++0qrQLzXT55xlO15+zczsAACgqTEYRW7iblJSkUqVK6eLFiwoLC8tUdu3aNR09elTVq1dXSEhItnVZrVYlJSUpLCxMfn6e++DYvn17NWnSRHPmzMnV84sXL9aIESN04cIF2zVv6Vt+8Pa+5fTn8HppaWlat26dOnfuXOj+EYO+5bN9S6Q1z2R/3/XrzZ1YeXilJu1wPnr+fIvnZb54m6au+dXhPeM619Xjbat7ZTh35/vm7O8mAABQtLAmHQCKuuwCesdp6SPlIeHZhnOz1aylB5dqVuwsh/eMaj5Kj9TpqyUxv2vGup8d3vfaQ4308G1Vs2s9AABAoUJIB4CiLLuAbudsc3tc3bl9etvpSrvYXHUnbHR63xu9GusfzVl7DgAAih5CeiGwZcuWPD0/cOBADRw40C1tAeBDnAV0Bzu1Z5xxfr0vjnyRbTgf0XSEBjQYoM9j/9SYzw84vM+bp7cDAAAUBEI6ABRFzgJ6t7lSs8eyXF6dsFrjt4/P8Uv1LNZT/ev1/19A/8HhfUxvBwAAIKQDQOFnMUvXLvz9ddxyxzu42wnorqwzd2RK6ynSIX99sO2YXt3wi8P7mN4OAACQjpAOAIWVxSzt/re0YZxr99sJ6LkdPX++xfN6uPYjWrIjUTN2xkuyH9CZ3g4AAJAZIR0ACqO45VL0067fbyegu3KM2o2eb/G8+tbrq+j9J7PdHI7p7QAAAFkR0gGgsMljQHf1GLVuNbtluhYWFKYAvwCt2JPodO25REAHAABwhJAOAIWJOSVnAf26I9Zycoxa95rd7Za5EtBZfw4AAOAYiwCRI5GRkZozZ47Te1JTU1WzZk3t2LGjYBrlRUwmk6Kjox2WHzx4UDfddJOuXLlScI1C0XFghTS9guPyTjOk54/8/WvCWVtAX52wWk0/auo0oI9qPkr7H9uf64A+vks9Jbx8PwEdAADACUI63G7BggWqXr262rRp4+mm5NqxY8dkMpkUFxfn1nrr16+v1q1ba/bs2W6tF5DFLH3xnP2y20emB/KooVLxcn//8g+Q2WrW4h8XZ7s53NQ2UzWwwUAF+NmfgOUsoHe/2aJDkzvoiTtuYYM4AACAbDDd3Qmr1dD55FQn5VZdSk5Tml+K/Pzy54Nn6dAg+fmZ8qXu/GAYhubOnaupU6fmuR6LxaKAgML3Izpo0CANHjxYY8eOLZT9QwG6/mi1mHlSmp0ZGkElpLtekvyz/qytPbJW03ZO01XzVacv42x6u+Q8oM/ocauKnzpAOAcAAHARCcGJ88mpaj79a4+2IXZ8B5UtEZztfe3bt1eDBg0kSR999JECAwP19NNPa+rUqTKZ0kP++fPnNXz4cK1du1YpKSlq166d3n77bdWqVctWz+eff66JEycqISFBFStW1LPPPqvRo0e73t7YWB05ckRdunSxXTt27JiqV6+ujz/+WG+//bb27dunmjVrat68eWrXrp0kacuWLbrrrru0bt06jR8/Xj/88IO++uor3XnnnXr11Vf13nvv6eTJk6pdu7YmTJigf/zjH5meW79+vV588UX9/PPPioqK0ieffKLY2FiNHDlSf/zxhx544AF98MEHCg0NlSR9/fXXmjNnjn788Uf5+/srKipKb731lmrUqCFJql69uiSpadOmkqR27dppy5YtkqSFCxdq1qxZSkhIUJkyZfTQQw9p7ty5tv6eOXNGPXv21IYNG1SlShXNmjVL3br9vcFWx44dde7cOW3dulX33HOPy99bwCYnR6t1mW03oJut5mwDesZO7Y5Gz80WqxZuP6oZ6362W/7aQ43Us0mE1q07kH07AQAAIInp7oXKf/7zHwUEBGj37t166623NHv2bH3wwQe28oEDB2rv3r1as2aNYmJiZBiGOnfurLS0NEnpAfvhhx/WI488ogMHDujFF1/UxIkTtXjxYpfb8N1336l27doqWbJklrLnn39eo0aN0v79+xUVFaWuXbvq7Nmzme558cUX9corr+jQoUNq1KiRZs6cqSVLlmjBggX66aef9Nxzz6lfv37aunVrpucmT56suXPnaseOHfr999/18MMPa86cOVq+fLm+/PJLffXVV3rnnXds9ycnJ2vEiBHau3evNm3aJD8/P/Xs2VNWq1WStHv3bknpYf7EiRNauXKlJGn+/PkaOnSonnzySf3www9as2aNatasmaktU6ZM0cMPP6zvv/9enTt31qOPPqpz587ZyoOCgtSkSRN99913Ln9fAZu45dK0sq4F9PGnpca9s1w2W82aFzfPYUDPWHve/9b+DgP6Z7HHVfOl/3Ma0Nm9HQAAIOcYSS9EqlatqjfffFMmk0l16tTRDz/8oDfffFODBw/W4cOHtWbNGm3fvt22VnzZsmWqWrWqoqOj1atXL82ePVv33HOPJkyYIKvVqoiICB09elSvv/66Bg4c6FIbfvvtN1WuXNlu2bBhw/TQQw9JSg+769ev14cffqgXXnjBds/UqVPVsWNHSVJKSopmzJihr7/+WlFRUZKkW265Rdu2bdO///1v2yi8JE2fPl1t27aVJP3zn//U2LFjdeTIEd1yyy2SpH/84x/avHmzxowZI0nq1q2bwsLCbMsUFi5cqPLly+vgwYNq0KCBypcvL0kqW7asIiIiMr3OqFGjNHz4cNu12267LVM/Bw4cqD59+kiSZsyYobffflu7d+/WfffdZ7uncuXK+u2331z6ngK2ae1xy6WNE1x7psd8KSDrLJzVCaudrj/Pbmq7lP0GcQR0AACA3COkFyKtW7e2TW2XpKioKM2aNUsWi0WHDh1SQECAWrVqZSsvW7as6tSpo0OHDkmSDh06pO7dM384b9Omjd566y1ZLBb5+/tn24arV68qJCTEbllG0JakgIAAtWjRwvbaGVq0aGH7fUJCgpKTk22hPUNqaqptGnqGRo0a2X5fsWJFhYaG2gJ6xrWM0XFJOnLkiF5//XXt3r1bZ86csY2gJyYm2pYN3Oj06dP6888/s52ifn1bihcvrrCwMJ0+fTrTPcWKFVNycrLTeoAcTWu/3nXHqmVw5ezz2H6xCvIPclie3fR2iYAOAACQV4R0J0qHBil2fAeH5VarVZcuX1bJEiXydeM4X1KuXDn98IPzM5KdKV68uO33ly9fliR9+eWXqlKlSqb7goMzjxAGBgbafm8ymTJ9nXEtI4hLUp8+fRQZGan3339flStXltVqVYMGDZSa6nijwGLFirnUh+xeW5LOnTtnW/8O2HVgRfpu7fY2g7tRpxlSo/9Naw8Jz7IGPbvRcyl9BN1ZQP8s9rhGf+p8bTnnnwMAAOQdId0JPz+T003brFarAq0pCisRnG8hPSd27dqV6eudO3eqVq1a8vf3V7169WQ2m7Vr1y7bdPezZ88qPj5e9evXlyTVq1dP27dvz1THjh07VLt2bZdG0aX0jdbmz58vwzAyjepntOfOO++UJJnNZsXGxmrYsGEO66pfv76Cg4OVmJiYaWp7Xp09e1aHDx/W+++/b6t327Ztme4JCkoPKxaLxXatZMmSioyM1KZNm3TXXXflqQ0//vijbfM7IIuM49SyC+gdp0mth9jdGC7DysMrNWnHJKfV5GX3dkka17muHm9bnR3cAQAA3ICQXogkJiZq5MiR+te//qV9+/bpnXfe0axZ6VNba9Wqpe7du2vw4MH697//rZIlS+rFF19UlSpVbFPcR40apdtuu03Tpk1Tr169tHnzZs2bN0/vvvuuy2246667dPnyZf30009Zpo3PmzdPtWrVUr169fTmm2/q/Pnzevzxxx3WVbJkSY0ePVrPPfecrFarbr/9dl28eFHbt29XWFiYBgwYkIvvklS6dGmVKVNG77//vqpUqaLExES9+OKLme6pUKGCihUrpvXr1+umm25SSEiISpUqpcmTJ+upp55ShQoVdP/99+vSpUvavn27nnnmGZdf/9ixY/rjjz/UoYPjWRoo4na+m31AtzOl/UbZBfRRzUepX/1+ud69XWJ6OwAAgLsR0guR/v376+rVq2rZsqX8/f01fPhwPfnkk7byRYsWafjw4XrggQeUmpqqO++8U+vWrbNNz27WrJn++9//auLEiZo2bZoqVqyoKVOmuLxpnJS+zr1nz55atmyZZs6cmanslVde0SuvvKK4uDjVrFlTa9asUbly5ZzWN23aNJUvX14zZ87Ur7/+qvDwcDVr1kzjxuVwje51/Pz89OGHH2rcuHFq0KCB6tSpo7ffflvt27e33RMQEKC3335bU6dO1cSJE3XHHXdoy5YtGjBggK5du6Y333xTo0ePVrly5XI8Iv7xxx/r3nvv1c0335zrPqAQc7Y5XMa0djtT2m+UXUDPbvR81f7jemnVj0pOtTi8h+ntAAAA7mcyDMPwdCMKUlJSkkqVKqWLFy8qLCwsU9m1a9d09OhRVa9e3eHmZ9ezWq1KSkrKtEu4p7Rv315NmjTRnDlz3FJfXvr2/fffq2PHjjpy5IhKlChhOyd9//79atKkiVvalxeefN9SU1NVq1YtLV++3LYb/Y1y+nN4vbS0NK1bt06dO3fOsjbe1xWJvt13rwJnRti/afxpu7u12+MsoGc3ei5JKWaL6oxf77A8J9Pbi8T75oa+Ofu7CQAAFC0sIITbNWrUSK+++qqOHj3q6aZ4ncTERI0bN85hQEfRZTIs8tv6iv1CB8ep3chsNWvxj4sdBvSpbaZqYIOBTgP6Z7HHnQb01x5qpCfvrMH6cwAAgHzCdHfki5xMkS9KatasqZo1a3q6GfAmFrP8ds1XtzgHU9w7Tst27bkkrT2yVtN2TtNV81W75VPbTFXPWj2d1pHdBnFMbwcAAMh/hPRCYsuWLZ5ugkORkZEqYqsqANfELZein5bTsxNaD8m2GrPVnOeA/lnscacBPX76fQoOcO2UBwAAAOQe8xUBwBP+F9Cd6jE/2w3izFaz5sXNy1NATzFbHJ6BXjzIX2/2bkxABwAAKCCMpANAQbOYXQvo2UxzX52wWuO3j3dYnt0O7lL6CLqjgM755wAAAAWPkA4ABW3nu47LOs2QWv4r2xH07AJ6bL9YBfkHOa0ju4D+5J01nD4PAAAA9yOkA0BB2rfE7jnov1TsquqPv6/A4GLZVpFqSc12BD27gJ7dFPfH21bPth0AAABwP+YwAkBBsJil7W9La56xW/xzpQclJ0ejZVidsFrNlzZ3WO7qFHdHx6wVD/LX9J4NmOIOAADgIYykA0B+spil3f+WNoxzeIu561wZx7PfmM3ZFPcnGj6hoU2GOj0DXXJ+zNqQ9jU0smNtAjoAAIAH8UkMLouMjNScOXM83QzAdxxYIb1SzWlAV7e5Mho9km1VZqvZYUAPDQjNc0AvHuRPQAcAAPACjKQDQH6wmKUvnpPSrji+p9tcqdljUlpattUtPbjU7vXQgFCNbz3eaUA3W6xauP2oZqz72W45U9wBAAC8ByHdGatVunrOabkp+ZLknyr55dOH22Jl8q9uAPln57vOA7oLR6xlWHl4pWbFzspy3ZUp7qv2H9dLq35UcqrFbjnHrAEAAHgXQrozV89Jrzs+gshPUqn8bsPzR6Ti5bK9rX379mrQoIEk6aOPPlJgYKCefvppTZ06VSaTSefPn9fw4cO1du1apaSkqF27dnr77bdVq1YtWx2ff/65Jk6cqISEBFWqVElPPPGExo1zMk0XQFYWc3pAt7ODuySXj1gzW81KSk3SmoQ1dgO6pGwDutlidRrQX3uokR6+rarTdgAAAKBgeXzoZN68eYqMjFRISIhatWql3bt3O71/zpw5qlOnjooVK6aqVavqueee07Vr1wqotd7tP//5jwICArR792699dZbmj17tj744ANJ0sCBA7V3716tWbNGMTExMgxDnTt3Vtr/ptnGxsbq4Ycf1iOPPKIffvhBEydO1IwZM7R48WIP9gjwIRazFDNPmlbWcUAff1qKGurSGehNP2qqdivaOQzo09tOz3YN+sLtRwnoAAAAPsajI+krVqzQyJEjtWDBArVq1Upz5sxRp06dFB8frwoVKmS5f/ny5XrxxRe1cOFCtWnTRr/88osGDhwok8mk2bNne6AH3qVq1ap68803ZTKZVKdOHf3www9688031b59e61Zs0bbt29XmzZtJEnLli1T1apVFR0drV69emn27Nm65557NGFCerioWbOm4uLiNGvWLD3++OOe7Bbg/eKWS9FPO7+nx3wpIDjbqpzt4J5hapup2R6ztmJPosM16G/0aqx/NL8p27YAAACg4Hl0JH327NkaPHiwBg0apPr162vBggUKDQ3VwoUL7d6/Y8cOtW3bVn379lVkZKTuvfde9enTJ9vR96KidevWMplMtq+joqJ0+PBhHTx4UAEBAWrVqpWtrGzZsqpTp44OHTokSTp06JDatm2bpb7Dhw/LYrE/EgdA0r4l2Qf0bnNdWn/ubAf3DFPbTFXPWj2d3uNsF/f46fcR0AEAALyYx0bSU1NTFRsbq7Fjx9qu+fn5qUOHDoqJibH7TJs2bbR06VLt3r1bLVu21K+//qp169bpsccec/g6KSkpSklJsX2dlJQkSUpLS7NN9c6QlpYmwzBktVpltVqlkHBp1GGHdRuGocuXL6tEiRKZwrFbhYSnb2Dngoy2Z8j4/fX/vbGd1z9z4++vryfjuRtfwxdl9M1b+2K1WmUYhtLS0uTvn/3Z2dfL+Jm+8We7MPC6vlnN8tu9QP6bJju9zdx1royGjzjdwT0tLU0Ww6Jfz//qtK4prafogcgHnH4PPo09rnHRB+2WvfrgrfIzrEpLK7ife69739zInX0rjN8fAACQOx4L6WfOnJHFYlHFihUzXa9YsaJ+/tn+FM2+ffvqzJkzuv3222UYhsxms5566imnm5vNnDlTU6ZMyXL9q6++UmhoaKZrAQEBioiI0OXLl5Wamvq/q0HOOxIarEv5+Xn30mWXbjObzdq5c6ftHyEk6dtvv1WNGjVUrVo1mc1mffPNN7bR9HPnzik+Pl6RkZFKSkpSjRo19O2332Z6fufOnapRo4auXEnfodpqteratWuZ7vFlly5d8nQT7EpNTdXVq1f17bffymw256qOjRs3urlV3sMb+nbTue1q/Pti+VtTHN7zQ5W+Olq+o4zj/tLxdU7ri0uN0xfJX+jahqz7a9wZfKfaBrdViClE/j/7a93PjuuKOWXSJ7/a/4edPjUsCjlxQOtOHHDalvziDe9bfnFH35KTk93QEgAAUBj41O7uW7Zs0YwZM/Tuu++qVatWSkhI0PDhwzVt2jTbWuobjR07ViNHjrR9nZSUpKpVq+ree+9VWFhYpnuvXbum33//XSVKlFBISEi27TEMQ5cuXVLJkiXzbyTdRQEBATp+/LimTJmiJ598Uvv27dP777+v119/XU2bNlW3bt00cuRIzZ8/XyVLltTYsWNVpUoVPfLIIwoMDNSYMWPUqlUrvf3223r44YcVExOjDz74QHPnzrV9n/z8/BQSEpLl++ZrvOl9s+fatWsqVqyY7rzzTpd+Dq+XlpamjRs3qmPHjgoMDMynFnqG1/TNnKLAV/s7LLbcM1nWlk+prl+A6mZXldWs8ynnNX6V4ynuk7pMUumQ0s7rsVi1OCZRn8T8Yrd8Ro9b1at5lWxakz+85n3LB+7sW2H5x08AAJB3Hgvp5cqVk7+/v06dOpXp+qlTpxQREWH3mQkTJuixxx7TE088IUlq2LChrly5oieffFIvvfSS/OycJx4cHKzg4KybNQUGBmb5UGWxWGQymeTn52e3rhtlTJXOeMbT+vfvr2vXrql169by9/fX8OHD9dRTT8lkMmnx4sUaPny4unXrptTUVN15551at26d7XvTokUL/fe//9XEiRM1ffp0VapUSWPHjtXAgQMz9c1b+poX3va+3cjPz08mk8nuz6ir8vKst/No37LbIK7bXPk3e0yuLFJwZYO4koElVaZ4Gae7uH8We1yjP3U8Ou4tu7jzM5l9HQAAAJIHQ3pQUJCaN2+uTZs2qUePHpLSw9OmTZs0bNgwu88kJydnCVUZa3avX0NdVAUGBmrOnDmaP39+lrLSpUtryZIlTp9/6KGH9NBDD0lKfy9uHNk5duyY29oK+JTszj6X0ndvd2FzOElaeXilJu2Y5PSekoElNbbVWKcB3dkGcZL3BHQAAAC4zqPT3UeOHKkBAwaoRYsWatmypebMmaMrV65o0KBBktJHhqtUqaKZM2dKkrp27arZs2eradOmtunuEyZMUNeuXXO8wRYAuOTACumL56S0K47vGX/apePVJNcC+je9vlHpkNIEdAAAgCLIoyG9d+/e+uuvvzRx4kSdPHlSTZo00fr1622bySUmJmYaOR8/frxMJpPGjx+vP/74Q+XLl1fXrl318ssve6oLAAozc4q06knH5UElpC6z3RbQSwSW0LhW41Q+tLzTerIL6JyDDgAA4Ls8vnHcsGHDHE5v37JlS6avAwICNGnSJE2a5HwUqii68XsFII+yW3/ecZrUeojkn/3/Rs1Ws5YeXKpZsbPslo9oOkLFjhRTz849VSy4mNO6nAX0cZ3r6vG21RXg7317LQAAAMA1Hg/pAOB19i2R1jzjuNzF9edmq1nLDy3X63tfd3jP1DZT9UDkA1p3dJ3T6e2S84DO9HYAAIDCgZAOANfLLqC7uP7cld3bp7aZqp61eiotLS3b+gjoAAAARQNzIgEgQ9xyxwE9qITU8z23B3RXENABAACKDkbSAUBKP2bN0Rr0HK4/zy6gT287Xd1rdnepWZ/FHiegAwAAFCGEdACQpOQz9q93mys1e8zlapYeXOqw7PkWz6tvvb7Zrj3PYLZYNfrTA3bLCOgAAACFEyEdABzt5N5xWo4C+srDK+3u4P5Ewyc0tMlQl8N5hoXbj9q9TkAHAAAovAjpAIo2ZxvFubCDewZnZ6DnNKCbLVYt3H5UM9b9nKVsXOe6BHQAAIBCjI3jCon27dtrxIgRnm6Gjbe1B7DL2UZxwaWkkHCXqnEW0Ke3nZ6jgL5q/3E1mvKV3YAuSY+3re5yXQAAAPA9jKQ7YTWsupBywXG51apLKZdkvmaWn1/+/HtHeHC4/EwF828pqampCgoKKpDXAjzO2UZxQSWkzq+7tFGcs4A+tc1UlzeIk9JH0F9a9aOSUy12y9/o1VgB/vzbKgAAQGFGSHfiQsoFtVvRzqNt2Np7q8qElHF6z8CBA7V161Zt3bpVb731liQpISFBM2bM0DfffKOTJ0+qWrVqGjJkiIYPH57puQsXLui2227TvHnzFBwcrKNHj2rHjh0aMmSIfv75ZzVo0EDjx49Xz549tX//fjVp0kSS9OOPP+r555/Xd999p+LFi+vee+/Vm2++qXLlytltz9GjRxUZGZkv3yMgV3a+a/+6izu5m61mLT241O4adClnR6xlWByT6DCgv/ZQI/2j+U05qg8AAAC+h5BeCLz11lv65Zdf1KBBA02dOlWSVLp0ad1000369NNPVbZsWe3YsUNPPvmkKlWqpIcfftj27KZNmxQWFqaNGzdKkpKSktS1a1fdf//9WrBggc6ePauRI0dmer0LFy7o7rvv1hNPPKE333xTV69e1ZgxY/Twww/rm2++sdue8uXLF9B3A3DBviXSxglZr3ecJrV9NtvHszsHPTcBPeaUSZ/E/GK37I1ejQnoAAAARQQhvRAoVaqUgoKCFBoaqoiICNv1KVOm2H5fvXp1xcTE6L///W+mkF68eHF98MEHtmnuCxYskMlk0nvvvafU1FSFhYXpxIkTGjx4sO2ZuXPnqmnTppoxY4bt2sKFC1W1alX98ssvql27tt32AB5nMaePoNsL6FL6CHo2nE1vl3IX0D+NPa5PfvW3WxY//T4FB9gvAwAAQOFDSC/E5s2bp4ULFyoxMVFXr15Vamqqbbp6hoYNG2Zahx4fH69GjRopJCREqampkqSWLVtmeubAgQPavHmzSpQokeU1jxw5otq1a7u/M0BeOTpmLUOP+dlOcc+PgL5iT6LGRR+0W/ZGr8YEdAAAgCKGkO5EeHC4tvbe6rDcarXq0qVLKlmyZL5uHJcbn3zyiUaPHq1Zs2YpKipKJUuW1Ouvv65du3Zluq948eI5rvvy5cvq2rWrXn311SxllSpVylV7gXyVXUDvNjfb49ZWJ6x2GtCnt52eo03ipPSAPubzH+yWsQYdAACgaCKkO+Fn8nO6aZvValVAaoDCQsLyLaS7KigoSBbL3xtObd++XW3atNGQIX9P3z1y5Ei29dSpU0dLly5VSkqK7dqePXsy3dOsWTN9/vnnioyMVECA/R+hG9sDeIyzXdyl9IDe7DGnVZitZodr0Ec1H6V+9fvl6Jg1Sfos9rjTgM5Z6AAAAEUTZ/kUEpGRkdq1a5eOHTumM2fOqFatWtq7d682bNigX375RRMmTMgStu3p27evrFar/vWvfyk+Pl4bNmzQG2+8IUkymUySpKFDh+rcuXPq06eP9uzZoyNHjmjDhg0aNGiQLZjf2B6r1Zp/nQecuXbBcVmP+dkGdElaenCp3etT20zVwAYDcxzQzRarRn96wG4ZAR0AAKBoI6QXEqNHj5a/v7/q16+v8uXLq1OnTnrwwQfVu3dvtWrVSmfPns00qu5IWFiY1q5dqwMHDujOO+/UhAkTNHHiRElSSEiIJKly5cravn27LBaL7r33XjVs2FAjRoxQeHi4bUbBje1JTEzMv84DjljMUsy8rNdvHylNOJvtFHcpfR26vWPWRjUfleP151J6QJ+90f4u7jN63EpABwAAKOKY7l5I1K5dWzExMZmuLVq0SIsWLcp0bebMmbbfL1682G5dbdq00f79+5WUlKSwsDB9/PHHCgwMVLVq1Wz31KpVSytXrsxRe4ACdWCF9MVzUtqVrGVRQ7PdJE5yvlFcv/r9ctykVfuP66VVP9o9C737zRb1al4lx3UCAACgcCGkI4slS5YoMjJSpUqV0pEjR2xnoBcrVszTTQNcYzFL6563H9AlKSTc6eNmq1lLDy61O4IupW8Sl5sp7o4CuiS1q2TkqD4AAAAUToR0ZHHy5ElNnDhRJ0+eVKVKldSrVy+9/PLLnm4W4LrkM1LKRftl2Ry1tjphtcNN4qT0deg53cVdkhZuP+owoL/64K3yP2F/jToAAACKFkI6snjhhRc0evRo23R3T+9cD+SIs+PWesx3ug7dlYCem3XoK/Ykasa6n+2WvdGrsbo3qqh1hHQAAACIkA6gMNm3RFrzjP2yUfFSyQi7RWarWeevnc+3gO7oqLX46fcpOMBfaWlpOa4XAAAAhRMh3Q7DYG0oPIefv1yKW+44oAeXkkLL2S3KbvRcSl+Dnpsp7s7OQn+jV2MFB/jnuE4AAAAUboT06wQGBkqSkpOT2SQNHpOcnCzp759HuMBidjzFPaiE1Pl1u+vQne3eLklPNHxCQ5sMzfEmcZKUYrY4PQv9H81vynGdAAAAKPwI6dfx9/dXeHi4Tp8+LUkKDQ2VyWRyeL/ValVqaqquXbtW6NZt07eCZxiGkpOTdfr0aYWHh8vfn1FWl+3+t/3rHadJrYfkKqCHBoTmOqB/FnvcaUDnLHQAAAA4Qki/QURE+prVjKDujGEYunr1qooVK+Y0zPsi+uY54eHhtp9DuMCcIm0Yl/V6x2lS22ftPrI6YbXTgF4ysKTGthrr9oA+rnNdAjoAAACcIqTfwGQyqVKlSqpQoUK2mzmlpaXp22+/1Z133lnopibTN88IDAxkBD0nDqyQVj1pv6z1ELuXzVazwzXoo5qPUrea3RQWFJargG62WB0G9OJB/nq8bfUc1wkAAICihZDugL+/f7Zhyd/fX2azWSEhIV4X9vKKvsHrWczSuuftl3Wa4fAs9PPXztu9ntvd26+3cPtRu9eLB/lres8GCvD3nuUVAAAA8E6EdAC+6doFKeVi1utBJaSW/8py2Ww1a/mh5Xp97+tZykY1H5XngO7oLPQh7WtoZMfaBHQAAAC4hJAOwDfFLbd/vcvsLKPo2R2z1q1mtzw1xdlZ6AR0AAAA5AQhHYDv2bdE2jgh6/VR8VLJzJvuZbeLe8nAkgoLCst1U5wF9Dd6NSagAwAAIEcI6QB8iiluqfTlCPuFoeVsvzVbzVp6cKlmxc5yWFdoQGiud3GXnAd0zkIHAABAbhDSAfgGq1k1Tq1TwP5P7Jf3mC/5Bzhde36951s8r771+uZbQOeoNQAAAOQGIR2A97KY0zeI+36FAjeMUwNH93WbKzXpq7VH1mrazmm6ar7qsMpRzUepX/1+uQ7nUvpZ6AR0AAAA5AdCOgDvdGBF+hFr9nZwv163uVKzx2S2mrMN6O44Zi3FbHF4FjoBHQAAAHnFjkYAvI/FLH3xnMsBXZKWHlzqNKBPbzs9zwF91f7jqjN+vd0yAjoAAADcgZF0AN5n57tS2hXn9/SYLzXpm+0GcXlde57BbLHqpVU/2i0b17kuAR0AAABuQUgH4F0cHa/2P5YO0+QfNUTyD8h2DXpsv1gF+Qe5pVkLtx9Vcqoly/XiQf56vG11t7wGAAAAwHR3AN5j3xJpzTN2i9Ke/VFrmiyStdXTtl3cnQX06W2nuy2gr9iTqBnrfrb/Oj0bcBY6AAAA3IaRdADeIW65w4CuHvOlkhEyTP62S87WoE9tM1Xda3Z3S7Oc7eQeP/0+BQf42y0DAAAAcoOQDsCzLGYp+YwU/bT98v8dr6a0NNullYdXOlyDPr3tdLcFdLPF6nAn9zd6NSagAwAAwO0I6QA8J7tj1q7bvT3D2l/XatLOSXZvd+cadCl9Hbo9rz3USP9ofpPbXgcAAADIQEgH4BkZx6w52sW947QsAd1iWBwGdHeuQZccr0NnJ3cAAADkJ3Y7AuAZzo5ZCyohtR6S6ZLZatama5vs3u7ONehSekB3tA6dndwBAACQnxhJB1CwLOb0gO7omLXgUlLn1yX/v//3tDphtcZvH2/39lHNR6lnrZ5ua56zgP5Gr8bs5A4AAIB8RUgHUHDiljveIE6SRsVLoeVsAd1sNWvpwaUON4mTpH71+7mtec52cmcdOgAAAAoCIR1AwcguoP/vmLUMzkbPM0xvO10Bfu7535izndxfe6gR69ABAABQIAjpAPKfxew8oGccsybXRs8l9x61JjnfyZ2ADgAAgIJCSAeQ/3a+67isx3xbQHdl9HxE0xEa0GCA20bQJXZyBwAAgPcgpAPIX/uW2N8k7vaR0l0v2dafuxLQHwx9UP3r9XdrQHe2Dp2d3AEAAFDQ2KYYQP6JWy6tecZ+2XUB3Ww1Ow3oo5qP0u5HdqtZUDO3Ni/FbHG4Dp2d3AEAAOAJjKQDyB/mFMfr0HvMz3TE2tKDSx1Wk7H2PC0tza3N+yz2uNON4tjJHQAAAJ7g8WGiefPmKTIyUiEhIWrVqpV2797t9P4LFy5o6NChqlSpkoKDg1W7dm2tW7eugFoLwCUHVkjTK9gvu26TOElaeXil3U3inmj4hPY/tt+tm8NlcBbQWYcOAAAAT/LoSPqKFSs0cuRILViwQK1atdKcOXPUqVMnxcfHq0KFrB/wU1NT1bFjR1WoUEGfffaZqlSpot9++03h4eEF33gA9lnM0hfP2S/rOE1q9pjty5WHV2rSjkl2bx3aZKhb155ncHbUWvEgf9ahAwAAwKNyNZK+efNmt7z47NmzNXjwYA0aNEj169fXggULFBoaqoULF9q9f+HChTp37pyio6PVtm1bRUZGql27dmrcuLFb2gPADXb/W0q7kvV6UAmp9RDbl84CujvPP7+Ro6PWigf5a3rPBqxDBwAAgEfl6lPwfffdp5tuukmDBg3SgAEDVLVqzqeGpqamKjY2VmPHjrVd8/PzU4cOHRQTE2P3mTVr1igqKkpDhw7V6tWrVb58efXt21djxoyRv7+/3WdSUlKUkpJi+zopKUmSlJaWluc1rhnPu3utrDegb77J432zmhW4YZzdIvN9r8mwGjKbr2p5/HLN2T/H7n0TW01U55s7Z+mDO/r2aexxu0etPXVndQ2/u4YC/P088r3z+PuWj+hbzuoCAAAwGYZh5PShM2fO6KOPPtJ//vMf/fTTT7r77rv1z3/+Uz169FBQUJBLdfz555+qUqWKduzYoaioKNv1F154QVu3btWuXbuyPFO3bl0dO3ZMjz76qIYMGaKEhAQNGTJEzz77rCZNsj8iN3nyZE2ZMiXL9eXLlys0NNTFHgNwRY1T69Tgz0+yXF/b+ENZ/QIVlxqnNclrlKpUu8/3LNZTzYOb50vbYk6Z9Mmv9v8xb3Zrs/xN+fKygEuSk5PVt29fXbx4UWFhYZ5uDgAA8KBchfTr7du3T4sWLdLHH38sSerbt6/++c9/ZjsFPTchvXbt2rp27ZqOHj1qGzmfPXu2Xn/9dZ04ccLu69gbSa9atarOnDmT5w9CaWlp2rhxozp27KjAwMA81eVt6Jtv8ljfrGb57V4g/02TsxRZOkyTtdXTMlvNavdZO101X7VbxcRWE9WjRg+HL5GXvq3c/4fGrPzJbtmrD96qB5tWyVF97sbPpG9yZ9+SkpJUrlw5QjoAAMj7xnHNmjVTRESEypYtq1deeUULFy7Uu+++q6ioKC1YsEC33nqr3efKlSsnf39/nTp1KtP1U6dOKSIiwu4zlSpVUmBgYKap7fXq1dPJkyeVmppqdxQ/ODhYwcHBWa4HBga67QOjO+vyNvTNNxVo3+KWOz5qTZJ/1BD5+wdo2Y/LHAb0qW2mqmetni69XE77ZrZYHQb01x5q5FU7ufMz6Zvc0bfC+r0BAAA5l+sdktLS0vTZZ5+pc+fOuvnmm7VhwwbNnTtXp06dUkJCgm6++Wb16tXL4fNBQUFq3ry5Nm3aZLtmtVq1adOmTCPr12vbtq0SEhJktVpt13755RdVqlTJ5Wn2ANxo3xKnAT3jPHRHx6xJ6ZvEuRrQc8PRRnHeFtABAAAAKZcj6c8884w+/vhjGYahxx57TK+99poaNGhgKy9evLjeeOMNVa5c2Wk9I0eO1IABA9SiRQu1bNlSc+bM0ZUrVzRo0CBJUv/+/VWlShXNnDlTkvT0009r7ty5Gj58uJ555hkdPnxYM2bM0LPPPpubbgDIi7jl0ppnHJf/7zz01QmrHe7iHtsvVkH++fcPbCv2JNrdKI6z0AEAAOCtchXSDx48qHfeeUcPPvig3ankUvp09uyOauvdu7f++usvTZw4USdPnlSTJk20fv16VaxYUZKUmJgoP7+/B/urVq2qDRs26LnnnlOjRo1UpUoVDR8+XGPGjMlNNwDklsWc/Qh6k74yW80av3283Vumt52erwH9s9jjGvP5D3bLOAsdAAAA3ipXIX3SpElq06aNAgIyP242m7Vjxw7deeedCggIULt27bKta9iwYRo2bJjdsi1btmS5FhUVpZ07d+am2QDc5doF+9c7Tks/C90//f8NSalJdm+b2maqutfsnk+NS1+HPvrTA3bL3ujVmLPQAQAA4LVy9Un1rrvu0rlz57Jcv3jxou666648NwqAD+o4TWr7rC2gS9KahDVZbhvVfFS+rkGXnK9D/0fzm/L1tQEAAIC8yFVINwxDJlPWQ4XPnj2r4sWL57lRALzc9yuyXmvSN9OXjjaL61azW361ShLr0AEAAODbcjTd/cEHH5QkmUwmDRw4MNN6dIvFou+//15t2rRxbwsBeBeLWdowzuktzjaLCwvKvzOgWYcOAAAAX5ejkF6qVClJ6SPpJUuWVLFixWxlQUFBat26tQYPHuzeFgLwLsln7F8PCZekbDeLC/DL1VYY2WIdOgAAAAqDHH1aXrRokSQpMjJSo0ePZmo7UNQcWCGtejLr9U4zbGvRlx5cavfR/N4sjnXoAAAAKAxyvbs7gCLGnGI/oEtSo94yW81aenCp3XXo+b1Z3Gexx1mHDgAAgELB5ZDerFkzbdq0SaVLl1bTpk3tbhyXYd++fW5pHAAv4WgEXZKCS2nNH9/qpRjH/3jXr36/fGqY82nurEMHAACAr3E5pHfv3t22UVyPHj3yqz0AvI3FLH3xnMPibxt1dRrQ83MduuR4mjvr0AEAAOCLXP7kfP0Ud6a7A0XIzneltCt2i5pFVlXamW8dPprf69CdTXNnHToAAAB8Uf4NbwHwfXHLpY0T7BaNLV9WaU6WvUxvOz1fA3qK2cI0dwAAABQ6Lof00qVLO12Hfr1z587lukEAvITFLEU/bbeoWWRVhwF9VPNR6le/X75Ocf8s9jjHrQEAAKBQcvlT9Jw5c/KxGQC8zu5/2738UrkyDgN6fo+eS9LK/X9ozMqf7JYxzR0AAAC+zuWQPmDAgPxsBwBvYjFLG8ZlufxGmXCtKVkiy/WCGD2XJIshhwG9eJA/09wBAADg81z+RJ2UlKSwsDDb753JuA+Aj9r5rt3LS8NKZrk2tc3UfD0DPYPZYtW63+1PYy8e5K/pPRswzR0AAAA+L0dr0k+cOKEKFSooPDzc7vp0wzBkMplksVjc2kgABcjBZnGvlQmX5YY/9wUV0FftP66XVv2o5NSsIXxI+xoa2bE2AR0AAACFgssh/ZtvvlGZMmUkSZs3b863BgHwICebxS2/YRS9IEfQ0wO6/X/8I6ADAACgMHE5pLdr187u7wEUEhaztPllu0UvlSuTaRS9IDaIy7Bw+1GHAZ2d3AEAAFDY5HqXp/Pnz+vDDz/UoUOHJEn169fXoEGDbKPtAHxI3HKHI+g3bhYX2y9WQf5BBdKsFXsSNWPdz/bb1asxO7kDAACg0MnVENS3336ryMhIvf322zp//rzOnz+vt99+W9WrV9e3337r7jYCyE9OArr092ZxoQGhmnH7jAIN6GM+/8FuWfz0+wjoAAAAKJRyNZI+dOhQ9e7dW/Pnz5e/v78kyWKxaMiQIRo6dKh++MH+B2sAXsac4jSgZ0xzL6gj1jJ8FnvcYUB/9cFbFRzgXyDtAAAAAAparkbSExISNGrUKFtAlyR/f3+NHDlSCQkJbmscgHx0YIU0vYLD4pfKldGakiU0ve10DWwwsMACutli1ehPD9gt61PDogebVimQdgAAAACekKuQ3qxZM9ta9OsdOnRIjRs3znOjAOQzc4q06km7Re+XClOTyKqqc9cU7X9sf4FtEJdh4fajdq/P6HGrWlcwCrQtAAAAQEFzeWjs+++/t/3+2Wef1fDhw5WQkKDWrVtLknbu3Kl58+bplVdecX8rAbiPkzXoV0wmzStdShsf3qzyoeULuGGON4ob17muejWvonXr7I+wAwAAAIWFyyG9SZMmMplMMoy/R7JeeOGFLPf17dtXvXv3dk/rALiVJXax/NcOd1g+/X9r0EuHlC7AVqVztg798bbVZVjtH8MGAAAAFCYuh/SjR+1PQQXgG/ZtGK1mMe87LG8WWVVpJpOmt51eYOvPMzhbh55xFnoaIR0AAABFgMufxG+++eb8bAeAfLQ2/jN1dRDQr5hMml6ujC2gF/QadMnxOvTXHmrEUWsAAAAoUvI0XHbw4EElJiYqNTU10/Vu3brlqVEA3Me8b4m6rnnGbtkbZcK1NKykRt72gqbV61vgI+iS83XoD99WtcDbAwAAAHhSrj6R//rrr+rZs6d++OGHTOvUTSaTpPQz0wF4ltlq1s7/G67b9yy1W/5GmXBVuGea9noonEvZr0MHAAAAippcHcE2fPhwVa9eXadPn1ZoaKh++uknffvtt2rRooW2bNni5iYCyKm1v65ViyVNHAb0VP8gjRgSr/639vdYQHdlHToAAABQ1OTq03lMTIy++eYblStXTn5+fvLz89Ptt9+umTNn6tlnn9X+/fvd3U4ALtqXuk8rd67UY0mX7JZfMfkppOtb8g8IKeCWZcY6dAAAACCrXA1VWSwWlSxZUpJUrlw5/fnnn5LSN5eLj493X+sA5IjZatbK5JXyNwy9cO5ClvLFpctqc99F8m/St+Abdx3WoQMAAAD25WokvUGDBjpw4ICqV6+uVq1a6bXXXlNQUJDee+893XLLLe5uIwAXXUpNHz3v52AUvd/Qgwrw8Aj6ij2JrEMHAAAAHMhVSB8/fryuXLkiSZo6daoeeOAB3XHHHSpbtqxWrFjh1gYCcI3Zatayg0s04GKSRtsZRVenGV4d0FmHDgAAAOQypHfq1Mn2+5o1a+rnn3/WuXPnVLp0adsO7wAKzuqE1dq9foRePnPO8U0t/1VwDbLD2U7urEMHAAAA0uV5W+fff/9dklS1KutIgYJmtpq19OBSHd4yxXlA7zFf8vfMLu6S853cX3uoEevQAQAAgP/J1dxSs9msCRMmqFSpUoqMjFRkZKRKlSql8ePHKy0tzd1tBGDH2iNr1ebjNpqz9w3nAb3bXMnDG8U528mdgA4AAAD8LVdDa88884xWrlyp1157TVFRUZLSj2WbPHmyzp49q/nz57u1kQAyS7Wkaty2cZKkAQ42iZOUPoLOTu4AAACAz8hVSF++fLk++eQT3X///bZrjRo1UtWqVdWnTx9COpCP1h5ZawvoPS9dtrtJXFrUswrsMMmjU9wldnIHAAAAcipX092Dg4MVGRmZ5Xr16tUVFBSU1zYBcOD6EfSely5rqqNp7u3HeXVAZyd3AAAAwL5cfUoeNmyYpk2bppSUFNu1lJQUvfzyyxo2bJjbGgfgb6sTVqv50uaSnAf0fdUGS36eDejs5A4AAADkjsuf5B988MFMX3/99de66aab1LhxY0nSgQMHlJqaqnvuuce9LQSglYdXatKOSfI3DPVLumT/HHRJ5i5v6fc/S6thwTYvcxvYyR0AAADINZdDeqlSpTJ9/dBDD2X6miPYgPyREdAfuHxFE86cU6hh2L+x21wZDR+R/lxXsA28ATu5AwAAALnnckhftGhRfrYDgB3Xj6BnF9DV7DHJg0cgmi1WLdx+lJ3cAQAAgDzI08LVv/76S/Hx8ZKkOnXqqHz58m5pFFDUma1mLT24VLNiZ0mS+iVdyj6ge9Cq/cf10qoflZxqsVvOTu4AAACAa3IV0q9cuaJnnnlGS5YskdVqlST5+/urf//+eueddxQaGurWRgJFyeqE1Rq/fbz8DUOlrVZ1u3zF4Rp0bzgH3WyxOg3o7OQOAAAAuC5Xn5xHjhyprVu3au3atbpw4YIuXLig1atXa+vWrRo1apS72wgUGRkBvduly4o79ru+TfzDcUAff9rjAV1KX4PuKKCzkzsAAACQM7kaSf/888/12WefqX379rZrnTt3VrFixfTwww9r/vz57mofUGSYrWaN3z7e+fnnGXrMlwKCC6ZhTqzYk2h3DbqUPoJOQAcAAAByJlchPTk5WRUrVsxyvUKFCkpOTs5zo4Ci6Py18+rmSkDvNtcrRtCdnYUeP/0+BQf4F3CLAAAAAN+Xq+nuUVFRmjRpkq5du2a7dvXqVU2ZMkVRUVFuaxxQVKxOWK2O/71LL7sygu7hTeIk52ehv9GrMQEdAAAAyKVcjaTPmTNH9913n2666SY1btxYknTgwAGFhIRow4YNbm0gUJhdv4t76f9twphFx2npI+ch4ZJ/ng5kcJuLV+0f9cYadAAAACBvcvWJv2HDhjp8+LCWLVumn39OX4/ap08fPfrooypWrJhbGwgUVhmbxDlj6TBF/m2fLaAWue7zfcezXOMsdAAAACDvchzS09LSVLduXX3xxRcaPHhwfrQJKPRWHl6pSTsm2b72Nww9dvFSlvv8m/YryGa5xNFmcQ81YwQdAAAAyKscr0kPDAzMtBbdHebNm6fIyEiFhISoVatW2r17t0vPffLJJzKZTOrRo4db2wPkpxsD+gOXr2jHb8c1+GKSB1vlGmebxZUqFljArQEAAAAKn1xtHDd06FC9+uqrMpvNeW7AihUrNHLkSE2aNEn79u1T48aN1alTJ50+fdrpc8eOHdPo0aN1xx135LkNQEGxN4I+4cw5hRqG/QdCwgumYS5IMVucbhYX4J+r/50AAAAAuE6u1qTv2bNHmzZt0ldffaWGDRuqePHimcpXrlzpcl2zZ8/W4MGDNWjQIEnSggUL9OWXX2rhwoV68cUX7T5jsVj06KOPasqUKfruu+904cKF3HQDKFA3BnRJ6pt0yXFA7zHfazaK+yz2uMOAzmZxAAAAgPvkKgGEh4froYceyvOLp6amKjY2VmPHjrVd8/PzU4cOHRQTE+PwualTp6pChQr65z//qe+++87pa6SkpCglJcX2dVJS+pTitLQ0paXZ36HaVRnP57Ueb0Tf3Cv6SLSm7pqa6Zq/YeiFcxfs3m/uOlfGrb2kHLYxP/r2aexxjYs+aLdsTKfa6tkkokC+l/xM+ib6lrO6AAAAchTSrVarXn/9df3yyy9KTU3V3XffrcmTJ+d6R/czZ87IYrGoYsWKma5XrFjRtmv8jbZt26YPP/xQcXFxLr3GzJkzNWXKlCzXv/rqK4WGhua4zfZs3LjRLfV4I/qWd3tT9ir6anSW6/2Ssm4UJ0lrG38o6/FA6fi6XL+mu/q2+7RJy47YP/M82M9QxYsHtW6d/QCfX/iZ9E30zbnk5GQ3tAQAABQGOQrpL7/8siZPnqwOHTqoWLFievvtt/XXX39p4cKF+dW+TC5duqTHHntM77//vsqVK+fSM2PHjtXIkSNtXyclJalq1aq69957FRYWlqf2pKWlaePGjerYsaMCAwvXpln0LW/MVrMupV7S2qNrFb0/Okt5z0uXNdrOKLqlwzTd16p7rl/XnX0zW6waPvlru2XFg/w1pWs9dW1SOU+vkRP8TPom+uaajFleAAAAOQrpS5Ys0bvvvqt//etfkqSvv/5aXbp00QcffCA/v5xvGlWuXDn5+/vr1KlTma6fOnVKERERWe4/cuSIjh07pq5du9quWa3W9I4EBCg+Pl41atTI9ExwcLCCg4Oz1BUYGOi2D4zurMvb0LecMVvNWn5ouV7f+7rDe3peuqypZ87ZLfOPGiJ/N6xDd0ffkq5bJnK9cZ3r6vG21T22URw/k76JvmVfBwAAgJTD3d0TExPVuXNn29cdOnSQyWTSn3/+masXDwoKUvPmzbVp0ybbNavVqk2bNikqKirL/XXr1tUPP/yguLg4269u3brprrvuUlxcnKpWrZqrdgDusPbIWrX5uE2uA7o3bRQnSZ/vO57l2rjOdfXknTXYyR0AAADIJzlKBGazWSEhIZmuBQYG5mnDm5EjR2rAgAFq0aKFWrZsqTlz5ujKlSu23d779++vKlWqaObMmQoJCVGDBg0yPR8eHi5JWa4DBclsNWvmrpm6ar7q8B6nAb3bXKlJ33xqXc6t2JOoGeuy7gvxUDN2cQcAAADyU45CumEYGjhwYKbp49euXdNTTz2V6Ri2nBzB1rt3b/3111+aOHGiTp48qSZNmmj9+vW2zeQSExNzNZUeKEhJqUm6lGZ/IzjJhYDe7LF8alnOfRZ7XGM+/8FuWaliTMkFAAAA8lOOQvqAAQOyXOvXr1+eGzFs2DANGzbMbtmWLVucPrt48eI8vz6QW2arWUmpSfro4Ed2y59v8bwevHxFJf7vRfsVeFlATzFbHJ6H/kavxkxzBwAAAPJZjkL6okWL8qsdgM9ZnbBa47ePd1j+Ta9vVP7n/5N8JKB/FnvcYUB/7aFG+kdzproDAAAA+Y1hMSAXVh5e6TSgS1KZ+PXSmmfsF/pQQB/Xua4evo1NGQEAAICCQEgHcmh1wmpN2jHJ6T0vR02R/2r7Szi8LaCbLVaHAb14kL8eb1u9gFsEAAAAFF3ec94T4APMVnO2I+jT205Xt0pt7Rd6WUCXpIXbj9q9XjzIX9N7NmAdOgAAAFCACOlADiSlJtm9Pqr5KHWr2U1hQWEK8AuQYuZlvanjNK8L6I6OWhvSvoZGdqxNQAcAAAAKGCEdcJHZara7i/uo5qM0sMHA625MkTaMy1qBF52DLjk/ao2ADgAAAHgGIR3Ihtlq1vJDy/X63tftlner2e3vL+KWS9FP268oJNz9jcslZ+vQOWoNAAAA8BxCOuBEdsesSVJYUFj6b5wF9E4zJH/v+ONmtlg1e+Mvdss4ag0AAADwLO9IDYAXWnl4Zba7uE9vOz19DbrF7DigB5WQWv4rH1qYcxy1BgAAAHg3QjpwA7PVrKUHl2pW7Cyn901vO13da3ZPD+ibX7Z/U1AJqctsrxhFdxbQJXHUGgAAAOAFPJ8cAC+R3drzDM+3eF596/VNH0F3NsX99pHSXS95RUB3tgZdYh06AAAA4C08nx4AD3M1nI9qPkr96vdLD+eStG+JtOYZxw94SUCXHJ+FLqUHdNahAwAAAN7BOxIE4CGubAwnSVPbTFXPWj3/vpBdQO8x32sCOmehAwAAAL7DO1IE4AFrf12rSTudbwwnXbf2PIMrAd1LzkTnLHQAAADAtxDSUSRZDEu2AT3T2vMMzgJ6x2lS6yFeM4LOWegAAACA7/GONAEUsJiUGIdldsO55Dygd5srNXvMjS3MO0fr0DkLHQAAAPBehHQUOdFHorX+2vos159o+ISGNhmaNZxbzNLOd6WNE+xX6IUB/dPY43bXoXMWOgAAAODdCOkoUlYnrNbUXVPtlmUJ6BaztPvf0oZxjiv0woAec8qkT2IO2i3jLHQAAADAuxHSUWSkWlId7uQ+ve30zAH9wArpi+ektCuOK/SygG62WPXBtmP65Fd/u+WsQwcAAAC8HyEdRYKzo9amtpmaefd2i9nnAvpnsccdbhInsQ4dAAAA8BUMq6HQW3l4pcOAPqr5qMznn0vpU9ydBfQe830uoLMOHQAAAPANjKSj0DJbzVp6cKlmxc6yWx4aEKp+9ftlvmgxO16D3mmG1PJfXnPEmuT8mDWJgA4AAAD4Gu9JG4AbOZveLklBCtLY28Zm3cl957v2Hxh/WgoIdmML3cPRMWtS+hp0prgDAAAAvoWQjkJn5eGVmrRjksPyEU1HqPSvpdWlepfMBXHL7R+z1mmGVwb0FXsS7R6z1qGKVe8MvlfFQryvzQAAAACcY006Cg2z1azFPy52GtCntpmq/vX6y990ww7oFrMU/bT9h1r+y42tdI8VexI15vMf7JZ1rmplF3cAAADARzGSjkIhu+ntUvoxa91rdldaWlrWwt3/tv9Qj/letQZdch7QX33wVvmfcLxGHQAAAIB38670AeRQdpvDSek7uPer3y/r+vMMjjaL6zhNatLXTS11D2cB/bWHGqlnkwitI6QDAAAAPouQDp/lyuj51DZTsx6xdiNHm8W1HpLLluWP7AL6w7dVtT9LAAAAAIDPIKTD57gyei79Pb3dqX1LHG8W50XT3F0J6AAAAAB8n/ekEMAFa4+s1bSd03TVfNXhPdlOb/8fU9xS6csR9gu9aLM4AjoAAABQdBDS4TNSLakat83O2vHruDR6Lqna2a0K2P+h/UIv2iyOgA4AAAAULd6RRIBsZLf+3NXRc0kyff+JmiY6COjd5nrNZnEEdAAAAKDoIaTDq7my/tzV0XNJksWsgLXD7Jd1mys1eywXrXQ/AjoAAABQNBHS4bVc2b09tl+sgvyDXK/U0U7uBHQAAAAAXoCQDq9itpqVlJqkNQlrnI6ehwaEanzr8TkL6I52cu84jYAOAAAAwCsQ0uE11h5Zq5m7ZupS2iWn9+Vk/bnNviXSmmfsl3nJeegEdAAAAACEdHgFs9Wc7dFqUg7Xn2dwFtC9ZCd3AjoAAAAAiZAOL2C2mjUvbp5bzj7PwklAN3d5SwFesJM7AR0AAABABkI6PMqVzeFyNXpuMadvEmdvDbqk/dX+qQZNHs1ZnfmAgA4AAADgeoR0eMzKwys1acckh+Xf9PpGpUNK53z0/MAK6YvnpLQrdovNXd5S4p+l1SBntbodAR0AAADAjfw83QAUTdkF9Oltp6t8aPmcB3SL2WlAV7e5MhhBBwAAAOClCOkocKsTVmcb0HM8vT3DznedBnRvOGqNgA4AAADAEaa7o0CZrWaHa9BzvTlcBkfnoEvpu7izSRwAAAAAL0dIR4HJ2MXdnqltpqpnrZ65rzxuueNj1saflgKCc1+3mxDQAQAAAGSHkI4C4WwX91HNR+UtoFvMUvTT9st6zCegAwAAAPAZhHTkK7PVrKUHl2pW7CyH9/Sr3y9vL3Ltgv3r3eYyxR0AAACATyGkI1+YrWYtP7Rcr+993el909tOz/0adCl9FD3GzhT6jtPYJA4AAACAzyGkw+2cTW2/Xp52cZecn4fuBSPon8UeJ6ADAAAAyBFCOtzKlYCe513cpezPQw8Jz33dbmC2WDX60wN2ywjoAAAAABwhpMNtnB2vliHPo+cZdv/bcUDvMV/y99yPttli1eyNv9gtI6ADAAAAcIaQDrdwdryaJD3f4nn1rdc3b6PnthdLkTaMs1/m4fPQP4s97nAEfVznugR0AAAAAE4R0pFnzqa4P9HwCQ1tMtQ94VxKX4e+6kn7ZR4+D93ZJnGS9Hjb6gXYGgAAAAC+yM/TDZCkefPmKTIyUiEhIWrVqpV2797t8N73339fd9xxh0qXLq3SpUurQ4cOTu9H/lp5eKXTKe5uDegZ69Dt6TTDqwP6G70aK8DfK/64AQAAAPBiHk8NK1as0MiRIzVp0iTt27dPjRs3VqdOnXT69Gm792/ZskV9+vTR5s2bFRMTo6pVq+ree+/VH3/8UcAtx8rDKzVpxySH5Xk+Xu1GO9+1vw49qITU8l/ue50cciWg/6P5TQXYIgAAAAC+yuMhffbs2Ro8eLAGDRqk+vXra8GCBQoNDdXChQvt3r9s2TINGTJETZo0Ud26dfXBBx/IarVq06ZNBdzyom11wupsA7pbNojLELdc2jjBflmX2R7ZKM5sseq9b484DOjjOtdVwsv3E9ABAAAAuMyja9JTU1MVGxursWPH2q75+fmpQ4cOiomJcamO5ORkpaWlqUyZMnbLU1JSlJKSYvs6KSlJkpSWlqa0tLQ8tF625/Najzdy1jdnu7iPaDpCfeukbxDntu+L1azA6Kftt3PMH+nT3HPwWu5431bu/0NjVv7ksHxGj1vVq3kVGVaL0qyWXL9OThXVn0lfR998kzv7Vhi/PwAAIHdMhmEYnnrxP//8U1WqVNGOHTsUFRVlu/7CCy9o69at2rVrV7Z1DBkyRBs2bNBPP/2kkJCQLOWTJ0/WlClTslxfvny5QkND89aBIshiWLTp2iZ9m/JtlrKexXqqeXBzt79mjVPr1ODPT7Jc31dtsH4ve4fbXy87MadM+uRXf4flfWpY1LqCx/5YAfBBycnJ6tu3ry5evKiwsDBPNwcAAHiQT+/u/sorr+iTTz7Rli1b7AZ0SRo7dqxGjhxp+zopKcm2jj2vH4TS0tK0ceNGdezYUYGBgXmqy9vY69vaX9dq0k77U9xHNB2h/vX6u70dpu8/UcD+rAHdcs9kNWw9TA1zUWde3rdPY4/rk5iDDsszRtA9paj9TBYW9M03ubNvGbO8AAAAPBrSy5UrJ39/f506dSrT9VOnTikiIsLps2+88YZeeeUVff3112rUqJHD+4KDgxUcnHXX78DAQLd9YHRnXd4mo2+rE1Y7DOiSNKDBAPduEiel7+a+dpjdIv82z8g/j+vQc/K+mS1WLdx+VDPW/ezwHm/aIK4o/EwWRvTNN7mjb4X1ewMAAHLOoyE9KChIzZs316ZNm9SjRw9Jsm0CN2yY/XAmSa+99ppefvllbdiwQS1atCig1hZdztagS/mwi3uGne/av95jfoFuFPdZ7HGN/vSAw/Jxnevq8bbVOWINAAAAQJ55fLr7yJEjNWDAALVo0UItW7bUnDlzdOXKFQ0aNEiS1L9/f1WpUkUzZ86UJL366quaOHGili9frsjISJ08eVKSVKJECZUoUcJj/SjMlh5c6rDM7bu4Z3C0m3vHaVKTvu5/PQeyO17ttYca6eHbqhZYewAAAAAUbh4P6b1799Zff/2liRMn6uTJk2rSpInWr1+vihUrSpISExPl5/f3COX8+fOVmpqqf/zjH5nqmTRpkiZPnlyQTS8Soo9Ea1bsrCzXn2j4hIY2GZo/I+gWs+RgN3e1HuL+13OAgA4AAACgoHk8pEvSsGHDHE5v37JlS6avjx07lv8NgiRpb8peRe+KtluWrwF988v2ywpwmnt2Ad2b1p8DAAAAKDy8IqTD+0QfiVb01Wi7Zfm2Bv3ACumL56S0K1nLCmiae3YbxLH+HAAAAEB+IqQji5WHV2rqrql2y6a2mZo/a9AtZscBXSqQae6r9h/XS6t+VHKqxW4509sBAAAA5DdCOjJZnbBak3bYP2ptapup6lmrZ/688M53HQf0ApjmnmK26LkVjndwJ6ADAAAAKAjM2YWNs6PW8jWg71tifyd3KT2g5/M0989ij6vO+PUOywnoAAAAAAoKI+mQlB7Q58XNs1uWrwE9brm05hn7ZeNPSwHB+fO6/8MGcQAAAAC8CSEdWp2w2uEI+oimI/IvoDs7aq3H/HwN6BZD+mDbMb264ReH98RPv0/BAf751gYAAAAAuBEhvQgzW81aenCp3XPQM/Stk09TzZ0dtdZtbr5OcV+5/w+N2RkgyX5ALx7kr+k9GxDQAQAAABQ4QnoRtfbIWk3bOU1XzVcd3vNg6IOeOWqt2WPuf83/WbEnUWNW/uSwnCPWAAAAAHgSIb0IMlvN2Qb0Ka2nyP/nfBhJ9tBRa9mdfy6xQRwAAAAAzyOkF0FLDy51GNBHNR+lfvX7ybAYWvfzOve/uAeOWvss9rhGf+r4eDWJDeIAAAAAeAdCehFhtpqVlJqkNQlrHK5Bn952urrX7C5JSrOkubcBFnN6QC/Ao9ZcGT1nejsAuD3AVwAAGXdJREFUAAAAb0JILwKc7d6eIbZfrIL8g/KnAXHLHe/iLuXLUWuujJ7P6HGr+raOdOvrAgAAAEBeMHxYyK08vDLbgD697fT8CegWs7T9becBPR+OWluxJzHbgP5oDYt6Na/i1tcFAAAAgLxiJL0QW3l4pSbtmOT0nqltptqmuLtVdqPnktuPWnN1evtjLW/SVxvWu+11AQAAAMBdCOmFlCsB/fo16G61b4m05hnn97h5Dfqq/cf10qoflZxqcXhPxuZwaWluXm8PAAAAAG5CSC9kzFazlh5c6nBzuFHNR6lbzW4KCwrLnzPQ45Y7D+gdp6Ufs+amXdzNFqvOXUnVcyscT29nczgAAAAAvoKQXohkt0Hc1DZT1bNWz/x5cYtZSj6T/fpzN46eu7I5HGefAwAAAPAlhPRCIrvp7fkS0C1m6doF6fsV0oZxju/Lh9Hz7NaeS5x9DgAAAMD3ENILgQIP6BaztPvfzoN5ho7TpLbPuu2lXRk9l6T46fcpOMDfba8LAAAAAAWBkO7jViesdhrQ3b45nCu7tmcIKpE+gu4Gro6elwwJ0NTutxLQAQAAAPgkQroPM1vNDtegj2o+Sv3q93Pv5nCu7NqeIbiU1Pl1t0xxd2X0fFznunqo2U0qVSyQDeIAAAAA+CxCug87f+283ev5Mr1957vSxgnZ39tphtSotxQSnueAztpzAAAAAEUNId3HmK1mJaUm6YsjX+j1va9nKR/VfJTbArrJsMhv13zp62zCuRuDeQZXR885Wg0AAABAYUJI9yHZHbEmSd1qdnPLa5m+/0Td4oY5v8nNu7ZLjJ4DAAAAKNoI6T4iux3cJalkYEmFBYXl/cX2LVHA2mzWnnebKzV7LO+vdR1GzwEAAAAUdYR0H+BKQA8NCNXYVmPztlGcq2vPe8yXmvTN/etcx2yx6uLVNH2+7zij5wAAAACKPEK6l3MloD/f4nn1rdc39wHd1XPPO82QWv6rQNedS4yeAwAAACg6COlezFlAH9V8lLrV7KawoLD8D+duXHuek5FzidFzAAAAAEULId1LrU5Y7TCgu+WItbjlUvTT2d5m7vKWAm4bmLfXUno4X7zjmKZ/ecil+xk9BwAAAFAUEdK9UKol1eEu7gUZ0PdVG6yGTR7N22vJ9WntGRg9BwAAAFBUEdK9zNojazVum/3p524J6BZz9gG90wylNXtcv6//Sg3z8FKuHqcmpY+cP9TsJpUqFsjoOQAAAIAii5DuRVItqQ4D+qjmo9wT0De/7Lj8+o3h0tJy/TI5ndrOyDkAAAAApCOke4nVCasdTnEPDQhVv/r98vYCB1ZIXzwnpV3JWnb7SOmul/K8MVxOwvn4LvXUs2kVRs4BAAAA4DqEdC+Q3TFr41uPz/v5544CupSngJ6xW/uq/X+4FM7ZEA4AAAAAHCOke1h2AT22X6yC/INy/wIZU9wdBfQe83MV0HM6pV1iWjsAAAAAZIeQ7kHOAnpoQKjGtx6ft4Ce3S7uPeZLTfrmqMrchPPxXeppYJtIRs8BAAAAIBuEdA9xFtBHNR+lfvX75W6Ku8UsXbuQHtA3TnB83/jTUkCwS1XmdEq77SUI5wAAAACQI4R0D3AW0PN0zNqBFdK656WUi87v6zE/24Butlh1OU1atOM3zfi/+Bw1g3AOAAAAALlDSC9gqxNW509AN6dIq57M/r5sprhnns4eIMm1gM5u7QAAAACQd4T0AmS2mh0es5brgG4xS7v/LW2wf766TcdpUushdjeJy+10dolRcwAAAABwJ0J6ATFbzZoXN89uWY4Desa68+9XZB/OJYej57nZBC4D4RwAAAAA3I+QXgDWHlmraTun6ar5apayUc1HuR7QXR01t1UeL4WWyzR6ntdRc6a0AwAAAED+IaTnM7PV7DCgS1K/+v1cqyi749SuF1RC6jJbKhmR6fJnscc1+tMDrtXxP+Pur6OHmlclmAMAAABAASCk57OlB5c6DOjT20537Zi1nAT0TjOklv+yjZ5njJx/vu+4Zqz72dVma9z9dVTu/E/q2uZmBQYGuvwcAAAAACD3COn5xGw1a+nBpZoVO8tu+fS209W9ZvfsK7KYXQvo/wvnZvnp4tU0SZZcnWueMZ3dsFq0bt1PLj8LAAAAAMg7Qno+cLYGXZJi+8UqyD/IcQUZG8NJUoz9zeYkpQfzRr1lDgzTxVRDq3Ykum0TuDSrJcf1AAAAAADyhpDuZtmtQZ/edrrjgO7ixnDmNiN1sfXzkp+/Vu37Q9O/3JXjdo7rXFcPNbuJteYAAAAA4EUI6W7mbA361DZT7U9xdyGcmw0/XVRxrbLcrunftJC+2ZzrNr7Rq7H+0fymXD8PAAAAAMgfhHQ3Wnl4ZfZr0K+fyi45POs8I5RLSg/m5sfy1DaOTwMAAAAA70dId5PVCas1accku2W2NegOdmm/PpBL7g3lkgjmAAAAAOAjCOluYLaaNX77eLtlL0dNUdC1JCluucxfTdJFlcxU7o5AnoHRcgAAAADwbYR0Nzifcl6S5G8YCrNaJUmG4acZ4Xer/rJndVYZYXypW1+X0XIAAAAAKFy8ItXNmzdPkZGRCgkJUatWrbR7926n93/66aeqW7euQkJC1LBhQ61bt66AWprOalh17to5nb92Xtuvbde9K+/XvRekTUcvaNVvSer/ayP9fvhVPbank5qn/FvNU/7t1tHy2PEdlPDy/XrijltUtkSwypYIJqADAAAAQCHg8ZH0FStWaOTIkVqwYIFatWqlOXPmqFOnToqPj1eFChWy3L9jxw716dNHM2fO1AMPPKDly5erR48e2rdvnxo0aFAgbT539ay6L+0sSbpyqZku/zVDn0v6PB9ei9FyAAAAACg6PB7SZ8+ercGDB2vQoEGSpAULFujLL7/UwoUL9eKLL2a5/6233tJ9992n559/XpI0bdo0bdy4UXPnztWCBQsKpM0Xz53RH79Odnu91wdyiVAOAAAAAEWNR0N6amqqYmNjNXbsWNs1Pz8/dejQQTExMXafiYmJ0ciRIzNd69Spk6Kjo+3en5KSopSUFNvXFy9elCSdO3dOaWlpuWr3xXMXZU1JztWzkjSqY011bhCR6VpYSEB6IE+5/PfrpNz4ZMFJS0tTcnKyzp49q8DAQM81JB/QN99E33wTfXPNpUuXJEmGYbijaQAAwId5NKSfOXNGFotFFStWzHS9YsWK+vnnn+0+c/LkSbv3nzx50u79M2fO1JQpU7Jcr169ei5bnXcj5kgjPPbqAABvdenSJZUqVcrTzQAAAB7k8enu+W3s2LGZRt6tVqvOnTunsmXLymQy5anupKQkVa1aVb///rvCwsLy2lSvQt98E33zTfTNN7mzb4Zh6NKlS6pcubKbWgcAAHyVR0N6uXLl5O/vr1OnTmW6furUKUVERNh9JiIiIkf3BwcHKzg4ONO18PDw3DfajrCwsEL34TMDffNN9M030Tff5K6+MYIOAAAkDx/BFhQUpObNm2vTpk22a1arVZs2bVJUVJTdZ6KiojLdL0kbN250eD8AAAAAAL7C49PdR44cqQEDBqhFixZq2bKl5syZoytXrth2e+/fv7+qVKmimTNnSpKGDx+udu3aadasWerSpYs++eQT7d27V++9954nuwEAAAAAQJ55PKT37t1bf/31lyZOnKiTJ0+qSZMmWr9+vW1zuMTERPn5/T3g36ZNGy1fvlzjx4/XuHHjVKtWLUVHRxfYGenXCw4O1qRJk7JMpy8M6Jtvom++ib75psLcNwAA4Dkmg/NeAAAAAADwCh5dkw4AAAAAAP5GSAcAAAAAwEsQ0gEAAAAA8BKEdAAAAAAAvAQh3QWTJ0+WyWTK9Ktu3bq28mvXrmno0KEqW7asSpQooYceekinTp3yYItz5o8//lC/fv1UtmxZFStWTA0bNtTevXtt5YZhaOLEiapUqZKKFSumDh066PDhwx5ssWsiIyOzvG8mk0lDhw6V5Lvvm8Vi0YQJE1S9enUVK1ZMNWrU0LRp03T9HpC++p5J0qVLlzRixAjdfPPNKlasmNq0aaM9e/bYyn2lb99++626du2qypUry2QyKTo6OlO5K/04d+6cHn30UYWFhSk8PFz//Oc/dfny5QLshX3Z9W3lypW69957VbZsWZlMJsXFxWWpw1v//DnrW1pamsaMGaOGDRuqePHiqly5svr3768///wzUx3e+r4BAADfQEh30a233qoTJ07Yfm3bts1W9txzz2nt2rX69NNPtXXrVv3555968MEHPdha150/f15t27ZVYGCg/u///k8HDx7UrFmzVLp0ads9r732mt5++20tWLBAu3btUvHixdWpUyddu3bNgy3P3p49ezK9Zxs3bpQk9erVS5Lvvm+vvvqq5s+fr7lz5+rQoUN69dVX9dprr+mdd96x3eOr75kkPfHEE9q4caM++ugj/fDDD7r33nvVoUMH/fHHH5J8p29XrlxR48aNNW/ePLvlrvTj0Ucf1U8//aSNGzfqiy++0Lfffqsnn3yyoLrgUHZ9u3Llim6//Xa9+uqrDuvw1j9/zvqWnJysffv2acKECdq3b59Wrlyp+Ph4devWLdN93vq+AQAAH2EgW5MmTTIaN25st+zChQtGYGCg8emnn9quHTp0yJBkxMTEFFALc2/MmDHG7bff7rDcarUaERERxuuvv267duHCBSM4ONj4+OOPC6KJbjN8+HCjRo0ahtVq9en3rUuXLsbjjz+e6dqDDz5oPProo4Zh+PZ7lpycbPj7+xtffPFFpuvNmjUzXnrpJZ/tmyRj1apVtq9d6cfBgwcNScaePXts9/zf//2fYTKZjD/++KPA2p6dG/t2vaNHjxqSjP3792e67it//pz1LcPu3bsNScZvv/1mGIbvvG8AAMB7MZLuosOHD6ty5cq65ZZb9OijjyoxMVGSFBsbq7S0NHXo0MF2b926dVWtWjXFxMR4qrkuW7NmjVq0aKFevXqpQoUKatq0qd5//31b+dGjR3Xy5MlM/StVqpRatWrlE/3LkJqaqqVLl+rxxx+XyWTy6fetTZs22rRpk3755RdJ0oEDB7Rt2zbdf//9knz7PTObzbJYLAoJCcl0vVixYtq2bZtP9+16rvQjJiZG4eHhatGihe2eDh06yM/PT7t27SrwNruTL//5u9HFixdlMpkUHh4uqXC/bwAAoGAQ0l3QqlUrLV68WOvXr9f8+fN19OhR3XHHHbp06ZJOnjypoKAg2we0DBUrVtTJkyc90+Ac+PXXXzV//nzVqlVLGzZs0NNPP61nn31W//nPfyTJ1oeKFStmes5X+pchOjpaFy5c0MCBAyXJp9+3F198UY888ojq1q2rwMBANW3aVCNGjNCjjz4qybffs5IlSyoqKkrTpk3Tn3/+KYvFoqVLlyomJkYnTpzw6b5dz5V+nDx5UhUqVMhUHhAQoDJlyvhUX+3x5T9/17t27ZrGjBmjPn36KCwsTFLhft8AAEDBCPB0A3xBxgilJDVq1EitWrXSzTffrP/+978qVqyYB1uWd1arVS1atNCMGTMkSU2bNtWPP/6oBQsWaMCAAR5unft8+OGHuv/++1W5cmVPNyXP/vvf/2rZsmVavny5br31VsXFxWnEiBGqXLlyoXjPPvroIz3++OOqUqWK/P391axZM/Xp00exsbGebhpgk5aWpocffliGYWj+/Pmebg4AAChEGEnPhfDwcNWuXVsJCQmKiIhQamqqLly4kOmeU6dOKSIiwjMNzIFKlSqpfv36ma7Vq1fPNp0/ow837rrsK/2TpN9++01ff/21nnjiCds1X37fnn/+edtoesOGDfXYY4/pueee08yZMyX5/ntWo0YNbd26VZcvX9bvv/+u3bt3Ky0tTbfccovP9y2DK/2IiIjQ6dOnM5WbzWadO3fOp/pqjy//+ZP+Dui//fabNm7caBtFlwr3+wYAAAoGIT0XLl++rCNHjqhSpUpq3ry5AgMDtWnTJlt5fHy8EhMTFRUV5cFWuqZt27aKj4/PdO2XX37RzTffLEmqXr26IiIiMvUvKSlJu3bt8on+SdKiRYtUoUIFdenSxXbNl9+35ORk+fll/qPr7+8vq9UqqXC8Z5JUvHhxVapUSefPn9eGDRvUvXv3QtM3V/oRFRWlCxcuZJpB8M0338hqtapVq1YF3mZ38uU/fxkB/fDhw/r6669VtmzZTOWF+X0DAAAFxNM71/mCUaNGGVu2bDGOHj1qbN++3ejQoYNRrlw54/Tp04ZhGMZTTz1lVKtWzfjmm2+MvXv3GlFRUUZUVJSHW+2a3bt3GwEBAcbLL79sHD582Fi2bJkRGhpqLF261HbPK6+8YoSHhxurV682vv/+e6N79+5G9erVjatXr3qw5a6xWCxGtWrVjDFjxmQp89X3bcCAAUaVKlWML774wjh69KixcuVKo1y5csYLL7xgu8eX37P169cb//d//2f8+uuvxldffWU0btzYaNWqlZGammoYhu/07dKlS8b+/fuN/fv3G5KM2bNnG/v377ftAu5KP+677z6jadOmxq5du4xt27YZtWrVMvr06eOpLtlk17ezZ88a+/fvN7788ktDkvHJJ58Y+/fvN06cOGGrw1v//DnrW2pqqtGtWzfjpptuMuLi4owTJ07YfqWkpNjq8Nb3DQAA+AZCugt69+5tVKpUyQgKCjKqVKli9O7d20hISLCVX7161RgyZIhRunRpIzQ01OjZs2emD6Pebu3atUaDBg2M4OBgo27dusZ7772XqdxqtRoTJkwwKlasaAQHBxv33HOPER8f76HW5syGDRsMSXbb66vvW1JSkjF8+HCjWrVqRkhIiHHLLbcYL730UqaQ4Mvv2YoVK4xbbrnFCAoKMiIiIoyhQ4caFy5csJX7St82b95sSMrya8CAAYZhuNaPs2fPGn369DFKlChhhIWFGYMGDTIuXbrkgd5kll3fFi1aZLd80qRJtjq89c+fs75lHCln79fmzZttdXjr+wYAAHyDyTAMowAG7AEAAAAAQDZYkw4AAAAAgJcgpAMAAAAA4CUI6QAAAAAAeAlCOgAAAAAAXoKQDgAAAACAlyCkAwAAAADgJQjpAAAAAAB4CUI6AAAAAABegpAOIMciIyM1Z84cl+8/duyYTCaT4uLi8q1NAAAAQGFASAeQY3v27NGTTz7p1joXL16s8PBwt9YJAAAA+JoATzcAgO8pX768p5sAAAAAFEqMpANFwBdffKHw8HBZLBZJUlxcnEwmk1588UXbPU888YT69esnSdq2bZvuuOMOFStWTFWrVtWzzz6rK1eu2O69cbr7zz//rNtvv10hISGqX7++vv76a5lMJkVHR2dqx6+//qq77rpLoaGhaty4sWJiYiRJW7Zs0aBBg3Tx4kWZTCaZTCZNnjw5f74ZAAAAgBcjpANFwB133KFLly5p//79kqStW7eqXLly2rJli+2erVu3qn379jpy5Ijuu+8+PfTQQ/r++++1YsUKbdu2TcOGDbNbt8ViUY8ePRQaGqpdu3bpvffe00svvWT33pdeekmjR49WXFycateurT59+shsNqtNmzaaM2eOwsLCdOLECZ04cUKjR492+/cBAAAA8HaEdKAIKFWqlJo0aWIL5Vu2bNFzzz2n/fv36/Lly/rjjz+UkJCgdu3aaebMmXr00Uc1YsQI1apVS23atNHbb7+tJUuW6Nq1a1nq3rhxo44cOaIlS5aocePGuv322/Xyyy/bbcfo0aPVpUsX1a5dW1OmTNFvv/2mhIQEBQUFqVSpUjKZTIqIiFBERIRKlCiRn98SAAAAwCsR0oEiol27dtqyZYsMw9B3332nBx98UPXq1dO2bdu0detWVa5cWbVq1dKBAwe0ePFilShRwvarU6dOslqtOnr0aJZ64+PjVbVqVUVERNiutWzZ0m4bGjVqZPt9pUqVJEmnT592c08BAAAA38XGcUAR0b59ey1cuFAHDhxQYGCg6tatq/bt22vLli06f/682rVrJ0m6fPmy/vWvf+nZZ5/NUke1atXy1IbAwEDb700mkyTJarXmqU4AAACgMCGkA0VExrr0N9980xbI27dvr1deeUXnz5/XqFGjJEnNmjXTwYMHVbNmTZfqrVOnjn7//XedOnVKFStWlJR+RFtOBQUF2Ta2AwAAAIoqprsDRUTp0qXVqFEjLVu2TO3bt5ck3Xnnndq3b59++eUXW3AfM2aMduzYoWHDhikuLk6HDx/W6tWrHW4c17FjR9WoUUMDBgzQ999/r+3bt2v8+PGS/h4td0VkZKQuX76sTZs26cyZM0pOTs5bhwEAAAAfREgHipB27drJYrHYQnqZMmVUv359RUREqE6dOpLS141v3bpVv/zyi+644w41bdpUEydOVOXKle3W6e/vr+joaF2+fFm33XabnnjiCdvu7iEhIS63rU2bNnrqqafUu3dvlS9fXq+99lreOgsAAAD4IJNhGIanGwGgcNm+fbtuv/12JSQkqEaNGp5uDgAAAOAzCOkA8mzVqlUqUaKEatWqpYSEBA0fPlylS5fWtm3bPN00AAAAwKewcRyAPLt06ZLGjBmjxMRElStXTh06dNCsWbM83SwAAADA5zCSDgAAAACAl2DjOAAAAAAAvAQhHQAAAAAAL0FIBwAAAADASxDSAQAAAADwEoR0AAAAAAC8BCEdAAAAAAAvQUgHAAAAAMBLENIBAAAAAPAS/w+t5QSjM1abSQAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x900 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAWpCAYAAAAFtVMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUhf7/8fcM6yCCCy6oEFgucF1wRTSXStO8erW6aVop3q7em1Iammnf3Csty6X05q2umpXabbleW80sM5c0Lc0SUCvD644bKggDM78/+DE1gcoyzByY1/Px4CFz5iyfOZ7hPZ85m8lut9sFAAAAAAA8zuzpAgAAAAAAQAGadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgfD1dgLvZbDYdPXpU1atXl8lk8nQ5AADIbrfrwoULatCggcxmvj93BfIeAGAkpcl6r2vSjx49qoiICE+XAQBAEYcPH1ajRo08XUaVQN4DAIyoJFnvdU169erVJRWsnJCQEA9Xg+JYrVZ98sknuvXWW+Xn5+fpcoBKj/eU8WVmZioiIsKRUSg/8r5k+PuAa2EbwbWwjZRMabLe65r0wkPeQkJCCG2DslqtCgoKUkhICG90wAV4T1UeHJbtOuR9yfD3AdfCNoJrYRspnZJkPSe+AQAAAABgEDTpAAAAAAAYBE06AAAAAAAG4XXnpAPwXna7XXl5ecrPz/d0KW5ltVrl6+ury5cve91rNwofHx/5+vpyzjkAVDBvzXpP4nPGr/z8/OTj41Pu+dCkA/AKubm5OnbsmLKysjxditvZ7XbVr19fhw8fpkn0oKCgIIWHh8vf39/TpQBAleTNWe9JfM74lclkUqNGjRQcHFyu+dCkA6jybDabfv75Z/n4+KhBgwby9/f3qhCx2Wy6ePGigoODZTZzlpO72e125ebm6tSpU/r555/VpEkT/h8AwMW8Pes9ic8ZBex2u06dOqX//e9/atKkSbn2qNOkA6jycnNzZbPZFBERoaCgIE+X43Y2m025ubkKDAz06vD0JIvFIj8/P/3yyy+O/wsAgOt4e9Z7Ep8zflWnTh0dOnRIVqu1XE26d69FAF7F24MDnsX2BwAVj7+18CRXHb3BVgwAAAAAgEHQpAMArqpHjx4aN26cYeYDAABcj7w3Ds5JBwC41MaNG3XTTTfp7NmzqlGjhmP4u+++Kz8/P88VBgAAXKYw70+fPu10mgF5X3406QAAt6hVq5anSwAAABWMvC8/DncHAIPq0aOHkpKSlJSUpNDQUIWFhWnKlCmy2+2SpLNnz2rYsGGqWbOmgoKCdNttt+nAgQOO6ZcvX64aNWpozZo1ateunYKCgtS7d28dPnzYMU5iYqIGDhzotNxx48apR48eV6zrtddeU/v27VW9enXVr19fQ4cO1cmTJyVJhw4d0k033SRJqlmzpkwmkxITEx2v57eHv5W0/nXr1ikmJkbBwcHq06ePjh07VpbVCQCAIbky75s0aaLAwEC35n3t2rVVs2ZNjRgxwvF6yPvyoUkHAAN79dVX5evrqx07dmjhwoWaN2+eXnnlFUkFgbtz506tXbtW27Ztk91uV9++fWW1Wh3TZ2Vlafbs2XrxxRf15Zdf6ty5c7r77rvLVZPVatWsWbO0Z88erVmzRocOHXI04hEREXrnnXckSWlpaTp27JgWLlxY7HxKWv+zzz6r1157TZs2bVJ6eromTJhQrvoBADAaV+T9k08+qRUrVmjLli1uzfuUlBSlpqZqwYIFxc6HvC89DncHAAOLiIjQ/PnzZTKZ1KxZM+3du1fz589Xjx49tHbtWm3ZskWdO3eWJL3xxhuKiIjQmjVrdNddd0kqCNjnn39eMTExCgkJ0auvvqqYmBjt2LFDHTt2LFNNf/nLXxy/N27cWM8//7w6dOigixcvKjg42HGYW926dZ3OSf+tAwcOlLj+JUuW6Prrr5ckJSUlaebMmWWqGwAAo3JF3i9atEjx8fGS5Pa8N5vNCgkJKTIP8r5s2JMOAAbWqVMnp3tuJiQk6MCBA9q3b598fX0dYSwVHG7WrFkzpaSkOIb5+vqqQ4cOjsfNmzdXjRo1nMYprV27dql///6KjIxU9erV1b17d0lSenp6ieeRkpJSovqDgoIcgS1J4eHhjkPtAACoKsh78v63aNIBwIuZzWbHOW+Ffnv42e9dunRJvXv3VkhIiN544w19/fXX+s9//iNJys3NdXl9v786rMlkKlIvAAC4OvK+cqFJBwAD2759u9Pjr776Sk2aNFFsbKzy8vKcnj99+rTS0tIUGxvrGJaXl6edO3c6HqelpencuXOKiYmRJNWpU6fIhVl27959xXpSU1N1+vRpzZkzR127dlXz5s2LfNPt7+8vScrPz7/ifGJiYkpUPwAA3oC8x2/RpAOAgaWnpys5OVlpaWlatWqVXnjhBY0dO1ZNmjTRgAEDNHLkSG3evFl79uzRvffeq4YNG2rAgAGO6f38/DR27Fjt3LlTu3btUmJiojp16uQ4P+3mm2/Wzp07tWLFCh04cEDTpk3T999/f8V6IiMj5e/vrxdeeEE//fST1q5dq1mzZjmNc91118lkMun999/XqVOndPHixSLzKWn9AAB4A1fk/YMPPqjt27d7JO8zMjLIexeiSQcAAxs2bJiys7PVsWNHjRkzRmPHjtWoUaMkScuWLVO7du3Ur18/JSQkyG6368MPP3Q6ZCwoKEiPPPKIRo4cqa5duyo4OFhvvvmm4/nevXtrypQpmjhxojp06KALFy5o2LBhV6ynTp06Wr58ud566y3FxsZqzpw5evbZZ53GadiwoWbMmKFJkyapXr16SkpKKnZeJakfAABv4Iq8f/TRRzV06FB16dLFrXn/2GOPqWnTpnrwwQeLnRd5X3omu5cd7J+ZmanQ0FCdP3++2CsQwvOsVqs+/PBD9e3blzcvXOLy5cv6+eefFR0drcDAQE+XU2I9evRQXFzcFW9pci3Lly/XuHHjdObMGWVmZiokJERmM9/NesrVtkOyyfVYpyVD5uJaKss2UlmzXnJd3p87d86ldZWUzWbjc8b/56qs9+61CAAAAACAgdCkAwAAAABgEL6eLgAAULyNGzeWa/rExEQlJibKZrO5piAAAOByrsp7VB3sSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCG7BBsCrpaenKyMjw23LCwsLU2RkpNuWV1JRUVEaN26cxo0bd8VxcnNzFRsbqxUrVqhz587uK84ATCaT/vOf/2jgwIHFPr9v3z7deuutSktLU7Vq1dxbHADgqsj6AmT91Rkp62nSAXit9PR0NW8eo+zsLLct02IJUmpqiiHD+1qWLFmi6OjoSh3ahw4dUnR0tL799lvFxcW5bL6xsbHq1KmT5s2bpylTprhsvgCA8iHrS4esvzJ3Zj1NOgCvlZGRoezsLMX/ZZpCwqMqfHmZxw5p+9IZysjIqHTBbbfbtWjRIs2cObPc88nPz5evb9WLnxEjRmjkyJGaPHlylXx9AFAZkfUlR9Zfm7uynnPSAXi9kPAo1YpsVuE/Zflw0KNHDyUlJSkpKUmhoaEKCwvTlClTZLfbHeOcPXtWw4YNU82aNRUUFKTbbrtNBw4ccJrP2rVr1bJlSwUEBCgqKkrPPfdcqerYtWuXfvzxR/3xj390DDt06JBMJpNWr16tzp07KzAwUC1atNAXX3zhGGfjxo0ymUz66KOP1K5dOwUEBGjz5s2y2WyaPXu2oqOjZbFY1Lp1a7399ttFplu3bp3atGkji8Wim2++WSdPntRHH32kmJgYhYSEaOjQocrK+nXvyMcff6wbb7xRNWrUUO3atdWvXz/9+OOPjuejo6MlSW3atJHJZFKPHj0czy1dulR/+MMfFBAQoPDwcCUlJTmtg4yMDN1+++0KCgpSkyZNtHbtWqfne/XqpTNnzji9fgCAMXhD1r/zzjuOHHN31tesWZOsdyGadAAwuFdffVW+vr7asWOHFi5cqHnz5umVV15xPJ+YmKidO3dq7dq12rZtm+x2u/r27Sur1SqpIHRHjBihwYMHa+/evZo+fbqmTJmi5cuXl7iGL7/8Uk2bNlX16tWLPPfII49o/Pjx+vbbb5WQkKD+/fvr9OnTTuNMmjRJc+bMUUpKilq1aqXZs2drxYoVWrJkiX744Qc9/PDDuvfee4uE3vTp07Vo0SJt3bpVhw8f1qBBg7RgwQKtXLlSH3zwgT755BO98MILjvEvXbqk5ORk7dy5Uxs2bJDZbNbtt98um80mSdqxY4ck6dNPP9WxY8f07rvvSpJefPFFjRkzRqNGjdLevXu1du1a3XDDDU61zJgxQ4MGDdJ3332nvn376p577tGZM2ccz/v7+ysuLk5ffvllidcrAACSa7J+0KBBuvvuuz2W9Y899hhZ7yJV7xgEAKhiIiIiNH/+fJlMJjVr1kx79+7V/PnzNXLkSB04cEBr167Vli1bHOePvfHGG4qIiNCaNWt01113af78+erevbsef/xxmc1mNW3aVPv27dPcuXOVmJhYohp++eUXNWjQoNjnkpKSdOedd0oqCMCPP/5Y//rXvzRx4kTHODNnzlSvXr0kSTk5OXrqqaf06aefKiEhQZLUuHFjbd68Wf/85z/VvXt3x3RPPPGEunTpIkm6//77NXnyZP34449q3LixJOnPf/6zPv/8cz366KOS5Kij0NKlS1WnTh3t27dPLVq0UJ06dSRJtWvXVv369Z2WM378eI0dO9YxrEOHDk7zSkxM1JAhQyRJTz31lJ5//nnt2LFDffr0cYzToEED/fLLL1dfmQAA/E55s37evHm65ZZbHOdKeyLrp0+fTta7CHvSAcDgOnXqJJPJ5HickJCgAwcOKD8/XykpKfL19VV8fLzj+dq1a6tZs2ZKSUmRJKWmpjo9L0ldunRxzKMksrOzFRgYWOxzheErSb6+vmrfvr1j2YXat2/v+P3gwYPKyspSr169FBwc7PhZsWKF0+FqktSqVSvH7/Xq1VNQUJAjtAuHnTx50vH4wIEDGjJkiBo3bqyQkBBFRUVJKrhw0JWcPHlSR48e1S233HKVNeBcS7Vq1RQSEuK0bEmyWCxOh+QBAFAS5c36lJQUR6NbiKz/VWXLeo836YsXL1ZUVJQCAwMVHx/vODzhShYsWKBmzZrJYrEoIiJCDz/8sC5fvuymagHAO4WFhens2bNlnv63tyq5ePGiJOmDDz7Q7t27HT/79u1zOldNkvz8/By/m0wmp8eFwwoPb5Ok/v3768yZM3r55Ze1fft2bd++XVLBLWWuxGKxlOg1XGvZknTmzBnHN/hwRt4DgLGR9cbJeo826W+++aaSk5M1bdo0ffPNN2rdurV69+5d5NuKQitXrtSkSZM0bdo0paSk6F//+pfefPNNPfbYY26uHADcpzB8Cn311Vdq0qSJfHx8FBMTo7y8PKdxTp8+rbS0NMXGxkqSmjdvXmQeW7ZsUdOmTeXj41OiGtq0aaPU1FSni9j8tp5CeXl52rVrl2JiYq44r9jYWAUEBCg9PV033HCD009ERESJ6ilO4et+/PHHdcsttygmJqbIhw1/f39JctqrUL16dUVFRWnDhg1lXnah77//Xm3atCn3fKoa8h4Arq68WR8TE6MtW7Y4zYOsr7xZ79Fz0ufNm6eRI0dqxIgRkgruy/fBBx9o6dKlmjRpUpHxt27dqi5dumjo0KGSpKioKA0ZMqTIRg0AVUl6erqSk5P1t7/9Td98841eeOEFxxVbmzRpogEDBmjkyJH65z//qerVq2vSpElq2LChBgwYIElKTk5WfHy8nnjiCd19993atm2bFi1apH/84x8lruGmm27SxYsX9cMPP6hFixZOzy1evFhNmjRRTEyM5s+fr7Nnz+ovf/nLFedVvXp1TZgwQQ8//LBsNptuvPFGnT9/Xlu2bFFISIiGDx9ehrUk1axZU7Vr19ZLL72k8PBwpaenF8mSunXrymKx6OOPP1ajRo0UGBio0NBQTZ8+XX//+99Vt25d3Xbbbbpw4YK2bNmiBx98sMTLP3TokI4cOaKePXuWqf6qjLwHgKsrb9aPHz9eHTp00KxZszR48GCyvpJnvcea9NzcXO3atUuTJ092DDObzerZs6e2bdtW7DSdO3fW66+/rh07dqhjx4766aef9OGHH+q+++674nJycnKUk5PjeJyZmSlJslqtjqshwlgK/1/4/4GrWK1W2e122Ww2p0OWCn/PPHpIKvqlsctlHjvkWO7vD526mvvuu09ZWVnq2LGjfHx89NBDD+mvf/2rYx7/+te/NG7cOPXr10+5ubnq2rWr3n//ffn4+Mhms6lNmzZatmyZnn76aT3xxBMKDw/XjBkzNGzYMKc6CtdRcWrWrKmBAwfq9ddf11NPPeV4HVLBhVXmzJmj3bt364YbbtCaNWtUq1Ytp9f5+9c8Y8YMhYWFafbs2frpp59Uo0YNtWnTRpMnT77idL//t7Dm3w5buXKlxo0bpxYtWqhZs2ZasGCBbr75Zsd8zGazFixYoCeeeEJTp05V165d9dlnnznW8cKFCzVhwgSFhYXpzjvvLLK9/H79/HbYypUr1atXL0VERBS7Hm02m+x2u6xWa5G9GlX57x15b2xkLq6lsmwj3p71cXFxWr16taZPn65Zs2a5NesLs/j38ybry571JntxxzO4wdGjR9WwYUNt3brV6UIEEydO1BdffHHFb8uff/55TZgwQXa7XXl5efr73/+uF1988YrLmT59umbMmFFk+MqVKxUUFFT+FwLA8Hx9fVW/fn1FREQ4DoGSpMOHD6tjfLwuZ2e7rZZAi0U7tm8v8aFe/fr1U8uWLTV79uwKruzavv/+e91xxx365ptvFBwcrPT0dLVu3VqbNm1Sy5YtPV2eR+Xm5qpdu3Z6+eWX1alTpyuOc/jwYR0/flx5eXlOz2VlZWno0KE6f/68QkJC3FGy25D3ANyBrHcNsv7K3Jn1leoWbBs3btRTTz2lf/zjH4qPj9fBgwc1duxYzZo1y3G7gd+bPHmykpOTHY8zMzMVERGhW2+9tcp9EKoqrFar1q9fr169ehW5eANQFpcvX9bhw4cVHBzsdNXSP/zhD0rZt08ZGRluqyUsLEyRkZElHt/X11f+/v7l+ntlt9t14cIFVa9e3enKsaXVuXNnzZkzR6dPn1aDBg0UHBws6dern3qzgwcP6rHHHtOtt956xXEuX74si8Wibt26Fbl6buFeXxQg792HzMW1VJZtxNuz3lXKkvWu+pxhdO7Meo816WFhYfLx8dGJEyechp84ccLpfna/NWXKFN13333661//Kklq2bKlLl26pFGjRun//u//ZDYXvQ5eQECAAgICigz38/Mz9B8a8H8E18nPz5fJZJLZbC7ydyIqKspx6w6jKqy9rAoPxyrvfCQ5nX9WOK/i1qu3adq0qZo2bXrVccxms+Oqtb//21aV/9aR95UD6wnXYvRtxNuz3pVKm/Wu/JxhZO7Meo816f7+/mrXrp02bNiggQMHSir4D96wYYOSkpKKnSYrK6vIf3zhsf4eOmofACrUxo0bPV3CFUVFRfG3F9dE3gPA1ZH1+D2PHu6enJys4cOHq3379urYsaMWLFigS5cuOa7+OmzYMDVs2NBxfkb//v01b948tWnTxnH425QpU9S/f/8S31oAAAC4F3kPAEDJebRJHzx4sE6dOqWpU6fq+PHjiouL08cff6x69epJKrgVwW+/SX/88cdlMpn0+OOP68iRI6pTp4769++vJ5980lMvAQAAXAN5DwBAyXn8wnFJSUlXPNzt94d++Pr6atq0aZo2bZobKgMAAK5C3gMAUDJV98x+AAAAAAAqGZp0AAAAAAAMgiYdAAAAAACD8Pg56QDgSenp6crIyHDb8sLCwhQZGem25ZVEVFSUxo0bp3Hjxnm6FAAAXI6sJ+srG5p0AF4rPT1dMc2bKSv7stuWGWQJVEpqmuHCGwCAqoisR2VEkw7Aa2VkZCgr+7JeHxWnmPDgCl9eyrGLuvel3crIyCC4AQBwA7IelRFNOgCvFxMerLZRoZ4uo1g9evRQixYtJEmvvfaa/Pz89MADD2jmzJkymUw6e/asxo4dq/fee085OTnq3r27nn/+eTVp0sQxj3feeUdTp07VTz/9pPDwcD344IMaP368p14SAABu5y1Zf/DgQbK+CuDCcQBgcK+++qp8fX21Y8cOLVy4UPPmzdMrr7wiSUpMTNTOnTu1du1abdu2TXa7XX379pXVapUk7dq1S3fffbfuuOMO7dmzR9OnT9eUKVO0fPlyD74iAADwW+XN+kGDBunuu+/W3r17yfoqgD3pAGBwERERmj9/vkwmk5o1a6a9e/dq/vz56tGjh9auXastW7aoc+fOkqQ33nhDERERWrNmje666y7NmzdPN998sx555BGFhISoefPm2rdvn+bOnavExETPvjAAACCp/Fl/yy23aMqUKZKkpk2bkvWVHHvSAcDgOnXqJJPJ5HickJCgAwcOaN++ffL19VV8fLzjudq1a6tZs2ZKSUmRJKWkpKhLly5O8+vSpYsOHDig/Px897wAAABwVWQ9fosmHQAAAAAAg6BJBwCD2759u9Pjr776Sk2aNFFsbKzy8vKcnj99+rTS0tIUGxsrSYqJidGWLVucpt+yZYuaNm0qHx+fii8eAABcE1mP36JJBwCDS09PV3JystLS0rRq1Sq98MILGjt2rJo0aaIBAwZo5MiR2rx5s/bs2aN7771XDRs21IABAyRJ48eP12effaa5c+dq//79evXVV7Vo0SJNmDDBw68KAAAUKm/Wb9iwQbNmzSLrqwguHAfA66Ucu2jo5QwbNkzZ2dnq2LGjfHx8NHbsWI0aNUqStGzZMo0dO1b9+vVTbm6uunXrpg8//FB+fn6SpLZt22r16tWaOnWq5s6dq/DwcM2cOZMLyQAAvEpVz/p///vfmjp1qmbNmkXWVwE06QC8VlhYmIIsgbr3pd1uW2aQJVBhYWGlmsbPz08LFizQiy++WOS5mjVrasWKFVed/s4771SvXr0UEhIis7noAVSHDh0qVT0AAFQW3pT1d9555xWfJ+srF5p0AF4rMjJSKalpysjIcNsyw8LCFBkZ6bblAQDgzch6VEY06QC8WmRkJEEKAEAVRtajsqFJBwAD27hxo6dLAAAAFYisx+9xdXcAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg+AWbAC8Wnp6ujIyMty2vLCwMO7VCgCAG5H1qGxo0gF4rfT0dDWPaa7srGy3LdMSZFFqSmqJw7tHjx6Ki4vTggULKrawEjJaPQAAXA1ZX3pGq8cb0aQD8FoZGRnKzspWt4ndFBoRWuHLO3/4vDY9s0kZGRlu/YY9NzfXbcsCAMBIvCnr/f393bY8VCzOSQfg9UIjQhXWJKzCf0r74SAxMVFffPGFFi5cKJPJJJPJpB9//FH333+/oqOjZbFY1KxZMy1cuLDIdAMHDtSTTz6pBg0aKCYmRpK0detWxcXFKTAwUO3bt9eaNWtkMpm0e/dux7Tff/+9brvtNgUHB6tevXq67777HIcIFlfPoUOHyrXuAQBwh6qe9c2aNZNE1lcV7EkHAINauHCh9u/frxYtWmjmzJmSpJo1a6pRo0Z66623VLt2bW3dulWjRo1SeHi4Bg0a5Jh2w4YNCgkJ0fr162Wz2ZSZmakBAwaob9++WrlypX755ReNGzfOaXnnzp3TzTffrL/+9a+aP3++srOz9eijj2rQoEH67LPPiq2nTp06blsfAABUNa7KeknKzMxU//79yfoqgCYdAAwqNDRU/v7+CgoKUv369R3DZ8yY4fg9Ojpa27Zt07///W+n4K5WrZpeeeUV+fv7y2azacGCBTKZTHr55ZcVGBio2NhYHTlyRCNHjnRMs2jRIrVp00ZPPfWUY9jSpUsVERGh/fv3q2nTpsXWAwAAysZVWS9JS5YsIeurCJp0AKhkFi9erKVLlyo9PV3Z2dnKzc1VXFyc0zgtW7Z0Ojft4MGDatWqlQIDAx3DOnbs6DTNnj179Pnnnys4OLjIMn/88Uc1bdrUtS8EAAAUqyxZn5aWRtZXETTpAFCJrF69WhMmTNBzzz2nhIQEVa9eXXPnztX27dudxqtWrVqp533x4kX1799fTz/9dJHnwsPDy1wzAAAoObIeNOkAYGD+/v7Kz893PN6yZYs6d+6s0aNHO4b9+OOP15zPDTfcoLfeeks5OTkKCAiQJH399ddO47Rt21bvvPOOoqKi5OtbfDz8vh4AAFA+rsr6Zs2a6fXXXyfrqwCu7g4ABhYVFaXt27fr0KFDysjIUJMmTbRz506tW7dO+/fv15QpU4oEcHH+/Oc/y2azadSoUUpJSdG6dev07LPPSpJMJpMkacyYMTpz5oyGDBmir7/+Wj/++KPWrVunESNGOML69/XYbLaKe/EAAHgBV2X90KFDyfoqgj3pALze+cPnDbucCRMmaPjw4YqNjVV2drZSU1P17bffavDgwTKZTBoyZIhGjx6tjz766KrzCQkJ0X//+1+NGTNGcXFxatmypaZOnaqhQ4c6zl1r0KCBtmzZokcffVS33nqrcnJydN1116lPnz4ym83F1vPzzz8rKiqq1K8LAAB38pasf++99/TAAw+Q9ZWcyW632z1dhDtlZmYqNDRU58+fV0hIiKfLQTGsVqs+/PBD9e3bV35+fp4uB1XA5cuX9fPPPys6OtrpYirp6elqHtNc2VnZbqvFEmRRakqqIiMj3bbMwluwhYSEOAJYkt544w2NGDFC58+fl8VicVs93upK26FENlUE1mnJkLm4lsqyjXh71l+JO7L+Sp8zvJGrsp496QC8VmRkpFJTUpWRkeG2ZYaFhXkstFesWKEbbrhBDRs21J49exz3RaVBBwBUVd6Y9Y0bNybrKzmadABeLTIy0hDfdLvDiRMnNH36dB0/flzh4eG666679OSTT3q6LAAAKpQ3Zf3x48c1depUsr6So0kHAC/xyCOP6NFHH/V0GQAAoIJMnDhREydO9HQZKCfvPmkAAAAAAAADoUkHAAAAAMAgaNIBeA3u8wlPYvsDgIrH31p4kqtunMY56QCqPH9/f5nNZh09elR16tSRv7+/TCaTp8tyG5vNptzcXF2+fNnrb43iCXa7Xbm5uTp16pTMZrP8/f09XRIAVDnenvWexOeMAna7XadOnZLJZCr37Qpp0gFUeWazWdHR0Tp27JiOHj3q6XLczm63Kzs7WxaLhQ8sHhQUFKTIyEiv/gADABXF27Pek/ic8SuTyaRGjRrJx8enXPOhSQfgFfz9/RUZGam8vDzl5+d7uhy3slqt2rRpk7p161bub3ZRNj4+PvL19fX6Dy8AUJG8Oes9ic8Zv/Lz8yt3gy7RpAPwIoWHH3lbgPj4+CgvL0+BgYFe99oBAN7FW7Pek/ic4XoccwcAAAAAgEHQpAMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQdCkAwAAAABgEDTpAAAAAAAYhMeb9MWLFysqKkqBgYGKj4/Xjh07rjr+uXPnNGbMGIWHhysgIEBNmzbVhx9+6KZqAQBAWZD3AACUjK8nF/7mm28qOTlZS5YsUXx8vBYsWKDevXsrLS1NdevWLTJ+bm6uevXqpbp16+rtt99Ww4YN9csvv6hGjRruLx4AAJQIeQ8AQMl5tEmfN2+eRo4cqREjRkiSlixZog8++EBLly7VpEmTioy/dOlSnTlzRlu3bpWfn58kKSoqyp0lAwCAUiLvAQAoOY816bm5udq1a5cmT57sGGY2m9WzZ09t27at2GnWrl2rhIQEjRkzRv/9739Vp04dDR06VI8++qh8fHyKnSYnJ0c5OTmOx5mZmZIkq9Uqq9XqwlcEVyn8f+H/B3AN3lPGV5X/b8h7Y+PvA66FbQTXwjZSMqVZPx5r0jMyMpSfn6969eo5Da9Xr55SU1OLneann37SZ599pnvuuUcffvihDh48qNGjR8tqtWratGnFTjN79mzNmDGjyPBPPvlEQUFB5X8hqDDr16/3dAlAlcJ7yriysrI8XUKFIe8rB/4+4FrYRnAtbCNXV5qs9+jh7qVls9lUt25dvfTSS/Lx8VG7du105MgRzZ0794qhPXnyZCUnJzseZ2ZmKiIiQrfeeqtCQkLcVTpKwWq1av369erVq5fjMEcAZcd7yvgK9/qiAHnvPvx9wLWwjeBa2EZKpjRZ77EmPSwsTD4+Pjpx4oTT8BMnTqh+/frFThMeHi4/Pz+nQ91iYmJ0/Phx5ebmyt/fv8g0AQEBCggIKDLcz8+Pjcjg+D8CXIv3lHFV5f8X8r5yYD3hWthGcC1sI1dXmnXjsVuw+fv7q127dtqwYYNjmM1m04YNG5SQkFDsNF26dNHBgwdls9kcw/bv36/w8PBiAxsAAHgWeQ8AQOl49D7pycnJevnll/Xqq68qJSVFDzzwgC5duuS4+uuwYcOcLjTzwAMP6MyZMxo7dqz279+vDz74QE899ZTGjBnjqZcAAACugbwHAKDkPHpO+uDBg3Xq1ClNnTpVx48fV1xcnD7++GPHxWXS09NlNv/6PUJERITWrVunhx9+WK1atVLDhg01duxYPfroo556CQAA4BrIewAASs7jF45LSkpSUlJSsc9t3LixyLCEhAR99dVXFVwVAABwJfIeAICS8ejh7gAAAAAA4Fc06QAAAAAAGESZmvTPP//c1XUAAACDIe8BAHC/MjXpffr00fXXX68nnnhChw8fdnVNAADAAMh7AADcr0xN+pEjR5SUlKS3335bjRs3Vu/evfXvf/9bubm5rq4PAAB4CHkPAID7lalJDwsL08MPP6zdu3dr+/btatq0qUaPHq0GDRrooYce0p49e1xdJwAAcDPyHgAA9yv3hePatm2ryZMnKykpSRcvXtTSpUvVrl07de3aVT/88IMragQAAB5G3gMA4B5lbtKtVqvefvtt9e3bV9ddd53WrVunRYsW6cSJEzp48KCuu+463XXXXa6sFQAAuBl5DwCAe/mWZaIHH3xQq1atkt1u13333adnnnlGLVq0cDxfrVo1Pfvss2rQoIHLCgUAAO5F3gMA4H5latL37dunF154QXfccYcCAgKKHScsLIxbtwAAUImR9wAAuF+ZDnefNm2a7rrrriKBnZeXp02bNkmSfH191b179/JXCAAAPIK8BwDA/crUpN900006c+ZMkeHnz5/XTTfdVO6iAACA55H3AAC4X5madLvdLpPJVGT46dOnVa1atXIXBQAAPI+8BwDA/Up1Tvodd9whSTKZTEpMTHQ6/C0/P1/fffedOnfu7NoKAQCAW5H3AAB4Tqma9NDQUEkF36xXr15dFovF8Zy/v786deqkkSNHurZCAADgVuQ9AACeU6omfdmyZZKkqKgoTZgwgUPdAACogsh7AAA8p0y3YJs2bZqr6wAAAAZD3gMA4H4lbtLbtm2rDRs2qGbNmmrTpk2xF5Ip9M0337ikOADeKT09XRkZGZ4uo0KFhYUpMjLS02UARZD3AAB4Vomb9AEDBjguHDNw4MCKqgeAl0tPT1fz5jHKzs7ydCkVKjDQorfffkvh4eEVviybzSZJ2rNnj8zmMt3Uo0z4IqJyIu8BAPCsEjfpvz3kjcPfAFSUjIwMZWdnKf4v0xQSHuXpcirEmfQD2vXaU+rXr59blmexWLRq1Sp169ZN2dnZblmmJAVZApWSmkajXsmQ9wAAeFaZzkkHgIoWEh6lWpHNPF1Ghci+VHCUwKw7mqpvy7oVvjyb2V9HJG2alCCzLbfClydJKccu6t6XdisjI4MmHQAAoBRK3KTXrFnzquel/daZM2fKXBAAeIvosCC1jQqt8OVY5acjklpHhshP1gpfHio38h4AAM8qcZO+YMGCCiwDAAAYAXkPAIBnlbhJHz58eEXWAXgUVxMHgALkPQAAnlXiJj0zM1MhISGO36+mcDygMkhPT1fzmObKznLfBbU8wRJkUWpKKo06gKsi7wEA8KxSnZN+7Ngx1a1bVzVq1Cj2fDW73S6TyaT8/HyXFglUpIyMDGVnZavbxG4Kjaj484M94fzh89r0zCYu4gXgmsh7AAA8q8RN+meffaZatWpJkj7//PMKKwjwlNCIUIU1CfN0GUCVkpKS4ukSKlRVPI2EvAcAwLNK3KR379692N8BAPi9nNwcSdK9997r4UoqVlU8jYS8BwDAs8p8n/SzZ8/qX//6l2MvSWxsrEaMGOH49h0A4L3y8vIkSW2GtVGjDo08XE3F8JbTSMh7AADcq0xN+qZNm9S/f3+Fhoaqffv2kqTnn39eM2fO1Hvvvadu3bq5tEgAQOUUXD+Y00gqMfIeAAD3K1OTPmbMGA0ePFgvvviifHx8JEn5+fkaPXq0xowZo71797q0SAAA4H7kPQAA7lemJv3gwYN6++23HYEtST4+PkpOTtaKFStcVlxl4A33187JyVFAQIDblmez2SRJe/bskdlsrvDlVfULWwFAWZH3AAC4X5ma9LZt2yolJUXNmjVzGp6SkqLWrVu7pLDKID09Xc2bxyg7O8vTpVQsk0my2922OIvFolWrVqlbt27KznbPvcvNkrLOVPH/RwAoJfIeAAD3K3GT/t133zl+f+ihhzR27FgdPHhQnTp1kiR99dVXWrx4sebMmeP6Kg0qIyND2dlZiv/LNIWER3m6nApx6udU7V75tGbd0VR9W9Z1yzJtZn8dkbRpUoLMttwKX943P53SyNfSlHup4pcFAEZH3gMA4FklbtLj4uJkMplk/80e1YkTJxYZb+jQoRo8eLBrqqskQsKjVCuy2bVHrISyLxXsXY4OC1LbqFC3LNMqPx2R1DoyRH6yVvjyLmVdqvBlAEBlQd4DAOBZJW7Sf/7554qsAwAAGAB5DwCAZ5W4Sb/uuusqsg4AAGAA5D0AAJ5VpgvHFdq3b5/S09OVm+t8Lu+f/vSnchUFAACMg7wHAMB9ytSk//TTT7r99tu1d+9ep/PWTCaTpIJ7qAIAgMqNvAcAwP3KdBPqsWPHKjo6WidPnlRQUJB++OEHbdq0Se3bt9fGjRtdXCIAAPAE8h4AAPcr0570bdu26bPPPlNYWJjMZrPMZrNuvPFGzZ49Ww899JC+/fZbV9cJAADcjLwHAMD9yrQnPT8/X9WrV5ckhYWF6ejRo5IKLjaTlpbmuuoAAIDHkPcAALhfmfakt2jRQnv27FF0dLTi4+P1zDPPyN/fXy+99JIaN27s6hoBAIAHkPcAALhfmZr0xx9/XJcuXZIkzZw5U/369VPXrl1Vu3Ztvfnmmy4tEAAAeAZ5DwCA+5WpSe/du7fj9xtuuEGpqak6c+aMatas6bjiKwAAqNzIewAA3K9c90mXpMOHD0uSIiIiyl0MAAAwJvIeAAD3KNOF4/Ly8jRlyhSFhoYqKipKUVFRCg0N1eOPPy6r1erqGgEAgAeQ9wAAuF+Z9qQ/+OCDevfdd/XMM88oISFBUsFtWqZPn67Tp0/rxRdfdGmRAADA/ch7AKja0tPTlZGRUa552Gw2SdKePXtkNpdpH7BDTk6OAgICyjUPVwsLC1NkZKRbl1mmJn3lypVavXq1brvtNsewVq1aKSIiQkOGDCG0AQCoAsh7AKi60tPTFdO8mbKyL5drPhaLRatWrVK3bt2UnZ1drnmZTZLNXq5ZuJwlyKLUlFS3NuplatIDAgIUFRVVZHh0dLT8/f3LWxMAADAA8h4Aqq6MjAxlZV/W66PiFBMeXOb52Mz+OiJp06QEmW25ZZ7PNz+d0sjX0tRmWBs16tCozPNxpfOHz2vTM5uUkZFh/CY9KSlJs2bN0rJlyxyHI+Tk5OjJJ59UUlKSSwsEAACeQd4DQNUXEx6stlGhZZ7eKj8dkdQ6MkR+Kvv1Si5lFdzyM7h+sMKahJV5PlVBiZv0O+64w+nxp59+qkaNGql169aSCs5ByM3N1S233OLaCgEAgNuQ9wAAeFaJm/TQUOdvV+68806nx9ySBQCAyo+8BwDAs0rcpC9btqzCili8eLHmzp2r48ePq3Xr1nrhhRfUsWPHa063evVqDRkyRAMGDNCaNWsqrD4AALxFReU9WQ8AQMmU6xr5p06d0ubNm7V582adOnWqTPN48803lZycrGnTpumbb75R69at1bt3b508efKq0x06dEgTJkxQ165dy7RcAABQMuXNe7IeAICSK1OTfunSJf3lL39ReHi4unXrpm7duqlBgwa6//77lZWVVap5zZs3TyNHjtSIESMUGxurJUuWKCgoSEuXLr3iNPn5+brnnns0Y8YMNW7cuCwvAQAAXIOr8p6sBwCg5Mp0dffk5GR98cUXeu+999SlSxdJ0ubNm/XQQw9p/PjxJb5vam5urnbt2qXJkyc7hpnNZvXs2VPbtm274nQzZ85U3bp1df/99+vLL7+86jJycnKUk5PjeJyZmSlJslqtslrLfvVBSbLZbLJYLPIzS74mW7nmZVT+PiZZLBbJN0BW+bllmYXLcdfy7D7+slgs8vfxl6+9TG8Jw/Mz+clischms5V7u69ovK9cz93vKYn3VWkZ9X3pirx3R9ZLFZv3VVnhumEd4UrYRqquws9cNrN/uT4juOpzhhE/O3gq6012u73Ut4sPCwvT22+/rR49ejgN//zzzzVo0KASHwp39OhRNWzYUFu3blVCQoJj+MSJE/XFF19o+/btRabZvHmz7r77bu3evVthYWFKTEzUuXPnrnie2vTp0zVjxowiw1euXKmgoKAS1QkAQEXKysrS0KFDdf78eYWEhHi6HAdX5L07sl4i7wEAxlaarC/TVxRZWVmqV69ekeF169Yt9eHupXHhwgXdd999evnllxUWVrJ7502ePFnJycmOx5mZmYqIiNCtt95a7g9Ce/bsUbdu3XTThH+oZkSTcs3LqI6lfadt/xivl0e00qAO4W5ZplV+Wl/zHvU6+0a57rVYUtvSjqnPwu/UeVxnNe5WNQ+pPP3jaX30yEfatGmT4zZKRsX7yvXc/Z6SeF+VVuFeX6PxRN6XJeulis37//3vf2rfvoOysyvuM05pWSxB2rnzazVq1Khc87FarVq/fr169eolPz/3HW2DysOV28j//vc/nT592kWVuUbt2rXL/T6qrAo/c22alKDWkWX/O+mqzxlG/OzgqawvU5OekJCgadOmacWKFQoMDJQkZWdna8aMGU7fkl9LWFiYfHx8dOLECafhJ06cUP369YuM/+OPP+rQoUPq37+/Y5jNVnA4rK+vr9LS0nT99dc7TRMQEKCAgIAi8/Lz8yv3Hxqz2azs7GxZbVKevVzX4DOs3Hy7srOzpbwct324L+Qnq1uWacrPVXZ2tnLzc5Vnyqvw5XmC1W5Vdna2zGaz4T+E8b6qOO56T0m8r0rLqO9LV+S9O7Jeqti8P3v2rM6cOa34v0xTSHhUueblCpnHDmn70hk6e/asoqOjXTJPV6wnVG3l3UbS09P1hxZ/UHZWtgurKj9LkEWpKamKjIz0dCluV/iZy2zLdcnng/J+zjDiZwdPZX2ZmvQFCxaoT58+atSokeMbhT179igwMFDr1q0r8Xz8/f3Vrl07bdiwQQMHDpRUEMQbNmxQUlJSkfGbN2+uvXv3Og17/PHHdeHCBS1cuJB7twIA4EKuyPuqlPUh4VGqFdnMY8sHSis9PV0ZGRnlmkfhl2R79uyR2Vz2L89TUlKUnZWtbhO7KTQitFw1ucr5w+e16ZlNysjI8MomHcZVpia9ZcuWOnDggN544w2lpqZKkoYMGaJ77rmn4GJIpZCcnKzhw4erffv26tixoxYsWKBLly5pxIgRkqRhw4apYcOGmj17tgIDA9WiRQun6WvUqCFJRYYDAIDycVXek/WA+6WnpyumeTNlZV8u13wsFotWrVqlbt26FRwFVg5mSX7V/BTWpOSnsgDeqNRNutVqVfPmzfX+++9r5MiR5S5g8ODBOnXqlKZOnarjx48rLi5OH3/8seMcuPT09HJ9awcAAErPlXlP1gPul5GRoazsy3p9VJxiwoPLPB+b2V9HJG2alCCzLbfM8/nmp1Ma+Vqaci+VfR6Atyh1k+7n56fLl8v3jdzvJSUlFXvImyRt3LjxqtMuX77cpbUAAADX5z1ZD3hGTHiw2kaV/fByq/x0RFLryJBynW98KetSmacFvE2ZvrYeM2aMnn76aeXlGeOEfgAA4HrkPQAA7lemc9K//vprbdiwQZ988olatmypatWqOT3/7rvvuqQ4AADgOeQ9AADuV6YmvUaNGrrzzjtdXQsAADAQ8h4AAPcrVZNus9k0d+5c7d+/X7m5ubr55ps1ffr0Ul/RHQAAGBd5DwCA55TqnPQnn3xSjz32mIKDg9WwYUM9//zzGjNmTEXVBgAAPIC8BwDAc0rVpK9YsUL/+Mc/tG7dOq1Zs0bvvfee3njjDdlstoqqDwAAuBl5DwCA55SqSU9PT1ffvn0dj3v27CmTyaSjR4+6vDAAAOAZ5D0AAJ5TqiY9Ly9PgYGBTsP8/PxktZb9nokAAMBYyHsAADynVBeOs9vtSkxMVEBAgGPY5cuX9fe//93ptizckgUAgMqLvAcAwHNK1aQPHz68yLB7773XZcUAAADPI+8BAPCcUjXpy5Ytq6g6AACAQZD3AAB4TqnOSQcAAAAAABWHJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAzC19MFAAAAAJVdenq6MjIyPF2GQ0pKiqdLwO+wjaCkaNIBAACAckhPT1fz5jHKzs7ydCm/Y9Kx85clhXq6EK/HNoLSoEkHAAAAyiEjI0PZ2VmK/8s0hYRHebocSdKpn1O1e+XTOpeV5+lSILYRlA5NOgAAAOACIeFRqhXZzNNlSJKyLxltjy0kthGUDBeOAwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCEM06YsXL1ZUVJQCAwMVHx+vHTt2XHHcl19+WV27dlXNmjVVs2ZN9ezZ86rjAwAAzyPrAQAoGY836W+++aaSk5M1bdo0ffPNN2rdurV69+6tkydPFjv+xo0bNWTIEH3++efatm2bIiIidOutt+rIkSNurhwAAJQEWQ8AQMl5vEmfN2+eRo4cqREjRig2NlZLlixRUFCQli5dWuz4b7zxhkaPHq24uDg1b95cr7zyimw2mzZs2ODmygEAQEmQ9QAAlJyvJxeem5urXbt2afLkyY5hZrNZPXv21LZt20o0j6ysLFmtVtWqVavY53NycpSTk+N4nJmZKUmyWq2yWq3lqF6y2WyyWCzyM0u+Jlu55mVU/j4mWSwWyTdAVvm5ZZmFy3HX8uw+/rJYLPL38Zev3aNviQrjZ/KTxWKRzWYr93Zf0XhfuZ6731MS76vSMvr7sjzckfWSd+W9n1ku3/aq8jboDkbbRiTXZY2rMsSIueDOz0dsI9dW1beR0kxvstvt9nItrRyOHj2qhg0bauvWrUpISHAMnzhxor744gtt3779mvMYPXq01q1bpx9++EGBgYFFnp8+fbpmzJhRZPjKlSsVFBRUvhcAAIALZGVlaejQoTp//rxCQkI8XY5LuSPrJfIeAGBspcl6Y3xFUUZz5szR6tWrtXHjxiuG9uTJk5WcnOx4nJmZ6Ti3rbwfhPbs2aNu3brppgn/UM2IJuWal1EdS/tO2/4xXi+PaKVBHcLdskyr/LS+5j3qdfYN+aniv9nflnZMfRZ+p87jOqtxt8YVvjxPOP3jaX30yEfatGmTWrdu7elyror3leu5+z0l8b4qrcK9viiqJFkveVfenz18QJ8/O9ol257VatX69evVq1cv+fm572ibqsZo24jkuqxxVYYYMRfc+fmIbeTaqvo2Upqs92iTHhYWJh8fH504ccJp+IkTJ1S/fv2rTvvss89qzpw5+vTTT9WqVasrjhcQEKCAgIAiw/38/ModRmazWdnZ2bLapDy7x0/vrxC5+XZlZ2dLeTlu+3BfyE9WtyzTlJ+r7Oxs5ebnKs+UV+HL8wSr3ars7GyZzWbDfwjjfVVx3PWeknhflZbR35fl4Y6sl7wr7602ufxvuivWkzcz2jYiuT5rypshRswFd34+Yhu5tqq+jZRmeo9uIf7+/mrXrp3ThWAKLwzz20Pifu+ZZ57RrFmz9PHHH6t9+/buKBUAAJQBWQ8AQOl4/HD35ORkDR8+XO3bt1fHjh21YMECXbp0SSNGjJAkDRs2TA0bNtTs2bMlSU8//bSmTp2qlStXKioqSsePH5ckBQcHKzg42GOvAwAAFI+srxgpKSnlnofNVnABqz179shsLt++m7CwMEVGRpa7JgDwdh5v0gcPHqxTp05p6tSpOn78uOLi4vTxxx+rXr16kqT09HSn0HjxxReVm5urP//5z07zmTZtmqZPn+7O0gEAQAmQ9a5lzcmVJN17773lnpfFYtGqVavUrVu3gsNeyyHIEqiU1DQadQAoJ4836ZKUlJSkpKSkYp/buHGj0+NDhw5VfEEAAMClyHrXycsrOFdz1h1N1bdl3XLNy2b21xFJmyYlyGzLLfN8Uo5d1L0v7VZGRgZNOgCUkyGadAAAAJROdFiQ2kaFlmseVvnpiKTWkSEuuXCUKw7BdyUOwQdQGdGkAwAAoFxycnMkueYQfFeyBFmUmpJKow6gUqFJBwAAQLkUHoLfZlgbNerQyMPVFDh/+Lw2PbOJQ/ABVDo06QAAAHCJ4PrBCmsS5ukyAKBS8+h90gEAAAAAwK9o0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCAM0aQvXrxYUVFRCgwMVHx8vHbs2HHV8d966y01b95cgYGBatmypT788EM3VQoAAMqCrAcAoGQ83qS/+eabSk5O1rRp0/TNN9+odevW6t27t06ePFns+Fu3btWQIUN0//3369tvv9XAgQM1cOBAff/9926uHAAAlARZDwBAyXm8SZ83b55GjhypESNGKDY2VkuWLFFQUJCWLl1a7PgLFy5Unz599MgjjygmJkazZs1S27ZttWjRIjdXDgAASoKsBwCg5Hw9ufDc3Fzt2rVLkydPdgwzm83q2bOntm3bVuw027ZtU3JystOw3r17a82aNcWOn5OTo5ycHMfj8+fPS5LOnDkjq9VarvozMzMVGBioi0f2S9bscs3LqLKP/6TAwEClZeRq4/4LblmmzeyvrD9k6cuDF2W25Vb48r4/mqvAwEBlHc1Sxt6MCl+eJ1w4dkGBgYHKzMzU6dOnPV3OVfG+cj13v6ck3lelnteFgu3Abre7ojRDcUfWS96V9678G+Kqvw9GfM+7M/uMto1IrttO2EZcg23k2qr6NlKqrLd70JEjR+yS7Fu3bnUa/sgjj9g7duxY7DR+fn72lStXOg1bvHixvW7dusWOP23aNLskfvjhhx9++DH8z+HDh10TsAbijqy328l7fvjhhx9+KsdPSbLeo3vS3WHy5MlO38bbbDadOXNGtWvXlslk8mBluJLMzExFRETo8OHDCgkJ8XQ5QKXHe8r47Ha7Lly4oAYNGni6lEqLvC8b/j7gWthGcC1sIyVTmqz3aJMeFhYmHx8fnThxwmn4iRMnVL9+/WKnqV+/fqnGDwgIUEBAgNOwGjVqlL1ouE1ISAhvdMCFeE8ZW2hoqKdLqBDuyHqJvC8v/j7gWthGcC1sI9dW0qz36IXj/P391a5dO23YsMExzGazacOGDUpISCh2moSEBKfxJWn9+vVXHB8AAHgOWQ8AQOl4/HD35ORkDR8+XO3bt1fHjh21YMECXbp0SSNGjJAkDRs2TA0bNtTs2bMlSWPHjlX37t313HPP6Y9//KNWr16tnTt36qWXXvLkywAAAFdA1gMAUHIeb9IHDx6sU6dOaerUqTp+/Lji4uL08ccfq169epKk9PR0mc2/7vDv3LmzVq5cqccff1yPPfaYmjRpojVr1qhFixaeeglwsYCAAE2bNq3IYYsAyob3FDyNrDcu/j7gWthGcC1sI65nstur4P1eAAAAAACohDx6TjoAAAAAAPgVTToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA06TCUxYsXKyoqSoGBgYqPj9eOHTs8XRJQqW3atEn9+/dXgwYNZDKZtGbNGk+XBMAgyFxcDfmBa5k9e7Y6dOig6tWrq27duho4cKDS0tI8XVaVQJMOw3jzzTeVnJysadOm6ZtvvlHr1q3Vu3dvnTx50tOlAZXWpUuX1Lp1ay1evNjTpQAwEDIX10J+4Fq++OILjRkzRl999ZXWr18vq9WqW2+9VZcuXfJ0aZUet2CDYcTHx6tDhw5atGiRJMlmsykiIkIPPvigJk2a5OHqgMrPZDLpP//5jwYOHOjpUgB4GJmL0iA/UBKnTp1S3bp19cUXX6hbt26eLqdSY086DCE3N1e7du1Sz549HcPMZrN69uypbdu2ebAyAACqFjIXQEU4f/68JKlWrVoerqTyo0mHIWRkZCg/P1/16tVzGl6vXj0dP37cQ1UBAFD1kLkAXM1ms2ncuHHq0qWLWrRo4elyKj1fTxcAAAAAAKi8xowZo++//16bN2/2dClVAk06DCEsLEw+Pj46ceKE0/ATJ06ofv36HqoKAICqh8wF4EpJSUl6//33tWnTJjVq1MjT5VQJHO4OQ/D391e7du20YcMGxzCbzaYNGzYoISHBg5UBAFC1kLkAXMFutyspKUn/+c9/9Nlnnyk6OtrTJVUZ7EmHYSQnJ2v48OFq3769OnbsqAULFujSpUsaMWKEp0sDKq2LFy/q4MGDjsc///yzdu/erVq1aikyMtKDlQHwJDIX10J+4FrGjBmjlStX6r///a+qV6/uuKZFaGioLBaLh6ur3LgFGwxl0aJFmjt3ro4fP664uDg9//zzio+P93RZQKW1ceNG3XTTTUWGDx8+XMuXL3d/QQAMg8zF1ZAfuBaTyVTs8GXLlikxMdG9xVQxNOkAAAAAABgE56QDAAAAAGAQNOkAAAAAABgETToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQdCkA6gwiYmJGjhwoKfLAACgyujRo4fGjRtX5umXL1+uGjVquKyeK4mKitKCBQsqfDlAVUSTDgAAAHiJwYMHa//+/Z4uA8BV0KQDMCy73a68vDxPlwEAQJVhsVhUt27dKz6fm5vrxmquzCh1AJ5Akw54gQsXLuiee+5RtWrVFB4ervnz5zsdLpeTk6MJEyaoYcOGqlatmuLj47Vx40bH9IWHxq1bt04xMTEKDg5Wnz59dOzYMcc4+fn5Sk5OVo0aNVS7dm1NnDhRdrvdqQ6bzabZs2crOjpaFotFrVu31ttvv+14fuPGjTKZTProo4/Url07BQQEaPPmzRW6bgAAqGxsNpsmTpyoWrVqqX79+po+fbrjuXnz5qlly5aqVq2aIiIiNHr0aF28eNHx/O8Pd58+fbri4uL0yiuvKDo6WoGBgZKkc+fO6W9/+5vq1aunwMBAtWjRQu+//75junfeeUd/+MMfFBAQoKioKD333HNXrTk9PV0DBgxQcHCwQkJCNGjQIJ04ceKadQDeiCYd8ALJycnasmWL1q5dq/Xr1+vLL7/UN99843g+KSlJ27Zt0+rVq/Xdd9/prrvuUp8+fXTgwAHHOFlZWXr22Wf12muvadOmTUpPT9eECRMczz/33HNavny5li5dqs2bN+vMmTP6z3/+41TH7NmztWLFCi1ZskQ//PCDHn74Yd1777364osvnMabNGmS5syZo5SUFLVq1aqC1goAAJXTq6++qmrVqmn79u165plnNHPmTK1fv16SZDab9fzzz+uHH37Qq6++qs8++0wTJ0686vwOHjyod955R++++652794tm82m2267TVu2bNHrr7+uffv2ac6cOfLx8ZEk7dq1S4MGDdLdd9+tvXv3avr06ZoyZYqWL19e7PxtNpsGDBigM2fO6IsvvtD69ev1008/afDgwVetA/BadgBVWmZmpt3Pz8/+1ltvOYadO3fOHhQUZB87dqz9l19+sfv4+NiPHDniNN0tt9xinzx5st1ut9uXLVtml2Q/ePCg4/nFixfb69Wr53gcHh5uf+aZZxyPrVarvVGjRvYBAwbY7Xa7/fLly/agoCD71q1bnZZz//3324cMGWK32+32zz//3C7JvmbNGte8eAAAqpju3bvbb7zxRqdhHTp0sD/66KPFjv/WW2/Za9eu7Xi8bNkye2hoqOPxtGnT7H5+fvaTJ086hq1bt85uNpvtaWlpxc5z6NCh9l69ejkNe+SRR+yxsbGOx9ddd519/vz5drvdbv/kk0/sPj4+9vT0dMfzP/zwg12SfceOHVesA/BWvh7+jgBABfvpp59ktVrVsWNHx7DQ0FA1a9ZMkrR3717l5+eradOmTtPl5OSodu3ajsdBQUG6/vrrHY/Dw8N18uRJSdL58+d17NgxxcfHO5739fVV+/btHYe8Hzx4UFlZWerVq5fTcnJzc9WmTRunYe3bty/PSwYAoEr7/VFmv83kTz/9VLNnz1ZqaqoyMzOVl5eny5cvKysrS0FBQcXO77rrrlOdOnUcj3fv3q1GjRoV+WxQKCUlRQMGDHAa1qVLFy1YsED5+fmOPe6/HT8iIkIRERGOYbGxsapRo4ZSUlLUoUOHYusAvBVNOuDlLl68KB8fH+3atatIqAYHBzt+9/Pzc3rOZDIVOef8WsuRpA8++EANGzZ0ei4gIMDpcbVq1Uo8XwAAvE1xmWyz2XTo0CH169dPDzzwgJ588knVqlVLmzdv1v3336/c3NwrNum/z12LxVJhtV8N+Q8U4Jx0oIpr3Lix/Pz89PXXXzuGnT9/3nH7lTZt2ig/P18nT57UDTfc4PRTv379Ei0jNDRU4eHh2r59u2NYXl6edu3a5XgcGxurgIAApaenF1nOb79ZBwAAZbNr1y7ZbDY999xz6tSpk5o2baqjR4+Wej6tWrXS//73vyveqi0mJkZbtmxxGrZlyxY1bdq0yBf+heMfPnxYhw8fdgzbt2+fzp07p9jY2FLXB1R17EkHqrjq1atr+PDheuSRR1SrVi3VrVtX06ZNk9lslslkUtOmTXXPPfdo2LBheu6559SmTRudOnVKGzZsUKtWrfTHP/6xRMsZO3as5syZoyZNmqh58+aaN2+ezp0751THhAkT9PDDD8tms+nGG2/U+fPntWXLFoWEhGj48OEVtAYAAPAON9xwg6xWq1544QX1799fW7Zs0ZIlS0o9n+7du6tbt2668847NW/ePN1www1KTU2VyWRSnz59NH78eHXo0EGzZs3S4MGDtW3bNi1atEj/+Mc/ip1fz5491bJlS91zzz1asGCB8vLyNHr0aHXv3p1T3IBisCcd8ALz5s1TQkKC+vXrp549e6pLly6KiYlx3N5k2bJlGjZsmMaPH69mzZpp4MCB+vrrrxUZGVniZYwfP1733Xefhg8froSEBFWvXl2333670zizZs3SlClTNHv2bMXExKhPnz764IMPFB0d7dLXCwCAN2rdurXmzZunp59+Wi1atNAbb7yh2bNnl2le77zzjjp06KAhQ4YoNjZWEydOVH5+viSpbdu2+ve//63Vq1erRYsWmjp1qmbOnKnExMRi52UymfTf//5XNWvWVLdu3dSzZ081btxYb775ZllfKlClmeylOakUQJVw6dIlNWzYUM8995zuv/9+T5cDAAAA4P/jcHfAC3z77bdKTU1Vx44ddf78ec2cOVOSilyZFQAAAIBn0aQDXuLZZ59VWlqa/P391a5dO3355ZcKCwvzdFkAAAAAfoPD3QEAAAAAMAguHAcAAAAAgEHQpAMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQdCkAwAAAABgEDTpAAAAAAAYBE06AAAAAAAGQZMOAAAAAIBB0KQDAAAAAGAQNOkAAAAAABgETToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBC+ni7A3Ww2m44eParq1avLZDJ5uhwAAGS323XhwgU1aNBAZjPfn7sCeQ8AMJLSZL3XNelHjx5VRESEp8sAAKCIw4cPq1GjRp4uo0og7wEARlSSrPe6Jr169eqSClZOSEiIh6spOavVqk8++US33nqr/Pz8PF2Ox7AefsW6KMB6KMB6KFBZ10NmZqYiIiIcGYXyq6x57y0q63sVMDLeV8ZWmqz3uia98JC3kJCQShXaVqtVQUFBCgkJ8eo3HevhV6yLAqyHAqyHApV9PXBYtutU1rz3FpX9vQoYEe+ryqEkWc+JbwAAAAAAGARNOgAAAAAABkGTDgAAAACAQXjdOekAvFt+fr6sVquny3A5q9UqX19fXb58Wfn5+Z4ux2OMuh78/Pzk4+Pj6TIAwCtU1ay/FqNmoDfx9/d3ya1UadIBeAW73a7jx4/r3Llzni6lQtjtdtWvX1+HDx/26ouPGXk91KhRQ/Xr1zdcXQBQVVT1rL8WI2egtzCbzYqOjpa/v3+55kOTDsArFIZ23bp1FRQUVOXCy2az6eLFiwoODnbJN7iVlRHXg91uV1ZWlk6ePClJCg8P93BFAFA1VfWsvxYjZqA3sdlsOnr0qI4dO6bIyMhybX806QCqvPz8fEdo165d29PlVAibzabc3FwFBgZ6dTAbdT1YLBZJ0smTJ1W3bl0OfQcAF/OGrL8Wo2agN6lTp46OHj2qvLy8ct0Gj/89AFVe4XlpQUFBHq4E3qxw+/PG8yQBoKKR9TCCwsPcy3tNAJp0AF7D2w57g7Gw/QFAxeNvLTzJVdsfTToAAAAAAAbBOekAgKvq0aOH4uLitGDBAkPMB/CE9PR0ZWRkeLqMChUWFqbIyEhPlwHAQ8h746BJBwC41MaNG3XTTTfp7NmzqlGjhmP4u+++W66LqACekp6erubNY5SdneXpUiqUxRKk1NQUGnUAJULeVxyadACAW9SqVcvTJQBlkpGRoezsLMX/ZZpCwqM8XU6FyDx2SNuXzlBGRgZNOoByIe/Lj3PSAcCgevTooaSkJCUlJSk0NFRhYWGaMmWK7Ha7JOns2bMaNmyYatasqeDgYP35z3/WgQMHHNMvX75cNWrU0Jo1a9SkSRMFBgaqd+/eOnz4sGOcxMREDRw40Gm548aNU48ePa5Y12uvvab27durevXqql+/voYOHeq4B/ihQ4d00003SZJq1qwpk8mkxMREx+sZN26cYz6/rT8oKEi33XZbsfWvW7dOMTExCg4OVp8+fXTs2LGyrE6g3ELCo1QrslmV/KmqXz4AlUFp8v5qeblmzRq1a9dOQUFB5H0lR5MOAAb26quvytfXVzt27NDChQs1b948vfLKK5IKAnfnzp1au3attmzZIknq16+f0y2+srKy9OSTT2rFihXasmWLzp07p7vvvrtcNVmtVs2aNUt79uzRmjVrdOjQIUcwR0RE6J133pEkpaWl6dixY1q4cGGx8/lt/du2bZPdblffvn2L1P/ss8/qtdde06ZNm5Senq4JEyaUq34AAIympHl/tbycPXu2XnzxRX355ZfkfSXH4e4AYGARERGaP3++TCaTmjVrpr1792r+/Pnq0aOHoznv3LmzbDabXnrpJbVo0UJr1qzRXXfdJakgYBctWqT4+HhJBR8CYmJitGPHDnXs2LFMNf3lL39x/N64cWM9//zz6tChgy5evKjg4GDHYW5169Z1Okfttw4cOOBUvyS98cYbioiIKFL/kiVLdP3110uSkpKSNHPmzDLVDQCAUZU076Ur5+Xzzz+vmJgYhYSEkPeVHHvSAcDAOnXq5HTPzYSEBB04cED79u2Tr6+vo/mWCs4Ba9asmVJSUhzDfH191aFDB8fj5s2bq0aNGk7jlNauXbvUv39/RUZGqnr16urevbukgotrlVRKSkqR+mvXrl2k/qCgIEdgS1J4eLjjUDsAAKqK0uR9cXlJ3lctNOkA4MXMZrPjnLdCvz387PcuXbqk3r17KyQkRG+88Ya+/vpr/ec//5Ek5ebmury+318d1mQyFakXAABcHXlfudCkA4CBbd++3enxV199pSZNmig2NlZ5eXlOz585c0ZpaWmKjY11DMvLy9POnTsdj9PS0nTu3DnFxMRIkurUqVPkwiy7d+++Yj2pqak6ffq05syZo65du6p58+ZFvun29/eXJOXn519xPjExMUXqP336dJH6AQDwBqXJ++LykryvWmjSAcDA0tPTlZycrLS0NK1atUovvPCCxo4dqyZNmmjAgAEaOXKkNm/erD179mjUqFFq2LChBgwY4Jjez89PDz74oLZv365du3YpMTFRnTp1cpyfdvPNN2vnzp1asWKFDhw4oGnTpun777+/Yj2RkZHy9/fXCy+8oJ9++klr167VrFmznMa57rrrZDKZ9P777+vUqVO6ePFikfkUV/+9995bpH4AALxBafK+uLz08/PT2LFjtXPnTvK+CqBJBwADGzZsmLKzs9WxY0eNGTNGY8eO1ahRoyRJy5YtU7t27dSvXz916dJFkvT+++87HTIWFBSkRx99VEOHDlWXLl0UHBysN9980/F87969NWXKFE2cOFEdOnTQhQsXNGzYsCvWU6dOHS1fvlxvvfWWYmNjNWfOHD377LNO4zRs2FAzZszQpEmTVK9ePSUlJRU7r9/Wn5CQILvdrg8//LDIIW8AAFR1Jc37K+VlUFCQHnnkEY0cOVJdu3Yl7ys5k93LDvbPzMxUaGiozp8/r5CQEE+XU2JWq1Uffvih+vbt69UbNOvhV6yLAiVZD5cvX9bPP/+s6OhoBQYGurnCsuvRo4fi4uK0YMGCa45rs9mUmZmpkJAQmc0F378uX75c48aN07lz5yq2UAMpbj0YxdW2w8qaTUbmynX6zTffqF27dur1f8tUK7KZiyo0ljPpaVr/5Ajt2rVLbdu2rfDlkWFwtcqa9VLp8r44hXl/5swZw2agt3BV1vO/BwAAAACAQdCkAwAAAABgEL6eLgAAULyNGzeWa/rExEQlJia6pBYAAFAxXJX3NpvNNQXB49iTDgAAAACAQdCkAwAAAABgEDTpAAAAAAAYBE06AAAAAAAGQZMOAAAAAIBB0KQDAAAAAGAQ3IINgFdLT09XRkaG25YXFhamyMhIty2vpKKiojRu3DiNGzfuiuPk5uYqNjZWK1asUOfOnd1XnAGYTCb95z//0cCBA4t9ft++fbr11luVlpamatWqubc4AMBVkfUFyPqrM1LW06QD8Frp6elq3jxG2dlZblumxRKk1NQUQ4b3tSxZskTR0dGVOrQPHTqk6Ohoffvtt4qLi3PZfGNjY9WpUyfNmzdPU6ZMcdl8AQDlQ9aXDll/Ze7Mepp0AF4rIyND2dlZiv/LNIWER1X48jKPHdL2pTOUkZFR6YLbbrdr0aJFmjlzZrnnk5+fL1/fqhc/I0aM0MiRIzV58uQq+foAoDIi60uOrL82d2U956QD8Hoh4VGqFdmswn/K8uGgR48eSkpKUlJSkkJDQxUWFqYpU6bIbrc7xjl79qyGDx+uqKgoBQcH67bbbtOBAwec5vPOO+/oD3/4gwICAhQVFaXnnnuuVHXs2rVLP/74o/74xz86hh06dEgmk0mrV69W586dFRgYqBYtWuiLL75wjLNx40aZTCZ99NFHateunQICArR582bZbDbNnj1b0dHRslgsat26td5+++0i061bt05t2rSRxWLRzTffrJMnT+qjjz5STEyMQkJCNHToUGVl/bp35OOPP1afPn1Uq1Yt1a5dW/369dOPP/7oeD46OlqS1KZNG5lMJvXo0cPx3NKlSx3rKDw8XElJSU7rICMjQ7fffruCgoLUpEkTrV271un5Xr166cyZM06vHwBgDFUh64cNG6aaNWsqKCjoilmfkJAgi8VS5bP+xhtvVI0aNaps1tOkA4DBvfrqq/L19dWOHTu0cOFCzZs3T6+88orj+cTERO3atUsrV67Uli1bZLfb1bdvX1mtVkkFoTto0CDdfffd2rt3r6ZPn64pU6Zo+fLlJa7hyy+/VNOmTVW9evUizz3yyCMaP368vv32WyUkJKh///46ffq00ziTJk3SnDlzlJKSolatWmn27NlasWKFlixZoh9++EEPP/yw7r333iKhN336dC1atEhbt27V4cOHNWjQIC1YsEArV67UBx98oE8++UQvvPCCY/xLly5pzJgx2rFjhzZs2CCz2azbb79dNptNkrRjxw5J0qeffqpjx47p3XfflSS9+OKLGjNmjEaNGqW9e/dq7dq1uuGGG5xqmTFjhgYNGqTvvvtOffv21T333KMzZ844nvf391dcXJy+/PLLEq9XAACkkmX9zp07tXbtWm3btq3YrL/77rt1xx13aM+ePVU+65OTk7Vz584qm/VV7xgEAKhiIiIiNH/+fJlMJjVr1kx79+7V/PnzNXLkSB04cEBr167Vl19+qRYtWigkJERvvPGGIiIitGbNGt11112aN2+ebrnlFsf5U02bNtW+ffs0d+5cJSYmlqiGX375RQ0aNCj2uaSkJN15552SCgLw448/1r/+9S9NnDjRMc7MmTPVq1cvSVJOTo6eeuopffrpp0pISJAkNW7cWJs3b9Y///lPde/e3THdE088oS5dukiS7r//fk2ePFk//vijGjduLEn685//rM8//1yPPvqoJOnOO+9UZmamQkJCZDabtXTpUtWpU0f79u1TixYtVKdOHUlS7dq1Vb9+fafljB8/XmPHjnUM69Chg9PrTExM1JAhQyRJTz31lJ5//nnt2LFDffr0cYzToEED/fLLLyVapwAAFCpJ1m/ZssVxrnhxWX/zzTfrkUceUUhIiJo3b16ls/63qmLWe3xP+uLFixUVFaXAwEDFx8c7vvm4kgULFqhZs2ayWCyKiIjQww8/rMuXL7upWgBwv06dOslkMjkeJyQk6MCBA8rPz1dKSop8fX0VHx/veL527dpq1qyZUlJSJEkpKSmO8CvUpUsXxzxKIjs7W4GBgcU+Vxi+kuTr66v27ds7ll2offv2jt8PHjyorKws9erVS8HBwY6fFStWOB2uJkmtWrVy/F6vXj0FBQU5Qrtw2MmTJx2PDxw4oPvvv1833HCDQkJCFBUVJangwkFXcvLkSR09elS33HLLVdaAcy3VqlVTSEiI07IlyWKxOB2Sh1+R9wBwZWR9gZJm/ZAhQ9S4ceMqm/Ue3ZP+5ptvKjk5WUuWLFF8fLwWLFig3r17Ky0tTXXr1i0y/sqVKzVp0iQtXbpUnTt31v79+5WYmCiTyaR58+Z54BUAgHcICwvT3r17yzz9b29VcvHiRUnSBx98oIYNGzqNFxAQ4PTYz8/P8bvJZHJ6XDis8PA2SRowYIAaNmyof/7zn2rUqJFsNptatGih3NzcK9ZmsVhK9BqutWxJOnPmjK6//voSzc+bkPcAYHyVJev79++v6667Ti+//LIaNGhQJbPeo3vS582bp5EjR2rEiBGKjY3VkiVLFBQUpKVLlxY7/tatW9WlSxcNHTpUUVFRuvXWWzVkyJBrfhsPAJXZ9u3bnR5/9dVXatKkiXx8fBQTE6O8vDyncU6fPq20tDTFxsZKkmJiYrRlyxaneWzZskVNmzaVj49PiWpo06aNUlNTnS5i89t6CuXl5WnXrl2KiYm54rxiY2MVEBCg9PR03XDDDU4/ERERJaqnOIWve/z48brlllsUExOjs2fPOo3j7+8vSU57FapXr66oqCht2LChzMsu9P3336tNmzblnk9VQ94DwNWR9SVT+Loff/zxKp31HtuTnpubq127dmny5MmOYWazWT179tS2bduKnaZz5856/fXXtWPHDnXs2FE//fSTPvzwQ913331XXE5OTo5ycnIcjzMzMyVJVqvVcaGFyqCw1spUc0VgPfyKdVGgJOvBarXKbrfLZrM5fRvq+N3+/38qmv3X5f7+W9mrSU9P18MPP6xRo0bpm2++0QsvvKC5c+fKZrPp+uuv15/+9Cf97W9/07PPPqt69erpscceU8OGDdW/f3/ZbDY9/PDDio+P18yZMzVo0CBt27ZNixYt0qJFi5zqKFxHxenevbsuXryovXv3qkWLFo7XIRUcxnz99dcrJiZGCxYs0NmzZ5WYmOj0On/7e7Vq1TR+/Hg9/PDDysvL04033qjz589r69atql69uoYPH17sdL//t7DmwmGhoaGqXbu2Xn31VV1//fU6fPiwHnvsMaf5hIWFyWKx6KOPPlKDBg0UGBio0NBQTZ06VaNHj1adOnXUp08fXbhwQVu3bnW66mtx/2+/HXbo0CEdOXJEN998c7Hr0WazyW63y2q1FvnAVJXfx1Uh7202mywWi/zMkq+p5O/dysTPXLCnyWazuWV7JMPgat6Q9SNHjtSLL76o6tWra/LkycVm/dy5c3Xvvffqq6++qtJZ/89//lP16tVTenp6lcx6jzXpGRkZys/PV7169ZyG16tXT6mpqcVOM3ToUGVkZOjGG2+U3W5XXl6e/v73vzv+Y4oze/ZszZgxo8jwTz75REFBQeV7ER6wfv16T5dgCKyHX7EuClxtPfj6+qp+/fq6ePGi06FQly5dkiSdO/Kj8vPzKrzGC8d/cSy3sIG4lry8PA0ePFjnz59XfHy8fHx89Le//U133323Yx4LFy7UpEmTdPfdd8tqtapz585avXq1srOzlZ2drRtuuEHLli3T7Nmz9cQTT6hevXqaPHmy7rjjDsc8bDabLl++fMW6/Pz81K9fPy1btkzTpk2T9OuhbFOmTNHs2bO1d+9eNW7cWCtXrpS/v78yMzMd52xduHBBZvOvB29NmDBB1atX1+zZs3Xo0CGFhoaqdevWevjhh6843eXLl2W3251qzMnJUX5+vmPYK6+8okmTJql169a64YYb9PTTT6tfv37Kzs52jDNnzhw988wzmjZtmhISEvT+++/r9ttv17lz57R48WI98sgjql27tv70pz85Leu385AKPjT8dp0tX75cN998s2rWrFnseszNzVV2drY2bdqkvDzn7a0qn8deVfJ+1apV//+3jHLPy5Dq1tSoVat05MgRHTlyxG2LJcPgKt6S9f37979m1s+dO9crsr5Vq1ZVNutN9uKOZ3CDo0ePqmHDhtq6davThQgmTpyoL774osghH1LBvfTuvvtuPfHEE4qPj9fBgwc1duxYjRw50nHV4t8r7pv1iIgIZWRkKCQkxPUvrIJYrVatX79evXr1KnKuhDdhPfyKdVGgJOvh8uXLOnz4sOOiVYXS09MVG/sHZWe7r0GyWIK0b98PioyMLNH4N998s1q3bq358+dfdTy73a4LFy6oevXqTheecaXvvvtOvXv31oEDBxQcHKxDhw7p+uuv165duxQXF1chyywtd6yH4uTm5qpZs2Z6/fXXi1y4p9Dly5d16NAhRUREFLkwT2ZmpsLCwnT+/PlKlU0lURXyfs+ePerWrZtumvAP1YxoUq55GdXZwwf0+bOjtWnTJrVu3brCl0eGwdW8IeuvxRUZWBmy3lPcmfUe25MeFhYmHx8fnThxwmn4iRMnnC6V/1tTpkzRfffdp7/+9a+SpJYtW+rSpUsaNWqU/u///s/pm5tCAQEBRS5OIBV8U1QZQ6Gy1u1qrIdfsS4KXG095Ofny2QyyWw2O/2diIqKUmpqijIy3LdnLCwsrMShXaiw9qspPOSqJOOWVVxcnJ5++mn98ssvatmypWM5v1+vnuSO9VCc//3vf3rsscfUtWvXK45jNpsdF8T5/bZald/DVSHvzWazsrOzZbVJeXZjbOuuZrUV7EEym81u3R7JMLiKN2T9tbgiAytD1nuKO7PeY026v7+/2rVrpw0bNmjgwIGSCjasDRs2OJ0X8FtZWVlFNo7CY/09dEAAgEouMjKy1EHqzUp6r1VvU3gxHBRF3gPwNLK+dMj64rkz6z16C7bk5GQNHz5c7du3V8eOHbVgwQJdunRJI0aMkCQNGzZMDRs21OzZsyUVXG5/3rx5atOmjePwtylTpqh///4lvmohAFQmGzdu9HQJVxQVFUXDhBIh7wHgysh6/J5Hm/TBgwfr1KlTmjp1qo4fP664uDh9/PHHjovLpKenO32T/vjjj8tkMunxxx/XkSNHVKdOHfXv319PPvmkp14CAAC4BvIeAICS82iTLklJSUlXPNzt998q+fr6atq0aY6rDQIAgMqBvAcAoGS8++x/AAAAAAAMhCYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAIj184DgA8KT09XRkZGW5bXlhYmOHu1RoVFaVx48Zp3Lhxni4FAACXI+vJ+sqGJh2A10pPT1dM82bKyr7stmUGWQKVkppmuPAGAKAqIutRGdGkA/BaGRkZysq+rNdHxSkmPLjCl5dy7KLufWm3MjIyCG4AANyArEdlRJMOwOvFhAerbVSop8soVo8ePdSiRQtJ0muvvSY/Pz898MADmjlzpkwmk86ePauxY8fqvffeU05Ojrp166YXXnhBTZo0cczjnXfe0dSpU3Xw4EGFh4frwQcf1Pjx4z31kgAAcLuqlPXdu3fX888/T9ZXYVw4DgAM7tVXX5Wvr6927NihhQsXat68eXrllVckSYmJidq5c6fWrFmjdevWyW63q2/fvrJarZKkXbt2adCgQbr77ru1d+9eTZ8+XVOmTNHy5cs9+IoAAMBvlSTr165dq23btl0x6wcPHqwtW7Zo6tSpZH0lx550ADC4iIgIzZ8/XyaTSc2aNdPevXs1f/589ejRQ2vXrtWWLVvUqVMnZWZm6vXXX9d1112nNWvW6K677tK8efN0yy23aMqUKZKkpk2bat++fZo7d64SExM9+8IAAICkkmV9586dJUlvvPGGIiIiimT9448/rszMTLVt21apqalkfSXGnnQAMLhOnTrJZDI5HickJOjAgQPat2+ffH19FR8f73iudu3aatasmVJSUiRJKSkp6tKli9P8unTpogMHDig/P989LwAAAFwVWY/fokkHAAAAAMAgaNIBwOC2b9/u9Pirr75SkyZNFBsbq7y8PKfnT58+rbS0NMXGxkqSYmJitGXLFqfpt2zZoqZNm8rHx6fiiwcAANdE1uO3aNIBwODS09OVnJystLQ0rVq1Si+88ILGjh2rJk2aaMCAARo5cqQ2b96svXv36r777lPDhg01YMAASdL48eO1YcMGzZo1S/v379err76qRYsWacKECR5+VQAAoFBJs37Pnj269957i836J554QgcPHiTrqwAuHAfA66Ucu2jo5QwbNkzZ2dnq2LGjfHx8NHbsWI0aNUqStGzZMo0dO1Z/+tOflJubq65du+rDDz+Un5+fJKlt27b697//ralTp2rWrFkKDw/XzJkzuZAMAMCrVIWs79evn3Jzc9WtW7crZv0TTzxB1lcBNOkAvFZYWJiCLIG696XdbltmkCVQYWFhpZrGz89PCxYs0IsvvljkuZo1a2rFihWy2WzKzMxUSEiIzGbng6TuvPNO3XnnnVec/6FDh0pVDwAAlUVVyvqrufPOO3X77bdf8bMAWV+50KQD8FqRkZFKSU1TRkaG25YZFhamyMhIty0PAABvRtajMqJJB+DVIiMjCVIAAKowsh6VDU06ABjYxo0bPV0CAACoQGQ9fo+ruwMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQXDhOAAAAEiSUlJS3LIcm80mSdqzZ0+R+zlXJG6NBaAyoEkHAADwctacXEnSvffe65blWSwWrVq1St26dVN2drZblilJQZZApaSm0agDMDSadABeLT09XRkZGW5bHntxABhRXl6eJGnWHU3Vt2XdCl+ezeyvI5I2TUqQ2ZZb4cuTpJRjF3XvS7uVkZHB32EvQ9ajsqFJB+C10tPT1TymubKz3LcXxxJkUWpKaonDu0ePHoqLi9OCBQsqtrASMlo9AFwrOixIbaNCK3w5VvnpiKTWkSHyk7XClwfvRdaXntHq8UY06QC8VkZGhrKzstVtYjeFRlT8h9Lzh89r0zOb3L4XJzc3V/7+/m5bHgAARuFNWe/rS2tXVXB1dwBeLzQiVGFNwir8p7QfDhITE/XFF19o4cKFMplMMplM+vHHH3X//fcrOjpaFotFzZo108KFC4tMN3DgQD355JNq0KCBmjVrJknaunWr4uLiFBgYqPbt22vNmjUymUzavXu3Y9rvv/9et912m4KDg1WvXj3dd999jkMEi6vn0KFD5Vr3AAC4g7dk/fbt29W2bVuyvpLj6xYAMKiFCxdq//79atGihWbOnClJqlmzpho1aqS33npLtWvX1tatWzVq1CjVq1dPffr0cUy7YcMGhYSEaP369ZKkzMxM9e/fX3379tXKlSv1yy+/aNy4cU7LO3funG6++Wb99a9/1fz585Wdna1HH31UgwYN0meffVZsPXXq1HHPygAAoAoqTdaHh4dr0KBBjmmLy/ohQ4aQ9VUATToAGFRoaKj8/f0VFBSk+vXrO4bPmDHD8Xt0dLS2bdumt956y6lJr1atml555RXHYe5LliyRyWTSyy+/rMDAQMXGxurIkSMaOXKkY5pFixapTZs2euqppxzDli5dqoiICO3fv19NmzYtth4AqEzcdZs5T+GiZZVLabL+3//+t1OT/vus/8c//iGTyaSXXnpJQUFBZH0lRpMOAJXM4sWLtXTpUqWnpys7O1u5ubmKi4tzGqdly5ZO56GnpaWpVatWCgwMdAzr2LGj0zR79uzR559/ruDg4CLL/PHHH9W0aVPXvhAAcKOc3BxJ7rvNnKeU9qJlMKayZP3+/fv1hz/8gayvAmjSAaASWb16tSZMmKDnnntOCQkJql69uubOnavt27c7jVetWrVSz/vixYvq37+/nn766SLPhYeHl7lmADCCwtvMtRnWRo06NPJwNRXDUxctg2uR9aBJBwAD8/f3V35+vuPxli1b1LlzZ40ePdox7Mcff7zmfJo1a6bXX39dOTk5CggIkCR9/fXXTuO0bdtW77zzjqKioq54hdjf1wMAlU1w/WCFNQnzdBmAg6uyvmnTpo6st1gsksj6yoomHYDXO3/4vGGXExUVpe3bt+vQoUMKDg5WkyZNtGLFCq1bt07R0dF67bXX9PXXXys6Ovqq8xk6dKj+7//+T6NGjdKkSZOUnp6uZ599VpJkMpkkSWPGjNHLL7+sIUOGaOLEiapVq5YOHjyo1atX65VXXpGPj0+RemrVqiWzmRuFAACMzVuy/vHHH9ff/vY3TZ48mayvxGjSAXitsLAwWYIs2vTMJrct0xJkUVhYyffgTJgwQcOHD1dsbKyys7OVmpqqb7/9VoMHD5bJZNKQIUM0evRoffTRR1edT0hIiN577z098MADiouLU8uWLTV16lQNHTrUce5agwYNtGXLFj366KO69dZblZOTo+uuu059+vRxhPPv6/n5558VFRVV5vUBAEBF8rasX7VqlSZOnEjWV3I06QC8VmRkpFJTUh33BnWH0l51t2nTptq2bZvTsGXLlmnZsmVOw5588kllZmZKkpYvX17svDp37qw9e/Y4Hr/xxhvy8/NzqqdJkyZ69913S1UPAABGVZWyfvbs2Y7fr5T18fHx+vbbbx0NN1lfOdGkA/BqkZGRXnNxnRUrVqhx48Zq2LCh9uzZ47gvauF5awAAVEXelPWrV69WbGysIiIiyPpKjCYdALzE8ePHNXXqVB0/flzh4eG666679OSTT3q6LAAA4CInTpzQnDlzyPpKjiYdALzExIkTNXHiRE+XAQAAKsjYsWM1ZcoULvRWyfG/BwAAAACAQdCkA/Aadrvd0yXAi7H9AUDF428tPMlV2x9NOoAqz8/PT5KUlZXl4UrgzQq3v8LtEQDgOmQ9jCA3N1eS5OPjU675cE46gCrPx8dHNWrU0MmTJyVJQUFBMplMHq7KtWw2m3Jzc3X58mWvPg/NiOvBbrcrKytLJ0+eVI0aNcod3ACAorwh66/FiBnoTWw2m06dOqWgoCD5+pavzaZJB+AV6tevL0mO8K5q7Ha7srOzZbFYvO5DyW8ZeT3UqFHDsR0CAFyvqmf9tRg5A72F2WxWZGRkudc/TToAr2AymRQeHq66devKarV6uhyXs1qt2rRpk7p16+bVh1MbdT34+fmxBx0AKlhVz/prMWoGehN/f3+XHMVAkw7Aq/j4+FTJZsnHx0d5eXkKDAz06mBmPQAAqmrWXwsZWHVwsgIAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQdCkAwAAAABgEB5v0hcvXqyoqCgFBgYqPj5eO3bsuOr4586d05gxYxQeHq6AgAA1bdpUH374oZuqBQAAZUHeAwBQMr6eXPibb76p5ORkLVmyRPHx8VqwYIF69+6ttLQ01a1bt8j4ubm56tWrl+rWrau3335bDRs21C+//KIaNWq4v3gAAFAi5D0AACXn0SZ93rx5GjlypEaMGCFJWrJkiT744AMtXbpUkyZNKjL+0qVLdebMGW3dulV+fn6SpKioKHeWDAAASom8BwCg5DzWpOfm5mrXrl2aPHmyY5jZbFbPnj21bdu2YqdZu3atEhISNGbMGP33v/9VnTp1NHToUD366KPy8fEpdpqcnBzl5OQ4HmdmZkqSrFarrFarC19RxSqstTLVXBFYD79iXRRgPRRgPRSorOuhstVbGlUh7202mywWi/zMkq/JVq55GZW/j0kWi0XyDZBVfhW+vMJluGNZhew+/rJYLPL38Zev3aP7qSqMn8lPFotFNputSv9dQfEqawZ6i9L8v3jsL1RGRoby8/NVr149p+H16tVTampqsdP89NNP+uyzz3TPPffoww8/1MGDBzV69GhZrVZNmzat2Glmz56tGTNmFBn+ySefKCgoqPwvxM3Wr1/v6RIMgfXwK9ZFAdZDAdZDgcq2HrKysjxdQoWpKnm/atWq//9bRrnnZUh1G+ihrgWv0Z1n/q+veY/7FtZJWtXp//+ec9UxK69G0rBVw3TkyBEdOXLE09XAQypbBnqL0mR9pfoa0WazqW7dunrppZfk4+Ojdu3a6ciRI5o7d+4VQ3vy5MlKTk52PM7MzFRERIRuvfVWhYSEuKv0crNarVq/fr169erlOPTPG7EefsW6KMB6KMB6KFBZ10PhXl8UMFre79mzR926ddNNE/6hmhFNyjUvozqW9p22/WO8Xh7RSoM6hFf48qzy0/qa96jX2TfkJ/fs9duWdkx9Fn6nzuM6q3G3xm5Zprud/vG0PnrkI23atEmtW7f2dDlws8qagd6iNFnvsSY9LCxMPj4+OnHihNPwEydOqH79+sVOEx4eLj8/P6dD3WJiYnT8+HHl5ubK39+/yDQBAQEKCAgoMtzPz69SbryVtW5XYz38inVRgPVQgPVQoLKth8pUa2lVhbw3m83Kzs6W1Sbl2T1+Y5wKkZtvV3Z2tpSX47amWZL8ZHXb8kz5ucrOzlZufq7yTHluWaa7We1WZWdny2w2V+m/K7i6ypaB3qI0/yceSxp/f3+1a9dOGzZscAyz2WzasGGDEhISip2mS5cuOnjwoGy2X88H279/v8LDw4sNbAAA4FnkPQAApePRr4OTk5P18ssv69VXX1VKSooeeOABXbp0yXH112HDhjldaOaBBx7QmTNnNHbsWO3fv18ffPCBnnrqKY0ZM8ZTLwEAAFwDeQ8AQMl59Jz0wYMH69SpU5o6daqOHz+uuLg4ffzxx46Ly6Snp8ts/vV7hIiICK1bt04PP/ywWrVqpYYNG2rs2LF69NFHPfUSAADANZD3AACUnMcvHJeUlKSkpKRin9u4cWORYQkJCfrqq68quCoAAOBK5D0AACVTNa9+AgAAAABAJVSmJv3zzz93dR0AAMBgyHsAANyvTE16nz59dP311+uJJ57Q4cOHXV0TAAAwAPIeAAD3K1OTfuTIESUlJentt99W48aN1bt3b/373/9Wbm6uq+sDAAAeQt4DAOB+ZWrSw8LC9PDDD2v37t3avn27mjZtqtGjR6tBgwZ66KGHtGfPHlfXCQAA3Iy8BwDA/cp94bi2bdtq8uTJSkpK0sWLF7V06VK1a9dOXbt21Q8//OCKGgEAgIeR9wAAuEeZm3Sr1aq3335bffv21XXXXad169Zp0aJFOnHihA4ePKjrrrtOd911lytrBQAAbkbeAwDgXmW6T/qDDz6oVatWyW6367777tMzzzyjFi1aOJ6vVq2ann32WTVo0MBlhQIAAPci7wEAcL8yNen79u3TCy+8oDvuuEMBAQHFjhMWFsatWwAAqMTIewAA3K9Mh7tPmzZNd911V5HAzsvL06ZNmyRJvr6+6t69e/krBAAAHkHeAwDgfmVq0m+66SadOXOmyPDz58/rpptuKndRAADA88h7AADcr0xNut1ul8lkKjL89OnTqlatWrmLAgAAnkfeAwDgfqU6J/2OO+6QJJlMJiUmJjod/pafn6/vvvtOnTt3dm2FAADArch7AAA8p1RNemhoqKSCb9arV68ui8XieM7f31+dOnXSyJEjXVshAABwK/IeAADPKVWTvmzZMklSVFSUJkyYwKFuAABUQeQ9AACeU6ZbsE2bNs3VdQAAAIMh7wEAcL8SN+lt27bVhg0bVLNmTbVp06bYC8kU+uabb1xSHAAAcC/yHgAAzypxkz5gwADHhWMGDhxYUfUAAAAPIu8BAPCsEjfpvz3kjcPfAAComsh7AAA8q0z3SQcAAAAAAK5X4j3pNWvWvOp5ab915syZMhcEAAA8h7wHAMCzStykL1iwoALLAAAARkDeAwDgWSVu0ocPH16RdQAAAAMg7wEA8KwSN+mZmZkKCQlx/H41heMBAIDKhbwHAMCzSnVO+rFjx1S3bl3VqFGj2PPV7Ha7TCaT8vPzXVokAABwD/IeAADPKnGT/tlnn6lWrVqSpM8//7zCCgIAAJ5D3gMA4FklbtK7d+9e7O8AAKDqIO8BAPCsEjfpv3f27Fn961//UkpKiiQpNjZWI0aMcHz7DgAAKj/yHgAA9zKXZaJNmzYpKipKzz//vM6ePauzZ8/q+eefV3R0tDZt2uTqGgEAgAeQ9wAAuF+Z9qSPGTNGgwcP1osvvigfHx9JUn5+vkaPHq0xY8Zo7969Li0SAAC4H3kPAID7lWlP+sGDBzV+/HhHYEuSj4+PkpOTdfDgQZcVBwAAPIe8BwDA/crUpLdt29ZxbtpvpaSkqHXr1uUuCgAAeB55DwCA+5X4cPfvvvvO8ftDDz2ksWPH6uDBg+rUqZMk6auvvtLixYs1Z84c11cJAADcgrwHAMCzStykx8XFyWQyyW63O4ZNnDixyHhDhw7V4MGDXVMdAABwK/IeAADPKnGT/vPPP1dkHQAAwADIewAAPKvETfp1111XkXUAAAADIO8BAPCsMt2CrdC+ffuUnp6u3Nxcp+F/+tOfylUUAAAwDvIeAAD3KVOT/tNPP+n222/X3r17nc5bM5lMkgruoQoAACo38h4AAPcr0y3Yxo4dq+joaJ08eVJBQUH64YcftGnTJrVv314bN250cYkAAMATyHsAANyvTHvSt23bps8++0xhYWEym80ym8268cYbNXv2bD300EP69ttvXV0nAABwM/IeAAD3K9Oe9Pz8fFWvXl2SFBYWpqNHj0oquNhMWlqa66oDAAAeQ94DAOB+ZdqT3qJFC+3Zs0fR0dGKj4/XM888I39/f7300ktq3Lixq2sEAAAeQN4DAOB+ZWrSH3/8cV26dEmSNHPmTPXr109du3ZV7dq19eabb7q0QAAA4BnkPQAA7lemJr13796O32+44QalpqbqzJkzqlmzpuOKrwAAoHIj7wEAcL9y3Sddkg4fPixJioiIKHcxAADAmMh7AADco0wXjsvLy9OUKVMUGhqqqKgoRUVFKTQ0VI8//risVqurawQAAB5A3gMA4H5l2pP+4IMP6t1339UzzzyjhIQESQW3aZk+fbpOnz6tF1980aVFAgAA9yPvAQBwvzI16StXrtTq1at12223OYa1atVKERERGjJkCKENAEAVQN4DAOB+ZTrcPSAgQFFRUUWGR0dHy9/fv7w1AQAAAyDvAQBwvzI16UlJSZo1a5ZycnIcw3JycvTkk08qKSnJZcUBAADPIe8BAHC/Eh/ufscddzg9/vTTT9WoUSO1bt1akrRnzx7l5ubqlltucW2FAADAbch7AAA8q8RNemhoqNPjO++80+kxt2QBAKDyI+8BAPCsEjfpy5Ytq8g6AACAAZD3AAB4VpnOSS906tQpbd68WZs3b9apU6fKPJ/FixcrKipKgYGBio+P144dO0o03erVq2UymTRw4MAyLxsAAFydK/KerAcAoGTK1KRfunRJf/nLXxQeHq5u3bqpW7duatCgge6//35lZWWVal5vvvmmkpOTNW3aNH3zzTdq3bq1evfurZMnT151ukOHDmnChAnq2rVrWV4CAAC4BlflPVkPAEDJlalJT05O1hdffKH33ntP586d07lz5/Tf//5XX3zxhcaPH1+qec2bN08jR47UiBEjFBsbqyVLligoKEhLly694jT5+fm65557NGPGDDVu3LgsLwEAAFyDq/KerAcAoORKfE76b73zzjt6++231aNHD8ewvn37ymKxaNCgQXrxxRdLNJ/c3Fzt2rVLkydPdgwzm83q2bOntm3bdsXpZs6cqbp16+r+++/Xl19+edVl5OTkON06JjMzU5JktVpltVpLVKcRFNZamWquCKyHX7EuCrAeCrAeClTW9WDUel2R9+7Ieqli895ms8liscjPLPmabOWal1H5+5hksVgk3wBZ5VfhyytchjuWVcju4y+LxSJ/H3/52sv0Edjw/Ex+slgsstlshv27gopTWTPQW5Tm/6VMf6GysrJUr169IsPr1q1bqsPfMjIylJ+fX2Re9erVU2pqarHTbN68Wf/617+0e/fuEi1j9uzZmjFjRpHhn3zyiYKCgkpcq1GsX7/e0yUYAuvhV6yLAqyHAqyHApVtPZT2VDF3cUXeuyPrpYrP+1WrVv3/3zLKPS9DqttAD3UteI0funGx62ve476FdZJWdfr/v+dcdczKq5E0bNUwHTlyREeOHPF0NfCQypaB3qI0WV+mJj0hIUHTpk3TihUrFBgYKEnKzs7WjBkzlJCQUJZZlsiFCxd033336eWXX1ZYWFiJppk8ebL+H3t3Ht5Ugbf//066pnQBKTutBSlQhqXIUoqKiCDIyCOuiAsUHXAe6AxYN/AnmxsoCkVBURlAZljcGR4XEDsiCpUdRCkVUSzDXlAKNDRpk98ffBuNLdglzTlt36/rygU5OcsnJz355E7OkpaW5rmfl5enmJgYXXfddYqMjKyqUn3O6XRqzZo16tevn4KC/Pets9mwHn7FujiP9XAe6+G86roein/1NRsj+n1Fer1Utf1+586d6tWrl6556GXVi4mv1LzM6nD218p8+UG9PqKjbu/WpMqX51SQ1tS7S/1+XqIg+edXv8zswxow+2v1HNdTLXvVzEMoTuw7oY8f/ljr1q1Tp06djC4HflZde2BtUZ5eX6GQnp6ergEDBqh58+aeN4CdO3cqNDRUq1evLvN8oqOjFRAQoKNHj3oNP3r0qBo3blxi/H379mn//v0aNGiQZ5jLdX63s8DAQGVnZ+uyyy7zmiYkJEQhISEl5hUUFFQt/3ira92+xnr4FeviPNbDeayH86rbejBrrb7o9/7o9VLV9nur1Sq73S6nSyp0V+rCOKblKHLLbrdLhQV+C82SFCSn35ZnKXLIbrfLUeRQoaXQL8v0N6fbKbvdLqvVatr3FVS96tYDa4vyvCYVCukdOnTQ3r17tWTJEs+uakOHDtVdd911/nimMgoODlaXLl2UkZHhubSKy+VSRkaGUlNTS4zftm1b7dq1y2vY448/rtOnT2v27NmKiYmpyNMBAACl8EW/p9cDAFA+5Q7pTqdTbdu21QcffKCRI0dWuoC0tDQNHz5cXbt2Vffu3ZWenq6zZ89qxIgRkqRhw4apWbNmmjZtmkJDQ9W+fXuv6evWrStJJYYDAICK82W/p9cDAFB25Q7pQUFBOnfunM8KGDJkiI4fP65JkybpyJEjSkxM1KpVqzwnmMnJyZHVWjN3LQMAwKx82e/p9QAAlF2FdncfM2aMnn32Wc2fP1+BgZW/hEVqamqpu7xJ0tq1ay867aJFiyq9fAAAUJIv+z29HgCAsqlQx928ebMyMjL0ySefqEOHDqpTp47X4++9955PigMAAMah3wMA4H8VCul169bVLbfc4utaAACAidDvAQDwv3KFdJfLpRkzZui7776Tw+FQnz59NGXKlHKd0R0AAJgb/R4AAOOU6ywtTz/9tB577DGFh4erWbNmevHFFzVmzJiqqg0AABiAfg8AgHHKFdIXL16sl19+WatXr9aKFSv0f//3f1qyZIlcLldV1QcAAPyMfg8AgHHKFdJzcnI0cOBAz/2+ffvKYrHo0KFDPi8MAAAYg34PAIBxyhXSCwsLFRoa6jUsKChITqfTp0UBAADj0O8BADBOuU4c53a7lZKSopCQEM+wc+fO6a9//avXZVm4JAsAANUX/R4AAOOUK6QPHz68xLC7777bZ8UAAADj0e8BADBOuUL6woULq6oOAABgEvR7AACMU65j0gEAAAAAQNUhpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMINLoAAAAAAED1k5OTo9zcXKPLqFLR0dGKjY316zIJ6QAAAACAcsnJyVHbhLay59uNLqVK2cJs2pO1x69BnZAOAAAAACiX3Nxc2fPt6vVIL0XFRBldTpU4deCU1j23Trm5uYR0AAAAAID5RcVEKTo+2ugyahRCOgBUMV8cr2XE8VAAAADwP0I6gCrhqxOJVPdwmpOTo7ZtE2S351dqPjZbmPbsyarW6wIAAAB/jJAOwOd8FUyl6h9Oc3NzZbfnK+neyYpsEleheeQd3q+NC6b6/XgoAAAA+B8hHYDP+SKYSjUrnEY2idMlsW2MLgMAAPiJvy9P5nK5JEk7d+6U1Wqt8uVlZWVV+TJqK0I6gCpDMAUAALVRTk6OEtq2Ub79nN+WabPZtGzZMvXq1Ut2u38ui2aVlH+y8ntOwhshHQAAAAB8KDc3V/n2c/rXqEQlNAn3yzJd1mAdlLRufLKsLkeVL2/bD8c18p/Zcpyt+mXVNoR0AAAAAKgCCU3CdXmcf64h7lSQDkrqFBupIDmrfHln889W+TJqq6o/WAEAAAAAAJQJIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMINLoA4LdycnKUm5t7wcddLpckaefOnbJaL/wdU3R0tGJjY31eHwAAAABUJUI6TCMnJ0cJbdso337uguPYbDYtW7ZMvXr1kt1uv+B4YbZQZe3JJqgDAAAAqFYI6TCN3Nxc5dvP6V+jEpXQJLzUcVzWYB2UtG58sqwuR6njZB0+o7tf26Hc3FxCOgAAAIBqhZAO00loEq7L46JKfcypIB2U1Ck2UkFy+rcwP/PFrv/s9g8AAABUL4R0wIR8tes/u/0DAAAA1QshHTAhX+z6z27/AAAAQPVDSAdMjF3/AQAAgNqF66QDAAAAAGAShHQAAAAAAEyCkA4AAAAAgElwTDpqrKysrErPg0uYAQAAAPAnQjpqnAJHgSTp7rvvrvS8bGE27cnaQ1AHAAAA4BeEdNQ4hYWFkqTOwzqrebfmFZ7PqQOntO65dVzCDDCRnJwc5ebmXvBxl8slSdq5c6es1gsf0cVeMgAAwKxMEdLnzp2rGTNm6MiRI+rUqZNeeuklde/evdRxX3/9dS1evFjffPONJKlLly565plnLjg+aq/wxuGKjo82ugwAPpKTk6OEtm2Ubz93wXFsNpuWLVumXr16yW63X3C8MFuosvZkE9T9iF4PAEDZGB7S33zzTaWlpWnevHlKSkpSenq6+vfvr+zsbDVs2LDE+GvXrtXQoUPVs2dPhYaG6tlnn9V1112nb7/9Vs2aNTPgGQAA/CE3N1f59nP616hEJTQJL3UclzVYByWtG58sq8tR6jhZh8/o7td2sJeMH9HrAQAoO8ND+syZMzVy5EiNGDFCkjRv3jx9+OGHWrBggcaPH19i/CVLlnjdnz9/vt59911lZGRo2LBhfqkZAGCchCbhujwuqtTHnArSQUmdYiMVJKd/C8MF0esBACg7Q0O6w+HQ1q1bNWHCBM8wq9Wqvn37KjMzs0zzyM/Pl9Pp1CWXXFLq4wUFBSooKPDcz8vLkyQ5nU45ndXnA1xxrdWp5vJyuVyy2WxyWYPlVFCp4xQPv9DjkuQOCJbNZlNwQLAC3RX/Ew+yBJ2vx+Uq13r/73//qxMnTlR4uZKUnZ1d6XXhsgZXqH5fKH4tg6xSoMVV4fkEWfWHz8Hs24Yv1kVNWA++4Kv3CCO3jQsxSx1VwR+9Xqrafu+r9zQzCw6wyGazSYEhF91+fKUs26qv+erzgZlV9LMLfK8sPcvX/L1dsU2VT3mmt7jdbnelllYJhw4dUrNmzbRhwwYlJyd7hj/yyCP6/PPPtXHjxj+cx+jRo7V69Wp9++23Cg0NLfH4lClTNHXq1BLDly5dqrCwsMo9AQAAfCA/P1933nmnTp06pcjISKPL8Sl/9HqJfg8AMLfy9Ppq/ZXH9OnTtXz5cq1du/aCTXvChAlKS0vz3M/Ly1NMTIyuu+66avVByOl0as2aNerXr5+Cgvz3rbM/7dy5U7169dK68cnqFFv6a+NUkNbUu0v9fl5ywV1ZM7MPa8Dsr9VzXE+17NWywvWc2HdCHz/8sdatW6dOnTqV6zl0vWe8IhpV/FjXEz/t1ddvz9LrIzrq9m5NSh3nj9bFzpw89Zqeqddff11t2rSpcC2SVL9+fTVvXvYz5Revh2seeln1YuIrvNyfD+zVZ8+PvuhrYPZtwxfroiasB1/w1XuEkdvGhRT/6ouSytLrpart9756TzOzw9lfK/PlBy/ad3ypLNuqr/nq84GZVeSzC6pGWXqWr/l7u2KbKp/y9HpDQ3p0dLQCAgJ09OhRr+FHjx5V48aNLzrt888/r+nTp+vTTz9Vx44dLzheSEiIQkJCSgwPCgqqlh9kq2vdZWG1WmW322V1Of7wjSVIzguOYylyyG63y1HkUKGlsML1ON3O8/VYrWVe58XPIbRBrCKaV/zDf97p/PNnpi4sqPC6cJ47Lbvdbsj14ovXg9MlFbovfBmsP+J0qcyvgVm3DV+si+L1kJ2dfcHLihVfemz37t019tJjvnqPMHLbuBAz/u36ij96vVS1/d5X72lm5ihyl7nv+NLFtlVf89XnAzOryGcXVI3y9Cxf89d2xTZVPuWZ3tCQHhwcrC5duigjI0ODBw+WdP6DZkZGhlJTUy843XPPPaenn35aq1evVteuXf1ULVC9cL34msNZcP4s5RcLlVx6rOzYNvyLXg8AQPkYvrt7Wlqahg8frq5du6p79+5KT0/X2bNnPWeAHTZsmJo1a6Zp06ZJkp599llNmjRJS5cuVVxcnI4cOSJJCg8PV3h46ZfkAWozrhdf/RWHyidvbq2BHUperkri0mMVwbbhP/R6AADKzvCQPmTIEB0/flyTJk3SkSNHlJiYqFWrVqlRo0aSpJycHK9dN1955RU5HA7deuutXvOZPHmypkyZ4s/SAcCvWkSHcekxVEv0egAAys7wkC5JqampF9zlbe3atV739+/fX/UFAQAAn6LXAwBQNqYI6QAA/8nKyqr0PKrzCegAAADMjJAOALVEgaNA0sVPQFdWvjqrOQAAALwR0gGgluCs5gAAAOZHSAeAWoazmgMAAJiX9Y9HAQAAAAAA/kBIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGASgUYXAN/KyclRbm5upeYRHR2t2NhYH1UEAAAAACgrQnoNkpOTo7YJbWXPt1dqPrYwm/Zk7SGoAwAAAICfEdJrkNzcXNnz7er1SC9FxURVaB6nDpzSuufWKTc3l5AOAAAAAH5GSK+BomKiFB0fbXQZAAAAAIBy4sRxAAAAAACYBL+kAwAAAPArX5zs2MyysrKMLgHVGCEdgOldrNG5XC5J0s6dO2W1XnjnIK5aAACAOeTk5Kht2wTZ7flGl1LFLDp86pykip0rCrUXIR0+U9lvRPnGEb/nLHBIku6+++4LjmOz2bRs2TL16tVLdvuFr2wQZgtV1p5sgjoAAAbLzc2V3Z6vpHsnK7JJnNHlVInjP+7RjqXP6pf8QqNLQTVESIdP+O4bUb5xxK8KC883tidvbq2BHRqWOo7LGqyDktaNT5bV5Sh1nKzDZ3T3azu4agEAACYS2SROl8S2MbqMKmE/W9P3EkBVIqTDJ3zxjSjfOOJCWkSH6fK40r+4cSpIByV1io1UkJz+LQzlwt42AAAAf4yQDp+qzDeifOOIqlbZkMdx7RXH3jYAAABlQ0gHUOMVOAokXfzY9rKwhdm0J2sPQb0C2NsGAACgbAjpAGq84mPbOw/rrObdmldoHqcOnNK659ZxXHslsbcNAADAxRHSAdQa4Y3DFR0fbXQZAAAAwAVd+KLCAAAAAADArwjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEmYIqTPnTtXcXFxCg0NVVJSkjZt2nTR8d9++221bdtWoaGh6tChgz766CM/VQoAACqCXg8AQNkYHtLffPNNpaWlafLkydq2bZs6deqk/v3769ixY6WOv2HDBg0dOlT33Xeftm/frsGDB2vw4MH65ptv/Fw5AAAoC3o9AABlZ3hInzlzpkaOHKkRI0aoXbt2mjdvnsLCwrRgwYJSx589e7YGDBighx9+WAkJCXryySd1+eWXa86cOX6uHAAAlAW9HgCAsgs0cuEOh0Nbt27VhAkTPMOsVqv69u2rzMzMUqfJzMxUWlqa17D+/ftrxYoVpY5fUFCggoICz/1Tp05Jkk6ePCmn01nJZyAdO3ZMR48erfR8rFarXC7XBR93uVzKz8/XF198Iau19O9W9u7dq9DQUJ3+8bR0rmJ1nD58WqGhocrLy9OJEyfKPF1eXp5CQ0N15uB3ktNeoWXbj/yg0NBQZec6tPa706WO47IGK/9P+fri+zOyuhyljvPNIYdCQ0OVfyhfubtyK1SLVLF14Yv1IPlmXbAefuWLdcG28Suj/iZqwnq44LxOn38+bre7UvMxI3/0eqlq+72v3tPMrCzbly+VZVv1NV9t+2bmy/elqsQ2VTX8vV2xTZVzXuXp9W4DHTx40C3JvWHDBq/hDz/8sLt79+6lThMUFOReunSp17C5c+e6GzZsWOr4kydPdkvixo0bN27cTH87cOCAbxqsifij17vd9Htu3Lhx41Y9bmXp9Yb+ku4PEyZM8Po23uVy6eTJk6pfv74sFouBlZVPXl6eYmJidODAAUVGRhpdjmFYD79iXZzHejiP9XBedV0Pbrdbp0+fVtOmTY0updqqKf2+tqiu2ypgZmxX5laeXm9oSI+OjlZAQECJ3cWPHj2qxo0blzpN48aNyzV+SEiIQkJCvIbVrVu34kUbLDIyko1OrIffYl2cx3o4j/VwXnVcD1FRUUaXUCX80eulmtfva4vquK0CZsd2ZV5l7fWGnjguODhYXbp0UUZGhmeYy+VSRkaGkpOTS50mOTnZa3xJWrNmzQXHBwAAxqHXAwBQPobv7p6Wlqbhw4era9eu6t69u9LT03X27FmNGDFCkjRs2DA1a9ZM06ZNkySNHTtWV199tV544QX9+c9/1vLly7Vlyxa99tprRj4NAABwAfR6AADKzvCQPmTIEB0/flyTJk3SkSNHlJiYqFWrVqlRo0aSpJycHK+zmffs2VNLly7V448/rscee0zx8fFasWKF2rdvb9RT8IuQkBBNnjy5xK58tQ3r4Vesi/NYD+exHs5jPZgTvR6/x7YK+B7bVc1hcbtr4PVeAAAAAACohgw9Jh0AAAAAAPyKkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjp1cDcuXMVFxen0NBQJSUladOmTUaX5Hfr1q3ToEGD1LRpU1ksFq1YscLokgwxbdo0devWTREREWrYsKEGDx6s7Oxso8vyu1deeUUdO3ZUZGSkIiMjlZycrI8//tjosgw3ffp0WSwWjRs3zuhS/G7KlCmyWCxet7Zt2xpdFoAL4LMN4Dt8Tq55COkm9+abbyotLU2TJ0/Wtm3b1KlTJ/Xv31/Hjh0zujS/Onv2rDp16qS5c+caXYqhPv/8c40ZM0ZfffWV1qxZI6fTqeuuu05nz541ujS/at68uaZPn66tW7dqy5Yt6tOnj2688UZ9++23RpdmmM2bN+vVV19Vx44djS7FMH/60590+PBhz+3LL780uiQApeCzDeBbfE6uebhOusklJSWpW7dumjNnjiTJ5XIpJiZGf/vb3zR+/HiDqzOGxWLR+++/r8GDBxtdiuGOHz+uhg0b6vPPP1evXr2MLsdQl1xyiWbMmKH77rvP6FL87syZM7r88sv18ssv66mnnlJiYqLS09ONLsuvpkyZohUrVmjHjh1GlwLgD/DZBqg6fE6uGfgl3cQcDoe2bt2qvn37eoZZrVb17dtXmZmZBlYGszh16pSk8wG1tioqKtLy5ct19uxZJScnG12OIcaMGaM///nPXu8VtdHevXvVtGlTtWzZUnfddZdycnKMLgnA7/DZBgD+WKDRBeDCcnNzVVRUpEaNGnkNb9Sokfbs2WNQVTALl8ulcePG6YorrlD79u2NLsfvdu3apeTkZJ07d07h4eF6//331a5dO6PL8rvly5dr27Zt2rx5s9GlGCopKUmLFi1SmzZtdPjwYU2dOlVXXXWVvvnmG0VERBhdHoD/h882APDHCOlANTVmzBh98803tfa42zZt2mjHjh06deqU3nnnHQ0fPlyff/55rQrqBw4c0NixY7VmzRqFhoYaXY6hrr/+es//O3bsqKSkJF166aV66623auUhEAAAoPoipJtYdHS0AgICdPToUa/hR48eVePGjQ2qCmaQmpqqDz74QOvWrVPz5s2NLscQwcHBatWqlSSpS5cu2rx5s2bPnq1XX33V4Mr8Z+vWrTp27Jguv/xyz7CioiKtW7dOc+bMUUFBgQICAgys0Dh169ZV69at9f333xtdCoDf4LMNAPwxjkk3seDgYHXp0kUZGRmeYS6XSxkZGbX22Nvazu12KzU1Ve+//77+85//qEWLFkaXZBoul0sFBQVGl+FX1157rXbt2qUdO3Z4bl27dtVdd92lHTt21NqALp0/md6+ffvUpEkTo0sB8Bt8tgGAP8Yv6SaXlpam4cOHq2vXrurevbvS09N19uxZjRgxwujS/OrMmTNev4j9+OOP2rFjhy655BLFxsYaWJl/jRkzRkuXLtW///1vRURE6MiRI5KkqKgo2Ww2g6vznwkTJuj6669XbGysTp8+raVLl2rt2rVavXq10aX5VURERInzEdSpU0f169evdecpeOihhzRo0CBdeumlOnTokCZPnqyAgAANHTrU6NIA/A6fbQDf4nNyzUNIN7khQ4bo+PHjmjRpko4cOaLExEStWrWqxAlXarotW7bommuu8dxPS0uTJA0fPlyLFi0yqCr/e+WVVyRJvXv39hq+cOFCpaSk+L8ggxw7dkzDhg3T4cOHFRUVpY4dO2r16tXq16+f0aXBIP/97381dOhQnThxQg0aNNCVV16pr776Sg0aNDC6NAC/w2cbwLf4nFzzcJ10AAAAAABMgmPSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAFQTvXv31rhx4y74eFxcnNLT0/1WDwDfI6QDqDL79++XxWLRjh07jC4FAIBaYfPmzRo1apTRZZTJ22+/rbZt2yo0NFQdOnTQRx99ZHRJgCkQ0gEYzuFwGF0CAAA1QoMGDRQWFlaly/BF396wYYOGDh2q++67T9u3b9fgwYM1ePBgffPNNz6oEKjeCOlADeZyufTcc8+pVatWCgkJUWxsrJ5++mlJ0q5du9SnTx/ZbDbVr19fo0aN0pkzZzzTlrY73eDBg5WSkuK5HxcXp2eeeUb33nuvIiIiFBsbq9dee83zeIsWLSRJnTt3lsViUe/evSVJKSkpGjx4sJ5++mk1bdpUbdq00RNPPKH27duXeA6JiYmaOHGij9YIAADVX2FhoVJTUxUVFaXo6GhNnDhRbrdbUsnd3S0Wi+bPn6+bbrpJYWFhio+P18qVKz2PFxUV6b777lOLFi1ks9nUpk0bzZ4922t5VdG3Z8+erQEDBujhhx9WQkKCnnzySV1++eWaM2dOBdcKUHMQ0oEabMKECZo+fbomTpyo3bt3a+nSpWrUqJHOnj2r/v37q169etq8ebPefvttffrpp0pNTS33Ml544QV17dpV27dv1+jRo/W///u/ys7OliRt2rRJkvTpp5/q8OHDeu+99zzTZWRkKDs7W2vWrNEHH3yge++9V1lZWdq8ebNnnO3bt+vrr7/WiBEjKrkmAACoOd544w0FBgZq06ZNmj17tmbOnKn58+dfcPypU6fq9ttv19dff62BAwfqrrvu0smTJyWd/0K/efPmevvtt7V7925NmjRJjz32mN566y2vefi6b2dmZqpv375ew/r376/MzMzyrAqgRgo0ugAAVeP06dOaPXu25syZo+HDh0uSLrvsMl155ZV6/fXXde7cOS1evFh16tSRJM2ZM0eDBg3Ss88+q0aNGpV5OQMHDtTo0aMlSY8++qhmzZqlzz77TG3atFGDBg0kSfXr11fjxo29pqtTp47mz5+v4OBgz7D+/ftr4cKF6tatmyRp4cKFuvrqq9WyZcuKrwgAAGqYmJgYzZo1SxaLRW3atNGuXbs0a9YsjRw5stTxU1JSNHToUEnSM888oxdffFGbNm3SgAEDFBQUpKlTp3rGbdGihTIzM/XWW2/p9ttv9wz3dd8+cuRIic8bjRo10pEjR8q+IoAail/SgRoqKytLBQUFuvbaa0t9rFOnTp6ALklXXHGFXC6X51fwsurYsaPn/xaLRY0bN9axY8f+cLoOHTp4NXpJGjlypJYtW6Zz587J4XBo6dKluvfee8tVDwAANV2PHj1ksVg895OTk7V3714VFRWVOv5ve3WdOnUUGRnp1avnzp2rLl26qEGDBgoPD9drr72mnJwcr3nQtwH/4Zd0oIay2WyVmt5qtXqObyvmdDpLjBcUFOR132KxyOVy/eH8f/sFQbFBgwYpJCRE77//voKDg+V0OnXrrbeWs3IAAPBbF+vVy5cv10MPPaQXXnhBycnJioiI0IwZM7Rx40avaXzdtxs3bqyjR496DTt69GiJPe+A2ohf0oEaKj4+XjabTRkZGSUeS0hI0M6dO3X27FnPsPXr18tqtapNmzaSzp8d9vDhw57Hi4qKyn3G1eJv3C/0zf7vBQYGavjw4Vq4cKEWLlyoO+64o9JfNgAAUNP8PkB/9dVXio+PV0BAQLnntX79evXs2VOjR49W586d1apVK+3bt69M01ambycnJ5f4jLJmzRolJyeX+zkANQ2/pAM1VGhoqB599FE98sgjCg4O1hVXXKHjx4/r22+/1V133aXJkydr+PDhmjJlio4fP66//e1vuueeezzHh/Xp00dpaWn68MMPddlll2nmzJn65ZdfylVDw4YNZbPZtGrVKjVv3lyhoaGKioq66DR/+ctflJCQIOn8BwcAAOAtJydHaWlpuv/++7Vt2za99NJLeuGFFyo0r/j4eC1evFirV69WixYt9M9//lObN2/2XKHlj1S0b48dO1ZXX321XnjhBf35z3/W8uXLtWXLFq+rxAC1Fb+kAzXYxIkT9eCDD2rSpElKSEjQkCFDdOzYMYWFhWn16tU6efKkunXrpltvvVXXXnut12VP7r33Xg0fPlzDhg3znATmmmuuKdfyAwMD9eKLL+rVV19V06ZNdeONN/7hNPHx8erZs6fatm2rpKSkcj9nAABqumHDhslut6t79+4aM2aMxo4dq1GjRlVoXvfff79uvvlmDRkyRElJSTpx4oTnhLBlUdG+3bNnTy1dulSvvfaaOnXqpHfeeUcrVqwo9bJuQG1jcf/+oFMAMJDb7VZ8fLxGjx6ttLQ0o8sBAAAXQd8GfI/d3QGYxvHjx7V8+XIdOXKEa6MDAGBy9G2gahDSAZhGw4YNFR0drddee0316tUzuhwAAHARF+vb4eHhF5zu448/1lVXXVXV5QHVFru7AwAAAPCp77///oKPNWvWjKu3ABdBSAcAAAAAwCQ4uzsAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMItDoAvzN5XLp0KFDioiIkMViMbocAADkdrt1+vRpNW3aVFYr35/7Av0eAGAm5en1tS6kHzp0SDExMUaXAQBACQcOHFDz5s2NLqNGoN8DAMyoLL2+1oX0iIgISedXTmRkpMHVoDROp1OffPKJrrvuOgUFBRldDlDtsU2ZX15enmJiYjw9CpVHvzc33pcA32O7Mrfy9PpaF9KLd3mLjIykaZuU0+lUWFiYIiMjeYMBfIBtqvpgt2zfod+bG+9LgO+xXVUPZen1HPgGAAAAAIBJENIBAAAAADAJQjoAAAAAACZR645JB1B7ud1uFRYWqqioyOhS/MrpdCowMFDnzp2rdc/dLAICAhQYGMgx5wBQxWprr5fo92YQFBSkgICASs+HkA6gVnA4HDp8+LDy8/ONLsXv3G63GjdurAMHDhASDRQWFqYmTZooODjY6FIAoEaqzb1eot+bgcViUfPmzRUeHl6p+RDSAdR4LpdLP/74owICAtS0aVMFBwfXqublcrl05swZhYeHy2rlKCd/c7vdcjgcOn78uH788UfFx8fzOgCAj9X2Xi/R743mdrt1/Phx/fe//1V8fHylflEnpAOo8RwOh1wul2JiYhQWFmZ0OX7ncrnkcDgUGhpK0zaIzWZTUFCQfvrpJ89rAQDwndre6yX6vRk0aNBA+/fvl9PprFRI59UDUGvQsGAk/v4AoOrxXgsj+WrvDf6KAQAAAAAwCUI6AAAAAAAmQUgHAFxU7969NW7cONPMBwAA+B793jw4cRwAwKfWrl2ra665Rj///LPq1q3rGf7ee+8pKCjIuMIAAIDP0O+rDiEdAOAXl1xyidElAACAKka/rzx2dwcAk+rdu7dSU1OVmpqqqKgoRUdHa+LEiXK73ZKkn3/+WcOGDVO9evUUFham66+/Xnv37vVMv2jRItWtW1crVqxQly5dFBYWpv79++vAgQOecVJSUjR48GCv5Y4bN069e/e+YF3//Oc/1bVrV0VERKhx48a68847dezYMUnS/v37dc0110iS6tWrJ4vFopSUFM/z+e3ub2Wtf/Xq1UpISFB4eLgGDBigw4cPV2R1AgBgSvR7+v3vEdIBwMTeeOMNBQYGatOmTZo9e7Zmzpyp+fPnSzrfcLds2aKVK1cqMzNTbrdbAwcOlNPp9Eyfn5+vadOm6ZVXXtEXX3yhX375RXfccUelanI6nXryySe1c+dOrVixQvv37/c05piYGL377ruSpOzsbB0+fFizZ88udT5lrf/555/XP//5T61bt045OTl66KGHKlU/AABmQ7+n3/8Wu7sDgInFxMRo1qxZslgsatOmjXbt2qVZs2apd+/eWrlypdavX6+ePXtKkpYsWaKYmBitWLFCt912m6TzDfbFF19UQkKCIiMj9cYbbyghIUGbNm1S9+7dK1TTvffe6/l/y5Yt9eKLL6pbt246c+aMwsPDPbu5NWzY0OsYtd/au3dvmeufN2+eLrvsMklSamqqnnjiiQrVDQCAWdHv6fe/xS/pAGBiPXr0kMVi8dxPTk7W3r17tXv3bgUGBiopKcnzWP369dWmTRtlZWV5hgUGBqpbt26e+23btlXdunW9ximvrVu3atCgQYqNjVVERISuvvpqSVJOTk6Z55GVlVWm+sPCwjwNW5KaNGni2dUOAICagn5Pv/8tQjoA1GJWq9VzzFux3+5+9ntnz55V//79FRkZqSVLlmjz5s16//33JUkOh8Pn9f3+7LAWi6VEvQAA4OLo99ULIR0ATGzjxo1e97/66ivFx8erXbt2Kiws9Hr8xIkTys7OVrt27TzDCgsLtWXLFs/97Oxs/fLLL0pISJAkNWjQoMSJWXbs2HHBevbs2aMTJ05o+vTpuuqqq9S2bdsS33QHBwdLkoqKii44n4SEhDLVDwBAbUC/x28R0gHAxHJycpSWlqbs7GwtW7ZML730ksaOHav4+HjdeOONGjlypL788kvt3LlTd999t5o1a6Ybb7zRM31QUJDGjh2rLVu2aOvWrUpJSVGPHj08x6f16dNHW7Zs0eLFi7V3715NnjxZ33zzzQXriY2NVXBwsF566SX98MMPWrlypZ588kmvcS699FJZLBZ98MEHOn78uM6cOVNiPmWtHwCA2oB+j98ipAOAiQ0bNkx2u13du3fXmDFjNHbsWI0aNUqStHDhQnXp0kU33HCDkpOT5Xa79dFHH3ntMhYWFqaHH35YI0eO1FVXXaXw8HC9+eabnsf79++viRMn6pFHHlG3bt10+vRpDRs27IL1NGjQQIsWLdLbb7+tdu3aafr06Xr++ee9xmnWrJmmTp2q8ePHq1GjRkpNTS11XmWpHwCA2oB+j9+yuGvZzv55eXmKiorSqVOnFBkZaXQ5KIXT6dRHH32kgQMHsvHCJ86dO6cff/xRLVq0UGhoqNHllFnv3r2VmJio9PT0Ck2/aNEijRs3TidPnlReXp4iIyNltfLdrFEu9ndIb/I91qm50evha9W110v0+5rEV72eVw8AAAAAAJMgpAMAAAAAYBKBRhcAACjd2rVrKzV9SkqKUlJS5HK5fFMQAADwOfo9fo9f0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACT4OzuAGq1nJwc5ebm+m150dHRio2N9dvyAACo7ej1qG4I6QBqrZycHLVtmyC7Pd9vy7TZwrRnT5bpmndcXJzGjRuncePGXXAch8Ohdu3aafHixerZs6f/ijMBi8Wi999/X4MHDy718d27d+u6665Tdna26tSp49/iAAAXRK//Fb3+4szU6wnpAGqt3Nxc2e35Srp3siKbxFX58vIO79fGBVOVm5trusZdFvPmzVOLFi2qddPev3+/WrRooe3btysxMdFn823Xrp169OihmTNnauLEiT6bLwCgcuj15UOvvzB/9npCOoBaL7JJnC6JbWN0Gabmdrs1Z84cPfHEE5WeT1FRkQIDa177GTFihEaOHKkJEybUyOcHANUZvf6P0ev/mL96PSeOAwAT6927t1JTU5WamqqoqChFR0dr4sSJcrvdnnF+/vlnDRs2TPXq1VNYWJiuv/567d2712s+K1euVIcOHRQSEqK4uDi98MIL5apj69at2rdvn/785z97hu3fv18Wi0XLly9Xz549FRoaqvbt2+vzzz/3jLN27VpZLBZ9/PHH6tKli0JCQvTll1/K5XJp2rRpatGihWw2mzp16qR33nmnxHSrV69W586dZbPZ1KdPHx07dkwff/yxEhISFBkZqTvvvFP5+b/uwrhq1SpdeeWVqlu3rurXr68bbrhB+/bt8zzeokULSVLnzp1lsVjUu3dvz2MLFizQn/70J4WEhKhJkyZKTU31Wge5ubm66aabFBYWpvj4eK1cudLr8X79+unkyZNezx8AgD/iq17/7rvvKjk5WTabjV6v6t3rCekAYHJvvPGGAgMDtWnTJs2ePVszZ87U/PnzPY+npKRoy5YtWrlypTIzM+V2uzVw4EA5nU5J55vuiBEjNGTIEO3atUtTpkzRxIkTtWjRojLX8MUXX6h169aKiIgo8djDDz+sBx98UNu3b1dycrIGDRqkEydOeI0zfvx4TZ8+XVlZWerYsaOmTZumxYsXa968efr222/1wAMP6O677y7R9KZMmaI5c+Zow4YNOnDggG6//Xalp6dr6dKl+vDDD/XJJ5/opZde8ox/9uxZpaWlacuWLcrIyJDVatVNN90kl8slSdq0aZMk6dNPP9Xhw4f13nvvSZJeeeUVjRkzRqNGjdKuXbu0cuVKtWrVyquWqVOn6vbbb9fXX3+tgQMH6q677tLJkyc9jwcHBysxMVFffPFFmdcrAACSb3r9HXfcoZtvvlk7d+6k16t69/qatw8CANQwMTExmjVrliwWi9q0aaNdu3Zp1qxZGjlypPbu3auVK1dq/fr1nuPHlixZopiYGK1YsUK33XabZs2apauvvlqPP/64rFarWrdurd27d2vGjBlKSUkpUw0//fSTmjZtWupjqampuuWWWySdb4CrVq3SP/7xDz3yyCOecZ544gn169dPklRQUKBnnnlGn376qZKTkyVJLVu21JdffqlXX31VV199tWe6p556SldccYUk6b777tOECRO0b98+tWzZUpJ066236rPPPtOjjz4qSZ46ii1YsEANGjTQ7t271b59ezVo0ECSVL9+fTVu3NhrOQ8++KDGjh3rGdatWzeveaWkpGjo0KGSpGeeeUYvvviiNm3apAEDBnjGadq0qX766aeLr0wAAH6nsr1+5syZ6tOnjx5++GFFRkaqbdu29Ppq3OsN/yV97ty5iouLU2hoqJKSkjzffFxIenq62rRpI5vNppiYGD3wwAM6d+6cn6oFAP/r0aOHLBaL535ycrL27t2roqIiZWVlKTAwUElJSZ7H69evrzZt2igrK0uStGfPHq/HJemKK67wzKMs7Ha7QkNDS32suPlKUmBgoLp27epZdrGuXbt6/v/9998rPz9f/fr1U3h4uOe2ePFir93VJKljx46e/zdq1EhhYWGepl087NixY577e/fu1dChQ9WyZUtFRkYqLi5O0vmz+17IsWPHdOjQIV177bUXWQPetdSpU0eRkZFey5Ykm83mtUsefkW/B4ALq2yvz8rK8gTdYvT6X1W3Xm/oL+lvvvmm0tLSNG/ePCUlJSk9PV39+/dXdna2GjZsWGL8pUuXavz48VqwYIF69uyp7777TikpKbJYLJo5c6YBzwAAaofo6Gjt2rWrwtP/9lIlZ86ckSR9+OGHatasmdd4ISEhXveDgoI8/7dYLF73i4cV794mSYMGDdKll16q119/XU2bNpXL5VL79u3lcDguWJvNZivTc/ijZUvSyZMnddlll5VpfrUJ/R4AzI9eb55eb+gv6TNnztTIkSM1YsQItWvXTvPmzVNYWJgWLFhQ6vgbNmzQFVdcoTvvvFNxcXG67rrrNHTo0D/8Nh4AqrONGzd63f/qq68UHx+vgIAAJSQkqLCw0GucEydOKDs7W+3atZMktW3btsQ81q9fr9atWysgIKBMNXTu3Fl79uzxOonNb+spVlhYqK1btyohIeGC82rXrp1CQkKUk5OjVq1aed1iYmLKVE9pip/3448/rmuvvVYJCQn6+eefvcYJDg6WJK9fFSIiIhQXF6eMjIwKL7vYN998o86dO1d6PjUN/R4ALq6yvT4hIUHr16/3mge9vvr2esN+SXc4HNq6dasmTJjgGWa1WtW3b19lZmaWOk3Pnj31r3/9S5s2bVL37t31ww8/6KOPPtI999xzweUUFBSooKDAcz8vL0+S5HQ6PSdagLkUvy68PvAVp9Mpt9stl8vl9W1o8f/zDu2XSvYjn8s7vN+z3N9/K3sxOTk5euCBBzRq1Cht27ZNL730kmbMmCGXy6XLLrtM//M//6ORI0fqlVdeUUREhCZMmKBmzZpp0KBBcrlceuCBB9SjRw89+eSTGjJkiDIzMzVnzhzNmTPHq47idVSaq6++WmfOnNGuXbvUvn17z/OQzu/GfNlllykhIUHp6en6+eeflZKS4vU8f/v/OnXq6MEHH9QDDzygwsJCXXnllTp16pQ2bNigiIgIDR8+vNTpfv9vcc3Fw6KiolS/fn29+uqratSokXJycvTYY495zSc6Olo2m00ff/yxmjZtqtDQUEVFRWnSpEkaPXq0GjRooAEDBuj06dPasGGD11lfS3vdfjts//79OnjwoPr06VPqenS5XHK73XI6nSU+MNXk9zv6PUpDr4ev0esfUFJSkmbMmKG7775bX331Fb2+Gvd6w0J6bm6uioqK1KhRI6/hjRo10p49e0qd5s4771Rubq6uvPJKud1uFRYW6q9//avnhSnNtGnTNHXq1BLDP/nkE4WFhVXuSaBKrVmzxugSUEMEBgaqcePGOnPmjNeuUCEhIQq12bRxYcn3iKoSarMpJCTEEyD+SGFhoYYMGaJTp04pKSlJAQEBuv/++3XHHXd45jF79myNHz9egwYNktPpVM+ePbV8+XLZ7XbZ7XbFx8dr4cKFmjZtmp5++mk1atRIEyZM0M033+yZh8vl0rlz5y5YV1BQkG644QYtXLhQkydPlvTrrmwTJ07UtGnTtGvXLrVs2VJLly5VcHCw8vLyPMdsnT59WlbrrztvPfTQQ4qIiNC0adO0f/9+RUVFqVOnTnrggQcuON25c+fkdru9aiwoKFBRUZFn2Pz58zV+/Hh17NhRrVq10rPPPqsbbrhBdrvdM8706dP13HPPafLkyUpOTtYHH3ygm266Sb/88ovmzp2rhx9+WPXr19f//M//eC3rt/OQzn9o+O06W7Rokfr06aN69eqVuh4dDofsdrvWrVunwsJCr8dq8nHs9HtcDL0evlLbe32rVq08vX7GjBn0+mre6y3u0vZn8INDhw6pWbNm2rBhg9eJCB555BF9/vnnJXb5kM5fS++OO+7QU089paSkJH3//fcaO3asRo4cqYkTJ5a6nNK+WY+JiVFubq4iIyN9/8RQaU6nU2vWrFG/fv1KHBcCVMS5c+d04MABz0mrfisnJ0e5ubl+qyU6OlqxsbFlHr9Pnz7q1KmTZs2aVeFlut1unT59WhEREV4npSmvr7/+Wv3799fevXsVHh6u/fv367LLLtPWrVuVmJhY4fnWBA6HQ23atNG//vWvEifuKXbu3Dnt379fMTExJf4O8/LyFB0drVOnTtW43kS/R2no9fC12t7rJd/0e3r9hfmz1xv2S3p0dLQCAgJ09OhRr+FHjx71OlX+b02cOFH33HOP/vKXv0iSOnTooLNnz2rUqFH6//6//8/rm5tiISEhJU5OIJ3/poimYG68RvCVoqIiWSwWWa3WEu8TcXFxnrOCmlVx7RVVvDtWZeeTmJioZ599Vj/99JM6dOjgmVdp67W2+e9//6vHHntMV1111QXHsVqtnhPi/P69rSa/19HvcTG8PvCV2t7rJd/0e3r9hfmz1xu2poODg9WlSxevg/ddLpcyMjK8vmn/rfz8/BJ/HMX7+hu0QwAA1CopKSnq0KGD0WWYTqtWrXT//fcbXYYp0e8BoHqh15fOn73e0EuwpaWlafjw4eratau6d++u9PR0nT17ViNGjJAkDRs2TM2aNdO0adMknT/d/syZM9W5c2fP7m8TJ07UoEGDynzWQgCoTtauXWt0CRcUFxdHYEKZ0O8B4MLo9fg9Q0P6kCFDdPz4cU2aNElHjhxRYmKiVq1a5Tm5TE5Ojtc36Y8//rgsFosef/xxHTx4UA0aNNCgQYP09NNPG/UUAADAH6DfAwBQdoadOM4oeXl5ioqKqpEn56kpnE6nPvroIw0cOJDj1OAT586d048//qgWLVqUOIlHbeByuZSXl6fIyMhafzyZkS72d0hv8j3WqbnR6+Frtb3XS/R7M/BVr+fVAwAAAADAJAjpAAAAAACYBCEdAAAAAACTMPTEcQBgtJycHOXm5vptedHR0YqNjfXb8gAAqO3o9ahuCOkAaq2cnBwltG2jfPs5vy0zzBaqrD3ZpmrecXFxGjdunMaNG2d0KQAA+BS9/jx6ffVCSAdQa+Xm5irffk7/GpWohCbhVb68rMNndPdrO5Sbm2uqxg0AQE1Fr0d1REgHUOslNAnX5XFRRpcBAACqCL0e1QknjgMAE+vdu7dSU1OVmpqqqKgoRUdHa+LEiXK73ZKkn3/+WcOGDVO9evUUFham66+/Xnv37vWax7vvvqvk5GTZbDbFxcXphRdeMOKpAACAUviq13fo0EGNGjVSy5Yt6fXVHCEdAEzujTfeUGBgoDZt2qTZs2dr5syZmj9/viQpJSVFW7Zs0cqVK5WZmSm3262BAwfK6XRKkrZu3ao77rhDN998s3bu3KkpU6Zo4sSJWrRokYHPCAAA/FZle/3tt9+uIUOGaP369Zo0aRK9vppjd3cAMLmYmBjNmjVLFotFbdq00a5duzRr1iz17t1bK1eu1Pr169WzZ09J0pIlSxQTE6MVK1botttu08yZM9WnTx89/PDDioyMVNu2bbV7927NmDFDKSkpxj4xAAAgqfK9/tprr9Xjjz+uvLw8XX755dqzZw+9vhrjl3QAMLkePXrIYrF47icnJ2vv3r3avXu3AgMDlZSU5Hmsfv36atOmjbKysiRJWVlZuuKKK7zmd8UVV2jv3r0qKiryzxMAAAAXRa/HbxHSAQAAAAAwCUI6AJjcxo0bve5/9dVXio+PV7t27VRYWOj1+IkTJ5Sdna127dpJkhISErR+/Xqv6devX6/WrVsrICCg6osHAAB/iF6P3+KYdAC1XtbhM6ZeTk5OjtLS0nT//fdr27Zteumll/TCCy8oPj5eN954o0aOHKlXX31VERERGj9+vJo1a6Ybb7xRkvTggw+qW7dumjFjhu655x5t3LhRc+bM0csvv+zLpwYAgKnVhl7/1FNPaeDAgdq1axe9vpojpAOotaKjoxVmC9Xdr+3w2zLDbKGKjo4u1zTDhg2T3W5X9+7dFRAQoLFjx2rUqFGSpIULF2rs2LG64YYb5HA41KtXL3300UcKCgqSJF1++eVavny5Jk2apBkzZqhJkyZ64oknOJEMAKBWqC29/q233tKkSZP01FNP0etrAEI6gForNjZWWXuylZub67dlRkdHKzY2tlzTBAUFKT09Xa+88kqJx+rVq6fFixdfdPpbbrlF/fr1U2RkpKzWkkc57d+/v1z1AABQXdSmXn/TTTcpLy+v1H5Pr69eCOkAarXY2NhyN1IAAFB90OtR3XDiOAAAAAAATIJf0gHAxNauXWt0CQAAoArR6/F7/JIOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQ4cRwAAABqhZycHL9eL9sIFblGNwBzIaQDqNX8/YGND08AYIycnBy1TWgre77d6FKqlC3Mpj1Ze+g1v0GvR3VDSAdQaxnxga28H5569+6txMREpaenV21hZWS2egCgrHJzc2XPt6vXI70UFRNldDlV4tSBU1r33Drl5uYSEv8fen35ma2e2oiQDqDW8vcHNqM+PDkcDr8tCwDMLiomStHx0UaXAT+pTb0+MJBoV1PwSlYSxzYB1Z9ZP7ClpKTo888/1+eff67Zs2dLkr7//ns988wz+s9//qMjR44oNjZWo0eP1tixY72m++WXX9StWzfNnTtXISEh2r59uzZs2KDU1FTt2bNH7du31+OPP66bbrpJ27dvV2JioiTpm2++0cMPP6wvvvhCderU0XXXXadZs2YpOjq61Hp+/PFHxcXF+XvVAABQLrWh1+/bt08bN27Uo48+Sq+v5gjplZCTk6O2bRNkt+cbXUqVstnCtGdPFkEd8LPZs2fru+++U/v27fXEE09IkurVq6fmzZvr7bffVv369bVhwwaNGjVKTZo00e233+6ZNiMjQ5GRkVqzZo1cLpfy8vJ04403auDAgVq6dKl++uknjRs3zmt5v/zyi/r06aO//OUvmjVrlux2ux599FHdfvvt+s9//lNqPQ0aNPDb+gBQtfz5w4PL5ZIk7dy5U1arfy42lJWV5ZflAOXhq14vSXl5eRo6dCi9vgYgpFdCbm6u7PZ8Jd07WZFN4owup0rkHd6vjQumcmwTYICoqCgFBwcrLCxMjRs39gyfOnWq5/8tWrRQZmam3nrrLa/GXadOHc2fP1/BwcFyuVxKT0+XxWLR66+/rtDQULVr104HDx7UyJEjPdPMmTNHnTt31jPPPOMZtmDBAsXExOi7775T69atS60HQPWXk5OjhLZtlG8/55fl2Ww2LVu2TL169ZLd7r9jha2S8k/W7B9XUL34qtdL0ssvvyyLxaLXXntNYWFh9PpqjJDuA5FN4nRJbBujywBQS8ydO1cLFixQTk6O7Ha7HA6HZxe2Yh06dPA0ben8rnMdO3ZUaGioZ1j37t29ptm5c6c+++wzhYeHl1jmvn371Lp1a98+EQCmkZubq3z7Of1rVKISmpR8D/A1lzVYByWtG58sq8s/583Y9sNxjfxnthxnOU8HzK8ivf67777Tn/70J3p9DUBIB4BqZPny5XrooYf0wgsvKDk5WREREZoxY4Y2btzoNV6dOnXKPe8zZ85o0KBBevbZZ0s81qRJkwrXDKD6SGgSrsvjqv7kWk4F6aCkTrGRCpKzypcnSWfzz/plOUBl0etBSAcAEwsODlZRUZHn/vr169WzZ0+NHj3aM2zfvn1/OJ9WrVrp7bffVkFBgUJCQiRJmzdv9hrn8ssv17vvvqu4uLgLniH29/UAAIDK8VWvb926tf71r3+poKBANptNEr2+uvLPmToAABUSFxenjRs3av/+/crNzVV8fLy2bNmi1atX67vvvtPEiRNLNODS3HrrrXK5XBo1apSysrK0evVqPf/885Iki8UiSRozZoxOnjypoUOHavPmzdq3b59Wr16tESNGeJr17+spPvkTAACoGF/1+jvvvFMul0v3338/vb6a45d0ALXeqQOnTLuchx56SMOHD1e7du1kt9u1Z88ebd++XUOGDJHFYtHQoUM1evRoffzxxxedT2RkpP79739rzJgxSkxMVIcOHTRp0iTdeeednmPXmjZtqvXr1+vRRx/Vddddp4KCAl166aUaMGCA5+zLv6+Hy7IAAKqD2tLrly1bpkceeYReX80R0gHUWtHR0bKF2bTuuXV+W6YtzKbo6LJfp7V169bKzMz0GrZw4UItXLjQa9i0adM8/1+0aFGp8+rZs6d27tzpub9kyRIFBQV5XbkhPj5e7733XrnqAQDArGpbr09KStL27ds9gZteXz0R0gHUWrGxsdqTtcdv1wWWzn9YMOpyhosXL1arVq3UrFkz7dy503Nd1OLj1gAAqGlqW69fvny52rVrp5iYGHp9NUZIB1CrxcbGGtZI/e3o0aOaMmWKjhw5oiZNmui2227T008/bXRZAABUqdrW66dPn06vr+YI6QBQSzz88MN69NFHjS4DAABUkbFjx2rixIme3d1RPfHqAQAAAABgEoR0AAAAAABMgpAOoNZwu91Gl4BajL8/AKh6vNfCSL76+yOkA6jxgoKCJEn5+fkGV4LarPjvr/jvEQDgO/R6mIHD4ZAkBQQEVGo+nDgOQI0XEBCgunXr6tixY5KksLAwWSwWg6vyH5fLJYfDoXPnznEiGQO43W7l5+fr2LFjqlu3bqUbNwCgpNre6yX6vdFcLpeOHz+usLAwBQZWLmYT0gHUCo0bN5YkT/OuTdxut+x2u2w2W637wGImdevW9fwdAgB8rzb3eol+bwZWq1WxsbGVXv+EdAC1gsViUZMmTdSwYUM5nU6jy/Erp9OpdevWqVevXuxqbZCgoCB+QQeAKlabe71EvzeD4OBgn+zFQEgHUKsEBATUurAUEBCgwsJChYaG0rQBADVebez1Ev2+JuFgBQAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJiE4SF97ty5iouLU2hoqJKSkrRp06aLjv/LL79ozJgxatKkiUJCQtS6dWt99NFHfqoWAABUBP0eAICyMfQ66W+++abS0tI0b948JSUlKT09Xf3791d2drYaNmxYYnyHw6F+/fqpYcOGeuedd9SsWTP99NNPqlu3rv+LBwAAZUK/BwCg7AwN6TNnztTIkSM1YsQISdK8efP04YcfasGCBRo/fnyJ8RcsWKCTJ09qw4YNCgoKkiTFxcX5s2QAAFBO9HsAAMrOsJDucDi0detWTZgwwTPMarWqb9++yszMLHWalStXKjk5WWPGjNG///1vNWjQQHfeeaceffRRBQQElDpNQUGBCgoKPPfz8vIkSU6nU06ns1LPweVyyWazKcgqBVpclZqXWQVZJZvNJpfLVen1VVbFy/HX8oCajm3K/Grya1MT+n1tUPyZxmUNllNBVb684mX4Y1nF3AHBstlsCg4IVqDb0N+pqkyQJcjvn9tgHvR7cyvP62LYO1Rubq6KiorUqFEjr+GNGjXSnj17Sp3mhx9+0H/+8x/ddddd+uijj/T9999r9OjRcjqdmjx5cqnTTJs2TVOnTi0x/JNPPlFYWFiln8eyZcv+3/9yKz0vU2pYT6OWLdPBgwd18OBBvy56zZo1fl0eUNOxTZlXfn6+0SVUmZrS72uDZcuW6aAkf3b7NfXu8t/CekjLevy//xdcdMzqq7k0bNkwQz63wTzo9+ZUnl5frb5GdLlcatiwoV577TUFBASoS5cuOnjwoGbMmHHBpj1hwgSlpaV57ufl5SkmJkbXXXedIiMjK1XPzp071atXL13z0MuqFxNfqXmZ1c8H9uqz50dr3bp16tSpk1+W6XQ6tWbNGvXr18+zmyOAimObMr/iX31xntn6fW1Q/Jlm3fhkdYqt+vXlVJDW1LtL/X5eoiD551e/zOzDGjD7a/Uc11Mte7X0yzL97cS+E/r44Y/9+rkN5kG/N7fy9HrDQnp0dLQCAgJ09OhRr+FHjx5V48aNS52mSZMmCgoK8trVLSEhQUeOHJHD4VBwcHCJaUJCQhQSElJieFBQUKX/eK1Wq+x2u5wuqdBt+Inyq4TTJdntdlmtVr9v7L54jQD8im3KvGry61IT+n1tUPyZxupy+C00S1KQnH5bnqXIIbvdLkeRQ4WWQr8s09+cbqdhn9tgHrzvmVN5XhPDkmVwcLC6dOmijIwMzzCXy6WMjAwlJyeXOs0VV1yh77//Xi7Xr8d/f/fdd2rSpEmpDRsAABiLfg8AQPkY+vNvWlqaXn/9db3xxhvKysrS//7v/+rs2bOes78OGzbM60Qz//u//6uTJ09q7Nix+u677/Thhx/qmWee0ZgxY4x6CgAA4A/Q7wEAKDtDj0kfMmSIjh8/rkmTJunIkSNKTEzUqlWrPCeXycnJkdX66/cIMTExWr16tR544AF17NhRzZo109ixY/Xoo48a9RQAAMAfoN8DAFB2hp84LjU1VampqaU+tnbt2hLDkpOT9dVXX1VxVQAAwJfo9wAAlE3NPNsZAAAAAADVECEdAAAAAACTqFBI/+yzz3xdBwAAMBn6PQAA/lehkD5gwABddtlleuqpp3TgwAFf1wQAAEyAfg8AgP9VKKQfPHhQqampeuedd9SyZUv1799fb731lhwOh6/rAwAABqHfAwDgfxUK6dHR0XrggQe0Y8cObdy4Ua1bt9bo0aPVtGlT/f3vf9fOnTt9XScAAPAz+j0AAP5X6RPHXX755ZowYYJSU1N15swZLViwQF26dNFVV12lb7/91hc1AgAAg9HvAQDwjwqHdKfTqXfeeUcDBw7UpZdeqtWrV2vOnDk6evSovv/+e1166aW67bbbfFkrAADwM/o9AAD+FViRif72t79p2bJlcrvduueee/Tcc8+pffv2nsfr1Kmj559/Xk2bNvVZoQAAwL/o9wAA+F+FQvru3bv10ksv6eabb1ZISEip40RHR3PpFgAAqjH6PQAA/leh3d0nT56s2267rUTDLiws1Lp16yRJgYGBuvrqqytfIQAAMAT9HgAA/6tQSL/mmmt08uTJEsNPnTqla665ptJFAQAA49HvAQDwvwqFdLfbLYvFUmL4iRMnVKdOnUoXBQAAjEe/BwDA/8p1TPrNN98sSbJYLEpJSfHa/a2oqEhff/21evbs6dsKAQCAX9HvAQAwTrlCelRUlKTz36xHRETIZrN5HgsODlaPHj00cuRI31YIAAD8in4PAIBxyhXSFy5cKEmKi4vTQw89xK5uAADUQPR7AACMU6FLsE2ePNnXdQAAAJOh3wMA4H9lDumXX365MjIyVK9ePXXu3LnUE8kU27Ztm0+KAwAA/kW/BwDAWGUO6TfeeKPnxDGDBw+uqnoAAICB6PcAABirzCH9t7u8sftb7ZOVleW3ZblcLknSzp07ZbVW6CqB5RYdHa3Y2Fi/LAsAzIx+DwCAsSp0TDpqD2eBQ5J09913+22ZNptNy5YtU69evWS32/2yzDBbqLL2ZBPUAQAAABiqzCG9Xr16Fz0u7bdOnjxZ4YJgLoWFhZKkJ29urYEdGvplmS5rsA5KWjc+WVaXo8qXl3X4jO5+bYdyc3MJ6QBqPfo9AH/IyclRbm6u0WVUKfbUREWVOaSnp6dXYRkwuxbRYbo8Lsovy3IqSAcldYqNVJCcflkmAOA8+j2AqpaTk6O2bRNkt+cbXUqVstnCtGdPFkEd5VbmkD58+PCqrAMwnD+PuzcC3+YCKAv6PYCqlpubK7s9X0n3TlZkkzijy6kSeYf3a+OCqeypiQopc0jPy8tTZGSk5/8XUzweUB0UOAok+fe4eyPYwmzak7WHRgHgouj3APwlskmcLoltY3QZgOmU65j0w4cPq2HDhqpbt26px6u53W5ZLBYVFRX5tEigKhUfd995WGc179bc4GqqxqkDp7TuuXV8mwvgD9HvAQAwVplD+n/+8x9dcsklkqTPPvusygoCjBLeOFzR8dFGlwHUGJwUqHqi3wMAYKwyh/Srr7661P8DAPB7OTk5apvQVvZ8/1xG0Sg18TAS+n3pavqXTjX9vCwAUJ1U+DrpP//8s/7xj3943tTbtWunESNGeL59BwDUXrm5ubLn29XrkV6KivHPlSH8rbYcRkK/rz1nopYsOnzqnKSauc0CQHVRoZC+bt06DRo0SFFRUeratask6cUXX9QTTzyh//u//1OvXr18WiQAoHqKioniMJJqjH5/Xm04E/XxH/dox9Jn9Ut+odGlAECtV6GQPmbMGA0ZMkSvvPKKAgICJElFRUUaPXq0xowZo127dvm0SACoafy566zL5ZIk7dy5U1ar1S/LZNfZmoF+760mn4nafram7yUAANVHhUL6999/r3feecfTsCUpICBAaWlpWrx4sc+KA4CaKCcnRwlt2yjffs4vy7PZbFq2bJl69eolu91/x4hbJeWf5IN/dUa/BwDA/yoU0i+//HJlZWWpTRvvb5OzsrLUqVMnnxQGADVVbm6u8u3n9K9RiUpoEl7ly3NZg3VQ0rrxybK6HFW+PEna9sNxjfxnthxn/bM8VA36PQAA/lfmkP711197/v/3v/9dY8eO1ffff68ePXpIkr766ivNnTtX06dP932VAFADJTQJ1+VxVX+CJqeCdFBSp9hIBclZ5cuTpLP5Z/2yHPge/R4AAGOVOaQnJibKYrHI7XZ7hj3yyCMlxrvzzjs1ZMgQ31QHAAD8in4PAICxyhzSf/zxx6qsAwAAmAD9HgAAY5U5pF966aVVWQcAADAB+j0AAMaq0Injiu3evVs5OTlyOLxPDPQ///M/lSoKAACYB/0eAAD/qVBI/+GHH3TTTTdp165dXsetWSwWSeevoQoAAKo3+j0AAP5nrchEY8eOVYsWLXTs2DGFhYXp22+/1bp169S1a1etXbvWxyUCAAAj0O8BAPC/Cv2SnpmZqf/85z+Kjo6W1WqV1WrVlVdeqWnTpunvf/+7tm/f7us6AQCAn9HvAQDwvwr9kl5UVKSIiAhJUnR0tA4dOiTp/MlmsrOzfVcdAAAwDP0eAAD/q9Av6e3bt9fOnTvVokULJSUl6bnnnlNwcLBee+01tWzZ0tc1AgAAA9DvAQDwvwqF9Mcff1xnz56VJD3xxBO64YYbdNVVV6l+/fp68803fVogAAAwBv0eAAD/q1BI79+/v+f/rVq10p49e3Ty5EnVq1fPc8ZXAABQvdHvAQDwv0pdJ12SDhw4IEmKiYmpdDEAAMCc6PcAAPhHhU4cV1hYqIkTJyoqKkpxcXGKi4tTVFSUHn/8cTmdTl/XCAAADEC/BwDA/yr0S/rf/vY3vffee3ruueeUnJws6fxlWqZMmaITJ07olVde8WmRAADA/+j3AAD4X4VC+tKlS7V8+XJdf/31nmEdO3ZUTEyMhg4dStMGAKAGoN8DAOB/FdrdPSQkRHFxcSWGt2jRQsHBwZWtCQAAmAD9HgAA/6tQSE9NTdWTTz6pgoICz7CCggI9/fTTSk1N9VlxAADAOPR7AAD8r8y7u998881e9z/99FM1b95cnTp1kiTt3LlTDodD1157rW8rBAAAfkO/BwDAWGUO6VFRUV73b7nlFq/7XJIFAIDqj34PAICxyhzSFy5cWGVFzJ07VzNmzNCRI0fUqVMnvfTSS+revfsfTrd8+XINHTpUN954o1asWFFl9QEAUFtUVb+n1wMAUDYVOia92PHjx/Xll1/qyy+/1PHjxys0jzfffFNpaWmaPHmytm3bpk6dOql///46duzYRafbv3+/HnroIV111VUVWi4AACibyvZ7ej0AAGVXoZB+9uxZ3XvvvWrSpIl69eqlXr16qWnTprrvvvuUn59frnnNnDlTI0eO1IgRI9SuXTvNmzdPYWFhWrBgwQWnKSoq0l133aWpU6eqZcuWFXkKAADgD/iq39PrAQAouwqF9LS0NH3++ef6v//7P/3yyy/65Zdf9O9//1uff/65HnzwwTLPx+FwaOvWrerbt++vBVmt6tu3rzIzMy843RNPPKGGDRvqvvvuq0j5AACgDHzR7+n1AACUT5mPSf+td999V++884569+7tGTZw4EDZbDbdfvvteuWVV8o0n9zcXBUVFalRo0Zewxs1aqQ9e/aUOs2XX36pf/zjH9qxY0eZllFQUOB16Zi8vDxJktPplNPpLNM8LsTlcslmsynIKgVaXJWal1kFB1hks9mkwBA5FeSXZRYvx1/LcwcEy2azKTggWIHuCm0SphdkCZLNZpPL5ar03z0qr/i9w2UN9svfub+3KYntqrzMul36ot/7o9dL9PvK8ne/532palSXfl8btqkgq/z+WhQvx8yvfW1WntelQu9Q+fn5JZqtJDVs2LDcu7uXx+nTp3XPPffo9ddfV3R0dJmmmTZtmqZOnVpi+CeffKKwsLBK17Rs2bL/97/cSs/LlBo21d+vOv8cP/LzotfUu8s/C+ohLevx//5fcNExq6/m0rBlw3Tw4EEdPHjQ6Gqg8+8dByX589Xw2zYlsV2VU1X2zsowot9XpNdL9PtKM6jf877kY9Wo39f8baqeRi1bZshrsWbNGr8uD2VTnr5pcbvd7vIu4Nprr1X9+vW1ePFihYaGSpLsdruGDx+ukydP6tNPPy3TfBwOh8LCwvTOO+9o8ODBnuHDhw/37FL3Wzt27FDnzp0VEBDgGeZynf/2zWq1Kjs7W5dddpnXNKV9sx4TE6Pc3FxFRkaW63n/3s6dO9WrVy9d89DLqhcTX6l5mdXh7K+V+fKDen1ER93erYlflulUkNbUu0v9fl6iIFX9N4GZ2Yc1YPbX6jmup1r2qpnHPZ7Yd0IfP/yx1q1b57nWMYxT/N6xbnyyOsVW7n2oLPy9TUlsV+WVl5en6OhonTp1qtK9yZd80e/90esl+n1l+bvf875UNapLv68N29TPB/bqs+dH+/W1cDqdWrNmjfr166egIP/tpYKyKU+vr9Av6enp6RowYICaN2/u+aPbuXOnQkNDtXr16jLPJzg4WF26dFFGRoancbtcLmVkZCg1NbXE+G3bttWuXbu8hj3++OM6ffq0Zs+eXeq1W0NCQhQSElJieFBQUKX/eK1Wq+x2u5wuqdBdqRPlm5ajyC273S4VFvitiRYLktMvy7QUOWS32+UocqjQUljlyzOC0+2U3W6X1WrlTdsEit87rC6HX7crf21TEttVeZl1u/RFv/dHr5fo95VlVL/nfcm3qku/rw3blNMlw14LX7zvwffK85pUKKR36NBBe/fu1ZIlSzzHkw0dOlR33XXX+eOZyiEtLU3Dhw9X165d1b17d6Wnp+vs2bMaMWKEJGnYsGFq1qyZpk2bptDQULVv395r+rp160pSieEAAKByfNXv6fUAAJRduUO60+lU27Zt9cEHH2jkyJGVLmDIkCE6fvy4Jk2apCNHjigxMVGrVq3yHAOXk5Mjq7VmfsMGAIBZ+bLf0+sBACi7cof0oKAgnTt3zqdFpKamlrrLmyStXbv2otMuWrTIp7UAAADf93t6PQAAZVOhr63HjBmjZ599VoWFNfN4HgAAQL8HAMAIFTomffPmzcrIyNAnn3yiDh06qE6dOl6Pv/feez4pDgAAGId+DwCA/1UopNetW1e33HKLr2sBAAAmQr8HAMD/yhXSXS6XZsyYoe+++04Oh0N9+vTRlClTyn1GdwAAYF70ewAAjFOuY9KffvppPfbYYwoPD1ezZs304osvasyYMVVVGwAAMAD9HgAA45QrpC9evFgvv/yyVq9erRUrVuj//u//tGTJErlcrqqqDwAA+Bn9HgAA45QrpOfk5GjgwIGe+3379pXFYtGhQ4d8XhgAADAG/R4AAOOUK6QXFhYqNDTUa1hQUJCcTqdPiwIAAMah3wMAYJxynTjO7XYrJSVFISEhnmHnzp3TX//6V6/LsnBJFgAAqi/6PQAAxilXSB8+fHiJYXfffbfPigEAAMaj3wMAYJxyhfSFCxdWVR0AAMAk6PcAABinXMekAwAAAACAqkNIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJhFodAEAAAAAUBNlZWX5bVkul0uStHPnTlmt/vktNjo6WrGxsX5ZVm1CSAcAAAAAH3IWOCRJd999t9+WabPZtGzZMvXq1Ut2u90vywyzhSprTzZB3ccI6QBMJycnR7m5uUaXUWX8+a06AADwv8LCQknSkze31sAODf2yTJc1WAclrRufLKvLUeXLyzp8Rne/tkO5ubmEdB8jpAMwlZycHLVtmyC7Pd/oUqqYRYdPnZMUZXQhAACgirSIDtPlcf7p9U4F6aCkTrGRCpLTL8tE1SCkAzCV3Nxc2e35Srp3siKbxBldTpU4/uMe7Vj6rH7JLzS6FAAAAJgMIR2AKUU2idMlsW2MLqNK2M/W9L0EAAAAUFGEdAAAAABAhdT0c+0YcQZ7QjoAAAAAoFwKHAWS/HsGeyPYwmzak7XHr0GdkA4AAAAAKJfiM9h3HtZZzbs1N7iaqnHqwCmte26d389gT0gHAAAAAFRIeONwRcdHG11GjWI1ugAAAAAAAHAeIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkTBHS586dq7i4OIWGhiopKUmbNm264Livv/66rrrqKtWrV0/16tVT3759Lzo+AAAwHr0eAICyMTykv/nmm0pLS9PkyZO1bds2derUSf3799exY8dKHX/t2rUaOnSoPvvsM2VmZiomJkbXXXedDh486OfKAQBAWdDrAQAoO8ND+syZMzVy5EiNGDFC7dq107x58xQWFqYFCxaUOv6SJUs0evRoJSYmqm3btpo/f75cLpcyMjL8XDkAACgLej0AAGUXaOTCHQ6Htm7dqgkTJniGWa1W9e3bV5mZmWWaR35+vpxOpy655JJSHy8oKFBBQYHnfl5eniTJ6XTK6XRWonrJ5XLJZrMpyCoFWlyVmpdZBQdYZLPZpMAQORXkl2UWL8dfy3MHBMtmsyk4IFiBbkM3iSoTZAmSzWaTy+Wq9N99VWO78j1/b1MS21V5mX27rAx/9HqJfl9ZvC/VDNWl37NNVQ0+Q/ueUb3e4na73ZVaWiUcOnRIzZo104YNG5ScnOwZ/sgjj+jzzz/Xxo0b/3Aeo0eP1urVq/Xtt98qNDS0xONTpkzR1KlTSwxfunSpwsLCKvcEAADwgfz8fN155506deqUIiMjjS7Hp/zR6yX6PQDA3MrT66v1Vx7Tp0/X8uXLtXbt2gs27QkTJigtLc1zPy8vz3NsW2U/CO3cuVO9evXSNQ+9rHox8ZWal1kdzv5amS8/qNdHdNTt3Zr4ZZlOBWlNvbvU7+clClLVfwucmX1YA2Z/rZ7jeqplr5ZVvjwjnNh3Qh8//LHWrVunTp06GV3ORbFd+Z6/tymJ7aq8in/1RUll6fUS/b6yeF+qGapLv2ebqhp8hvY9o3q9oSE9OjpaAQEBOnr0qNfwo0ePqnHjxhed9vnnn9f06dP16aefqmPHjhccLyQkRCEhISWGBwUFKSiocruCWK1W2e12OV1Sodvww/urhKPILbvdLhUW+K2JFguS0y/LtBQ5ZLfb5ShyqNBSWOXLM4LT7ZTdbpfVaq30331VY7uqOv7apiS2q/Iy+3ZZGf7o9RL9vrJ4X6oZqku/Z5uqWnyG9h2jer2hW0VwcLC6dOnidSKY4hPD/HaXuN977rnn9OSTT2rVqlXq2rWrP0oFAAAVQK8HAKB8DN/dPS0tTcOHD1fXrl3VvXt3paen6+zZsxoxYoQkadiwYWrWrJmmTZsmSXr22Wc1adIkLV26VHFxcTpy5IgkKTw8XOHh4YY9DwAAUDp6PQAAZWd4SB8yZIiOHz+uSZMm6ciRI0pMTNSqVavUqFEjSVJOTo6s1l9/8H/llVfkcDh06623es1n8uTJmjJlij9LBwAAZUCvBwCg7AwP6ZKUmpqq1NTUUh9bu3at1/39+/dXfUEAAMCn6PUAAJRNzTxTAwAAAAAA1RAhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJmCKkz507V3FxcQoNDVVSUpI2bdp00fHffvtttW3bVqGhoerQoYM++ugjP1UKAAAqgl4PAEDZGB7S33zzTaWlpWny5Mnatm2bOnXqpP79++vYsWOljr9hwwYNHTpU9913n7Zv367Bgwdr8ODB+uabb/xcOQAAKAt6PQAAZWd4SJ85c6ZGjhypESNGqF27dpo3b57CwsK0YMGCUsefPXu2BgwYoIcfflgJCQl68skndfnll2vOnDl+rhwAAJQFvR4AgLILNHLhDodDW7du1YQJEzzDrFar+vbtq8zMzFKnyczMVFpamtew/v37a8WKFaWOX1BQoIKCAs/9U6dOSZJOnjwpp9NZqfrz8vIUGhqqMwe/k5z2Ss3LrOxHflBoaKiycx1a+91pvyzTZQ1W/p/y9cX3Z2R1Oap8ed8ccig0NFT5h/KVuyu3ypdnhNOHTys0NFR5eXk6ceKE0eVcFNuV7/l7m5LYrso9r9Pn/w7cbrcvSjMVf/R6iX5fWbwv1QzVpd+zTVUNPkP7nmG93m2ggwcPuiW5N2zY4DX84Ycfdnfv3r3UaYKCgtxLly71GjZ37lx3w4YNSx1/8uTJbkncuHHjxo2b6W8HDhzwTYM1EX/0erebfs+NGzdu3KrHrSy93tBf0v1hwoQJXt/Gu1wunTx5UvXr15fFYjGwMlxIXl6eYmJidODAAUVGRhpdDlDtsU2Zn9vt1unTp9W0aVOjS6m26PfVC+9LgO+xXZlbeXq9oSE9OjpaAQEBOnr0qNfwo0ePqnHjxqVO07hx43KNHxISopCQEK9hdevWrXjR8JvIyEjeYAAfYpsyt6ioKKNLqBL+6PUS/b664n0J8D22K/Mqa6839MRxwcHB6tKlizIyMjzDXC6XMjIylJycXOo0ycnJXuNL0po1ay44PgAAMA69HgCA8jF8d/e0tDQNHz5cXbt2Vffu3ZWenq6zZ89qxIgRkqRhw4apWbNmmjZtmiRp7Nixuvrqq/XCCy/oz3/+s5YvX64tW7botddeM/JpAACAC6DXAwBQdoaH9CFDhuj48eOaNGmSjhw5osTERK1atUqNGjWSJOXk5Mhq/fUH/549e2rp0qV6/PHH9dhjjyk+Pl4rVqxQ+/btjXoK8LGQkBBNnjy5xG6LACqGbQpGo9fj93hfAnyP7armsLjdNfB6LwAAAAAAVEOGHpMOAAAAAAB+RUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpMNU5s6dq7i4OIWGhiopKUmbNm0yuiSgWlu3bp0GDRqkpk2bymKxaMWKFUaXBAD0e8CH6PU1DyEdpvHmm28qLS1NkydP1rZt29SpUyf1799fx44dM7o0oNo6e/asOnXqpLlz5xpdCgBIot8Dvkavr3m4BBtMIykpSd26ddOcOXMkSS6XSzExMfrb3/6m8ePHG1wdUP1ZLBa9//77Gjx4sNGlAKjF6PdA1aHX1wz8kg5TcDgc2rp1q/r27esZZrVa1bdvX2VmZhpYGQAA8BX6PQD8MUI6TCE3N1dFRUVq1KiR1/BGjRrpyJEjBlUFAAB8iX4PAH+MkA4AAAAAgEkQ0mEK0dHRCggI0NGjR72GHz16VI0bNzaoKgAA4Ev0ewD4Y4R0mEJwcLC6dOmijIwMzzCXy6WMjAwlJycbWBkAAPAV+j0A/LFAowsAiqWlpWn48OHq2rWrunfvrvT0dJ09e1YjRowwujSg2jpz5oy+//57z/0ff/xRO3bs0CWXXKLY2FgDKwNQW9HvAd+i19c8XIINpjJnzhzNmDFDR44cUWJiol588UUlJSUZXRZQba1du1bXXHNNieHDhw/XokWL/F8QAIh+D/gSvb7mIaQDAAAAAGASHJMOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAO1CC9e/fWuHHjLvh4XFyc0tPT/VYPAADwLXo9UPMR0oFaZPPmzRo1apTRZfyhb7/9Vrfccovi4uJksVj4sAEAQBlVl17/+uuv66qrrlK9evVUr1499e3bV5s2bTK6LMAUCOlALdKgQQOFhYVV6TIcDkel55Gfn6+WLVtq+vTpaty4sQ+qAgCgdqguvX7t2rUaOnSoPvvsM2VmZiomJkbXXXedDh486IMKgeqNkA7UMIWFhUpNTVVUVJSio6M1ceJEud1uSSV3gbNYLJo/f75uuukmhYWFKT4+XitXrvQ8XlRUpPvuu08tWrSQzWZTmzZtNHv2bK/lpaSkaPDgwXr66afVtGlTtWnTRk888YTat29forbExERNnDjxD59Dt27dNGPGDN1xxx0KCQmp4JoAAKBmqgm9fsmSJRo9erQSExPVtm1bzZ8/Xy6XSxkZGRVcK0DNQUgHapg33nhDgYGB2rRpk2bPnq2ZM2dq/vz5Fxx/6tSpuv322/X1119r4MCBuuuuu3Ty5ElJksvlUvPmzfX2229r9+7dmjRpkh577DG99dZbXvPIyMhQdna21qxZow8++ED33nuvsrKytHnzZs8427dv19dff60RI0ZUzRMHAKCWqIm9Pj8/X06nU5dcckm5pwVqmkCjCwDgWzExMZo1a5YsFovatGmjXbt2adasWRo5cmSp46ekpGjo0KGSpGeeeUYvvviiNm3apAEDBigoKEhTp071jNuiRQtlZmbqrbfe0u233+4ZXqdOHc2fP1/BwcGeYf3799fChQvVrVs3SdLChQt19dVXq2XLllXxtAEAqDVqYq9/9NFH1bRpU/Xt27fc0wI1Db+kAzVMjx49ZLFYPPeTk5O1d+9eFRUVlTp+x44dPf+vU6eOIiMjdezYMc+wuXPnqkuXLmrQoIHCw8P12muvKScnx2seHTp08GrakjRy5EgtW7ZM586dk8Ph0NKlS3Xvvff64ikCAFCr1bReP336dC1fvlzvv/++QkNDyz09UNPwSzpQywUFBXndt1gscrlckqTly5froYce0gsvvKDk5GRFRERoxowZ2rhxo9c0derUKTHfQYMGKSQkRO+//76Cg4PldDp16623Vt0TAQAApTJzr3/++ec1ffp0ffrpp15fJgC1GSEdqGF+31S/+uorxcfHKyAgoNzzWr9+vXr27KnRo0d7hu3bt69M0wYGBmr48OFauHChgoODdccdd8hms5W7BgAA4K2m9PrnnntOTz/9tFavXq2uXbuWu3agpiKkAzVMTk6O0tLSdP/992vbtm166aWX9MILL1RoXvHx8Vq8eLFWr16tFi1a6J///Kc2b96sFi1alGn6v/zlL0pISJB0/kNAWTkcDu3evdvz/4MHD2rHjh0KDw9Xq1atyv9EAACoQWpCr3/22Wc1adIkLV26VHFxcTpy5IgkKTw8XOHh4eV/IkANQkgHaphhw4bJbrere/fuCggI0NixYzVq1KgKzev+++/X9u3bNWTIEFksFg0dOlSjR4/Wxx9/XKbp4+Pj1bNnT508eVJJSUllXu6hQ4fUuXNnz/3nn39ezz//vK6++mqtXbu2vE8DAIAapSb0+ldeeUUOh6PE7vGTJ0/WlClTyvMUgBrH4i6+qCIA+Jjb7VZ8fLxGjx6ttLQ0o8sBAAA+Rq8HfI9f0gFUiePHj2v58uU6cuQI10YHAKAGotcDVYOQDqBKNGzYUNHR0XrttddUr149r8cudqzZxx9/rKuuuqqqywMAAJVErweqBru7A/C777///oKPNWvWjLPAAwBQzdHrgYojpAMAAAAAYBJWowsAAAAAAADnEdIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmESg0QX4m8vl0qFDhxQRESGLxWJ0OQAAyO126/Tp02ratKmsVr4/BwCgNqt1If3QoUOKiYkxugwAAEo4cOCAmjdvbnQZAADAQLUupEdEREg6/0EoMjLS4GpQGqfTqU8++UTXXXedgoKCjC4HqPbYpswvLy9PMTExnh4FAABqr1oX0ot3cY+MjCSkm5TT6VRYWJgiIyMJFIAPsE1VHxyGBQAAOPANAAAAAACTIKQDAAAAAGAShHQAAAAAAEyi1h2TXlZFRUVyOp1Gl1ErOZ1OBQYG6ty5cyoqKjK6HL8KCgpSQECA0WUAAAAAMAgh/XfcbreOHDmiX375xehSai23263GjRvrwIEDtfIkSnXr1lXjxo1r5XMHAAAAajtC+u8UB/SGDRsqLCyMoGQAl8ulM2fOKDw8XFZr7Tkiw+12Kz8/X8eOHZMkNWnSxOCKAAAAAPgbIf03ioqKPAG9fv36RpdTa7lcLjkcDoWGhtaqkC5JNptNknTs2DE1bNiQXd8BAACAWqZ2JaA/UHwMelhYmMGVoDYr/vvjnAgAAABA7UNILwW7uMNI/P0BAAAAtRchHQAAAAAAkyCkw2d69+6tcePGVXo+ffr00YQJEypfEAAAAABUM5w4DoZZu3atrrnmGv3888+qW7euZ/g777wju91uXGEAAAAAYBB+SYfpXHLJJYqIiDC6DAAAAADwO0J6DdC7d2+lpqYqNTVVUVFRio6O1sSJE+V2uyVJP//8s4YNG6Z69eopLCxM119/vfbu3euZftGiRapbt65WrFih+Ph4hYaGqn///jpw4IBnnJSUFA0ePNhruePGjVPv3r0vWNc///lPde3aVREREWrcuLHuvPNOzzXA9+/fr2uuuUaSVK9ePVksFqWkpEgqubt7WetfvXq1EhISFB4ergEDBujw4cMVWp8AAAAAYBRCeg3xxhtvKDAwUJs2bdLs2bM1c+ZMzZ8/X9L5gL1lyxatXLlSmZmZcrvdGjhwoNclvvLz8/X0009r8eLFWr9+vX755RfdcccdlarJ6XTqySef1M6dO7VixQrt37/fE8RjYmL07rvvSpKys7N1+PBhzZ49u9T5lLX+559/Xv/85z+1bt065eTk6KGHHqpU/QAAAADgbxyTXkPExMRo1qxZslgsatOmjXbt2qVZs2apd+/eWrlypdavX6+ePXtKkpYsWaKYmBitWLFCt912m6TzgXrOnDlKSkqSdD70JyQkaNOmTerevXuFarr33ns9/2/ZsqVefPFFdevWTWfOnFF4eLguueQSSVLDhg29jkn/rb1795a5/nnz5umyyy6TJKWmpuqJJ56oUN0AAAAAYBR+Sa8hevTo4XV97eTkZO3du1e7d+9WYGCgJ3xLUv369dWmTRtlZWV5hgUGBqpbt26e+23btlXdunW9ximvrVu3atCgQYqNjVVERISuvvpqSVJOTk6Z55GVlVWm+sPCwjwBXZKaNGni2bUeAAAAAKoLQjrKxGq1eo5xL/bb3c1/7+zZs+rfv78iIyO1ZMkSbd68We+//74kyeFw+Ly+oKAgr/sWi6VEvQAAAABgdoT0GmLjxo1e97/66ivFx8erXbt2Kiws9Hr8xIkTys7OVrt27TzDCgsLtWXLFs/97Oxs/fLLL0pISJAkNWjQoMSJ2Hbs2HHBevbs2aMTJ05o+vTpuuqqq9S2bdsSv2wHBwdLkoqKii44n4SEhDLVDwAAAAA1ASG9hsjJyVFaWpqys7O1bNkyvfTSSxo7dqzi4+N14403auTIkfryyy+1c+dO3X333WrWrJluvPFGz/RBQUH629/+po0bN2rr1q1KSUlRjx49PMej9+nTR1u2bNHixYu1d+9eTZ48Wd98880F64mNjVVwcLBeeukl/fDDD1q5cqWefPJJr3EuvfRSWSwWffDBBzp+/LjOnDlTYj5lrR8AAAAAagJCeg0xbNgw2e12de/eXWPGjNHYsWM1atQoSdLChQvVpUsX3XDDDUpOTpbb7dZHH33ktYt4WFiYHn30Ud1555264oorFB4erjfffNPzeP/+/TVx4kQ98sgj6tatm06fPq1hw4ZdsJ4GDRpo0aJFevvtt9WuXTtNnz5dzz//vNc4zZo109SpUzV+/Hg1atRIqamppc6rLPUDAAAAQE1gcdeyA3fz8vIUFRWlU6dOKTIy0uuxc+fO6ccff1SLFi0UGhpqUIXl17t3byUmJio9Pb1C0y9atEjjxo3TL7/84tO6KsrlcikvL0+RkZGyWmvf90jV9e8Q5uV0OvXRRx9p4MCBfLllUhfrTQAAoHapfQkIAAAAAACTIqQDAAAAAGASgUYXgMpbu3ZtpaZPSUlRSkqKT2oBAAAAAFQcv6QDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJLgEWxnl5OQoNzfXb8uLjo5WbGys35ZXVnFxcRo3bpzGjRt3wXEcDofatWunxYsXq2fPnv4rzgQsFovef/99DR48uNTHd+/ereuuu07Z2dmqU6eOf4sDAAAAYHqE9DLIyclR27YJstvz/bZMmy1Me/ZkmTKo/5F58+apRYsW1Tqg79+/Xy1atND27duVmJjos/m2a9dOPXr00MyZMzVx4kSfzRcAAABAzUBIL4Pc3FzZ7flKuneyIpvEVfny8g7v18YFU5Wbm1vtQrrb7dacOXP0xBNPVHo+hYWFCg4O9lFl5jFixAiNHDlSEyZMUGAgmyAAAACAX3FMejlENonTJbFtqvxWkS8CevfurdTUVKWmpioqKkrR0dGaOHGi3G63Z5yff/5Zw4YNU7169RQWFqbrr79ee/fu9ZrPu+++qz/96U8KCQlRXFycXnjhhXLVsXXrVu3bt09//vOfPcP2798vi8Wi5cuXq2fPngoNDVX79u31+eefe8ZZu3atLBaLPv74Y3Xr1k2NGjXSl19+KZfLpWnTpqlFixay2Wzq1KmT3nnnnRLTrV69Wp07d5bNZlOfPn107Ngxffzxx0pISFBkZKTuvPNO5ef/uifEqlWrdOWVV6pu3bqqX7++brjhBu3bt8/zeIsWLSRJnTt3lsViUe/evT2PLViwwLOOmjRpotTUVK91kJubq5tuuklhYWGKj4/XypUrvR7v16+fTp486fX8AQAAAEAipNcob7zxhgIDA7Vp0ybNnj1bM2fO1Pz58z2Pp6SkaMuWLVq5cqUyMzPldrs1cOBAOZ1OSecD9u2336477rhDu3bt0pQpUzRx4kQtWrSozDV88cUXat26tSIiIko89vDDD+vBBx/U9u3blZycrEGDBunEiRNe44wfP17PPPOMNm7cqI4dO2ratGlavHix5s2bp2+//VYPPPCA7r777hIBd8qUKZozZ442bNigAwcO6Pbbb1d6erqWLl2qDz/8UJ988oleeuklz/hnz55VWlqatmzZooyMDFmtVt10001yuVySpE2bNkmSPv30Ux0+fFjvvfeeJOmVV17RmDFjNGrUKO3atUsrV65Uq1atvGqZOnWqbr/9dn399dcaOHCg7rrrLp08edLzeHBwsBITE/XFF1+Ueb0CAAAAqB3Y17YGiYmJ0axZs2SxWNSmTRvt2rVLs2bN0siRI7V3716tXLlS69ev9xwrvmTJEsXExGjFihW67bbbNHPmTF177bWeY6Vbt26t3bt3a8aMGUpJSSlTDT/99JOaNm1a6mOpqam65ZZbJJ0Pu6tWrdI//vEPPfLII55xnnjiCfXr1095eXkKCQnRM888o08//VTJycmSpJYtW+rLL7/Uq6++qquvvtoz3VNPPaUrrrhCknTfffdpwoQJ2rdvn1q2bClJuvXWW/XZZ5/p0UcflSRPHcUWLFigBg0aaPfu3Wrfvr0aNGggSapfv74aN27stZwHH3xQY8eO9Qzr1q2b17xSUlI0dOhQSdIzzzyjF198UZs2bdKAAQM84zRt2lQ//fTTH65PAAAAALULv6TXID169JDFYvHcT05O1t69e1VUVKSsrCwFBgYqKSnJ83j9+vXVpk0bZWVlSZKysrI8QbfYFVdc4ZlHWdjtdoWGhpb6WHHQlqTAwEB17drVs+xiXbt29fz/+++/V35+vvr166fw8HDPbfHixV67pktSx44dPf9v1KiRwsLCPAG9eNixY8c89/fu3auhQ4eqZcuWioyMVFxcnKTzJwm8kGPHjunQoUO69tprL7IGvGupU6eOIiMjvZYtSTabzWv3ewAAAACQTBDS586dq7i4OIWGhiopKcmzm/GFpKenq02bNrLZbIqJidEDDzygc+fO+ala/JHo6Gj9/PPPFZ7+t5clO3PmjCTpww8/1I4dOzy33bt3ex2XLklBQUGe/1ssFq/7xcOKd2WXpEGDBunkyZN6/fXXtXHjRm3cuFHS+cvHXYjNZivTc/ijZUvSyZMnPb/WAwAAAEAxQ0P6m2++qbS0NE2ePFnbtm1Tp06d1L9//xK/OhZbunSpxo8fr8mTJysrK0v/+Mc/9Oabb+qxxx7zc+XmVBw0i3311VeKj49XQECAEhISVFhY6DXOiRMnlJ2drXbt2kmSEhIStH79eq95rF+/Xq1bt1ZAQECZaujcubP27NnjdcK639ZTrLCwUFu3blVCQsIF59WuXTuFhIQoJydHrVq18rrFxMSUqZ7SFD/vxx9/XNdee60SEhJKfLFQfFb53+5BEBERobi4OGVkZFR42cW++eYbde7cudLzAQAAAFCzGHpM+syZMzVy5EiNGDFC0vnra3/44YdasGCBxo8fX2L8DRs26IorrtCdd94pSYqLi9PQoUNLhNPaKicnR2lpabr//vu1bds2vfTSS56zs8fHx+vGG2/UyJEj9eqrryoiIkLjx49Xs2bNdOONN0qSHnzwQXXr1k1PPvmkhgwZoszMTM2ZM0cvv/xymWu45pprdObMGX377bdq376912Nz585VfHy8EhISNGvWLP3888+69957LziviIgIPfTQQ3rggQfkcrl05ZVX6tSpU1q/fr0iIyM1fPjwCqwlqV69eqpfv75ee+01NWnSRDk5OSX+3ho2bCibzaZVq1apefPmCg0NVVRUlKZMmaK//vWvatiwoa6//nqdPn1a69ev19/+9rcyL3///v06ePCg+vbtW6H6AQAAANRchoV0h8OhrVu3asKECZ5hVqtVffv2VWZmZqnT9OzZU//617+0adMmde/eXT/88IM++ugj3XPPPRdcTkFBgQoKCjz38/LyJElOp9NzVvNiTqdTbrdbLpfLa/fk4v/nHdovlfyB2OfyDu/3LPf3u0lfzD333KP8/Hx1795dAQEB+vvf/66//OUvnnn84x//0Lhx43TDDTfI4XDoqquu0gcffKCAgAC5XC4lJiZq+fLlmjJlip588kk1adJEU6dO1bBhw7zqKF5HpalXr54GDx6sf/3rX3rmmWc8z0M6fxK16dOna8eOHWrVqpVWrFihSy65xOt5ulwuz6/wbrdbU6dOVXR0tKZNm6YffvhBdevWVefOnTVhwoQS0/32/7/9t3hevx22dOlSjRs3Tu3bt1ebNm2Unp6uPn36eOZjtVqVnp6up556SpMmTdJVV12l//znP551PHv2bD300EOKjo7WLbfcUuLv5ffr57fDli5dqn79+ikmJqbU9Vi8DpxOZ5n3YKhp/vvf/5Y4839NU79+fTVv3twvyyp+r/v9ex7Mg9cGAAAUs7hL2y/ZDw4dOqRmzZppw4YNXicUe+SRR/T5559f8NfxF198UQ899JDcbrcKCwv117/+Va+88soFlzNlyhRNnTq1xPClS5cqLCzMa1hgYKAaN26smJgYz+7OknTgwAF1T0rSObu9vE+zwkJtNm3auLHMu3XfcMMN6tChg6ZNm1bFlf2xb775RjfffLO2bdum8PBw5eTkqFOnTlq3bp06dOhgdHmGcjgc6tKli15//XX16NHjguMcOHBAR44cUWFhoZ8rBGCE/Px83XnnnTp16pQiIyONLgcAABioWl2Cbe3atXrmmWf08ssvKykpSd9//73Gjh2rJ5980nPZsN+b8P+3d/9hUdV5/8dfMzADg/irxh+IENrir1UhNQm7I9s1db3XO6tN00ql0r1DinZyLVsVtdusLEPT9DJvLVt/9WvdakvXpZQ7JTVNdBMx3VxcDRQtMUBmZPj+4dfZWNAFZGYOzPNxXV7XnM+cz/m8DzPnuublOedzpk6Vw+HwLBcXFysqKkqDBw+u9kPo/PnzOnbsmMLDw6vMUP7Tn/5UuQcOqKioyDs7VgO73a7o6Oharx8cHCyr1WqIH3cDBgzQc889p9OnT6tDhw4KDw+X9M+Zzv+dyspKnTt3Ts2bN68yW31TcPjwYT399NMaPHjwZdc5f/68bDabkpKSLjtT6/DxowAALhNJREFUflOWk5OjpKQk9XvgKTVvV/tjoDE5V5ivL958TllZWYqLi/P6eC6XS5s3b9btt99ebWJDGMOlq7wAAAD8FtLtdruCgoJUWFhYpb2wsLDKc6l/bPr06XrggQf08MMPS5J69eqlkpISTZw4Ub/73e9kNlefBy8kJEQhISHV2i0WS7UfqxUVFTKZTDKbzdW2FRMT43lMl1Fdqt0Ifnyv+aWaavq71uTSJeBG2p+G0qVLF3Xp0uWK65jNZs8M9YEYqMxm88VH+bWJVvOOXf1djle43BcfV2g2m336GQfqd6ox4HMBAACX+C2kW61W9e3bV5mZmRoxYoSki+EsMzNTqampNfYpLS2tFtou3bPrp6v2DWPLli3+LuGyYmJiAv7zAQAAAIDa8Ovl7g6HQ+PGjVO/fv3Uv39/ZWRkqKSkxDPb+9ixYxUZGem5z3r48OGaP3++brjhBs/l7tOnT9fw4cMDdoItAAAAAEDT4deQPmrUKJ06dUozZsxQQUGB4uPjtXHjRrVr107SxUeK/fjM+bRp02QymTRt2jQdP35cbdq00fDhwzVnzhx/7QIAAAAAAA3G7xPHpaamXvby9n+9hDs4OFjp6elKT0/3QWUAAAAAAPhW05qVCwAAAACARoyQDgAAAACAQRDSAQAAAAAwCL/fk95Y5Ofnq6ioyGfj2e12RUdH+2y82oiJidHjjz+uxx9/3N+lAAAAAECTREivhfz8fHXv1lWlZed9NmaYLVS5B/MMF9QBAAAAAN5DSK+FoqIilZad1+8nxqt7RLjXx8v99gfdv2yvioqKCOkAAAAAEEAI6XXQPSJcfWJa+ruMGg0cOFA9e/aUJL355puyWCx65JFHNHv2bJlMJn333XdKS0vTBx98oPLyct16661auHChYmNjPdt49913NWPGDB0+fFgRERF69NFH9cQTT/hrlwAAAAAg4DBxXBPyxhtvKDg4WDt37tSCBQs0f/58LV++XJI0fvx4ffHFF3r//feVnZ2tyspKDRs2TC6XS5K0e/dujRw5Uvfee6/279+vmTNnavr06Xr99df9uEcAAAAAEFg4k96EREVF6eWXX5bJZFLXrl21f/9+vfzyyxo4cKDef/99bdu2TQMGDJAkrV69WlFRUdqwYYPuuecezZ8/Xz//+c81ffp0SVKXLl104MABzZs3T+PHj/fjXgEAAABA4OBMehNy0003yWQyeZYTExP19ddf68CBAwoODlZCQoLnvWuvvVZdu3ZVbm6uJCk3N1c333xzle3dfPPN+vrrr1VRUeGbHQAAAACAAEdIBwAAAADAIAjpTciOHTuqLH/++eeKjY1Vjx49dOHChSrvnz59Wnl5eerRo4ckqXv37tq2bVuV/tu2bVOXLl0UFBTk/eIBAAAAAIT0piQ/P18Oh0N5eXlau3atXnnlFaWlpSk2NlZ33HGHJkyYoM8++0w5OTm6//77FRkZqTvuuEOS9MQTTygzM1PPPPOMDh06pDfeeEOLFi3S5MmT/bxXAAAAABA4mDiuDnK//cHQ44wdO1ZlZWXq37+/goKClJaWpokTJ0qSVq5cqbS0NP3yl7+U0+lUUlKSPvroI1ksFklSnz599NZbb2nGjBl65plnFBERodmzZzNpHAAAAAD4ECG9Fux2u8Jsobp/2V6fjRlmC5Xdbq9TH4vFooyMDC1ZsqTae61bt9aqVauu2P/uu+/W3Xfffdn3jx49Wqd6AAAAAAB1Q0ivhejoaOUezFNRUZHPxrTb7YqOjvbZeAAAAAAA/yOk11J0dDShGQAAAADgVYT0JmLLli3+LgEAAAAAcJWY3R0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGwSPYaik/P19FRUU+G89ut/NcdgAAAAAIMIT0WsjPz1e37t1UVlrmszFtYTYdzD1Y66A+cOBAxcfHKyMjw7uF1ZLR6gEAAACAxoCQXgtFRUUqKy1T0pQktYxq6fXxzh47q6wXslRUVOTTs+lOp1NWq9Vn4wEAAAAAquKe9DpoGdVS9li71//V9T8Cxo8fr61bt2rBggUymUwymUw6cuSIHnroIXXq1Ek2m01du3bVggULqvUbMWKE5syZow4dOqhr166SpO3btys+Pl6hoaHq16+fNmzYIJPJpL1793r6/vWvf9UvfvELhYeHq127dnrggQc8twPUVM/Ro0ev6m8PAAAAAIGAM+lNwIIFC3To0CH17NlTs2fPliS1bt1aHTt21Ntvv61rr71W27dv18SJExUREaGRI0d6+mZmZqpFixbavHmzJKm4uFjDhw/XsGHDtGbNGv3973/X448/XmW877//Xj/72c/08MMP6+WXX1ZZWZmefPJJjRw5Up988kmN9bRp08Y3fwwAAAAAaMQI6U1Ay5YtZbVaFRYWpvbt23vaZ82a5XndqVMnZWdn66233qoS0ps1a6bly5d7LnNfunSpTCaTXnvtNYWGhqpHjx46fvy4JkyY4OmzaNEi3XDDDXr22Wc9bStWrFBUVJQOHTqkLl261FgPAAAAAODKCOlN2OLFi7VixQrl5+errKxMTqdT8fHxVdbp1atXlfvQ8/Ly1Lt3b4WGhnra+vfvX6VPTk6OPv30U4WHh1cb88iRI+rSpUvD7ggAAAAABAhCehO1bt06TZ48WS+99JISExPVvHlzzZs3Tzt27KiyXrNmzeq87R9++EHDhw/X888/X+29iIiIetcMAAAAAIGOkN5EWK1WVVRUeJa3bdumAQMGKCUlxdN25MiRf7udrl276ve//73Ky8sVEhIiSdq1a1eVdfr06aN3331XMTExCg6u+Sv0r/UAAAAAAP49ZndvImJiYrRjxw4dPXpURUVFio2N1RdffKFNmzbp0KFDmj59erWwXZMxY8bI7XZr4sSJys3N1aZNm/Tiiy9KkkwmkyRp0qRJOnPmjEaPHq1du3bpyJEj2rRpk5KTkz3B/F/rcbvd3tt5AAAAAGgiOJNeB2ePnTXsOJMnT9a4cePUo0cPlZWV6eDBg/ryyy81atQomUwmjR49WikpKfr444+vuJ0WLVrogw8+0COPPKL4+Hj16tVLM2bM0JgxYzz3qXfo0EHbtm3Tk08+qcGDB6u8vFzXXXedhg4dKrPZXGM933zzjWJiYuq8XwAAAAAQSAjptWC322ULsynrhSyfjWkLs8lut9d6/S5duig7O7tK28qVK7Vy5coqbXPnzvW8fv3112vc1oABA5STk+NZXr16tSwWi6Kjoz1tsbGxeu+99+pUDwAAAADgygjptRAdHa2DuQdVVFTkszHtdnuVUOxLq1atUufOnRUZGamcnBzPM9BtNptf6gEAAACAQEFIr6Xo6Gi/hWZfKygo0IwZM1RQUKCIiAjdc889mjNnjr/LAgAAAIAmj5COaqZMmaIpU6b4uwwAAAAACDjM7g4AAAAAgEEQ0mtQWVnp7xIQwPj+AQAAAIGLkP4jFotFklRaWurnShDILn3/Ln0fAQAAAAQO7kn/kaCgILVq1UonT56UJIWFhclkMvm5qsDjdrvldDp1/vx5z3PXA0FlZaVKS0t18uRJtWrVSkFBQf4uCQAAAICPEdL/Rfv27SXJE9The5WVlSorK5PNZgvI/yRp1aqV53sIAAAAILAQ0v+FyWRSRESE2rZtK5fL5e9yApLL5VJWVpaSkpIC7pJvi8XCGXQAAAAggBHSLyMoKIiw5CdBQUG6cOGCQkNDAy6kAwAAAAhsgXPDLwAAAAAABkdIBwAAAADAIAjpAAAAAAAYBCEdAAAAAACDIKQDAAAAAGAQhHQAAAAAAAyCkA4AAAAAgEH4PaQvXrxYMTExCg0NVUJCgnbu3HnF9b///ntNmjRJERERCgkJUZcuXfTRRx/5qFoAAAAAALwn2J+Dr1+/Xg6HQ0uXLlVCQoIyMjI0ZMgQ5eXlqW3bttXWdzqduv3229W2bVu98847ioyM1N///ne1atXK98UDAAAAANDA/BrS58+frwkTJig5OVmStHTpUv3pT3/SihUr9NRTT1Vbf8WKFTpz5oy2b98ui8UiSYqJifFlyQAAAAAAeI3fQrrT6dTu3bs1depUT5vZbNagQYOUnZ1dY5/3339fiYmJmjRpkv74xz+qTZs2GjNmjJ588kkFBQXV2Ke8vFzl5eWe5eLiYkmSy+WSy+VqwD1CQ7n0ufD5BCa32y2bzSaLWQo2uf1djldYzJLNZpPb7fbJ95xjyvj4bAAAwCV+C+lFRUWqqKhQu3btqrS3a9dOBw8erLHP3/72N33yySe677779NFHH+nw4cNKSUmRy+VSenp6jX3mzp2rWbNmVWv/85//rLCwsKvfEXjN5s2b/V0C/GTt2rX//1WRX+vwmratNXHtWh0/flzHjx/32bAcU8ZVWlrq7xIAAIBB+PVy97pyu91q27atli1bpqCgIPXt21fHjx/XvHnzLhvSp06dKofD4VkuLi5WVFSUBg8erBYtWviqdNSBy+XS5s2bdfvtt3tua0DgyMnJUVJSkm6b/KpaR8X6uxyv+O7Y1/r0xRRlZWUpLi7O6+NxTBnfpau8AAAA/BbS7Xa7goKCVFhYWKW9sLBQ7du3r7FPRESELBZLlUvbu3fvroKCAjmdTlmt1mp9QkJCFBISUq3dYrHwY9Xg+IwCk9lsVllZmVxu6UKl3x9A4RUut1RWViaz2ezT7zjHlHHxuQAAgEv89gvYarWqb9++yszM9LS53W5lZmYqMTGxxj4333yzDh8+LLf7n/epHjp0SBERETUGdAAAAAAAGhO/nqZyOBx67bXX9MYbbyg3N1ePPPKISkpKPLO9jx07tsrEco888ojOnDmjtLQ0HTp0SH/605/07LPPatKkSf7aBQAAAAAAGoxf70kfNWqUTp06pRkzZqigoEDx8fHauHGjZzK5/Px8mc3//H+EqKgobdq0Sb/5zW/Uu3dvRUZGKi0tTU8++aS/dgEAAAAAgAbj94njUlNTlZqaWuN7W7ZsqdaWmJiozz//3MtVAQAAAADge01zViYAAAAAABqheoX0Tz/9tKHrAAAAAAAg4NUrpA8dOlTXX3+9/ud//kfHjh1r6JoAAAAAAAhI9Qrpx48fV2pqqt555x117txZQ4YM0VtvvSWn09nQ9QEAAAAAEDDqFdLtdrt+85vfaO/evdqxY4e6dOmilJQUdejQQY899phycnIauk4AAAAAAJq8q544rk+fPpo6dapSU1P1ww8/aMWKFerbt69uueUWffXVVw1RIwAAAAAAAaHeId3lcumdd97RsGHDdN1112nTpk1atGiRCgsLdfjwYV133XW65557GrJWAAAAAACatHo9J/3RRx/V2rVrVVlZqQceeEAvvPCCevbs6Xm/WbNmevHFF9WhQ4cGKxQAAAAAgKauXiH9wIEDeuWVV3TXXXcpJCSkxnXsdjuPagMAAAAAoA7qdbl7enq67rnnnmoB/cKFC8rKypIkBQcH69Zbb736CgEAAAAACBD1Cum33Xabzpw5U6397Nmzuu222666KAAAAAAAAlG9QnplZaVMJlO19tOnT6tZs2ZXXRQAAAAAAIGoTvek33XXXZIkk8mk8ePHV7ncvaKiQvv27dOAAQMatkIAAAAAAAJEnUJ6y5YtJV08k968eXPZbDbPe1arVTfddJMmTJjQsBUCAAAAABAg6hTSV65cKUmKiYnR5MmTubQdAAAAAIAGVK9HsKWnpzd0HQAAAAAABLxah/Q+ffooMzNTrVu31g033FDjxHGX7Nmzp0GKAwAAAAAgkNQ6pN9xxx2eieJGjBjhrXoAAAAAAAhYtQ7pP77EncvdAQAAAABoePW6Jx2BJT8/X0VFRT4bz+12S5JycnJkNpt9Mqbdbld0dLRPxgIAAACAy6l1SG/duvUV70P/sTNnztS7IBhLfn6+unfrqtKy8z4b02azae3atUpKSlJZWZlPxgyzhSr3YB5BHQAAAIBf1TqkZ2RkeLEMGFVRUZFKy87r9xPj1T0i3Cdjus1WHZeU9VSizG6n18fL/fYH3b9sr4qKigjpAAAAAPyq1iF93Lhx3qwDBtc9Ilx9Ylr6ZCyXLDouKS66hSxy+WRMAAAAADCCWof04uJitWjRwvP6Si6tBwAAAAAAaq9O96R/++23atu2rVq1alXj/emVlZUymUyqqKho0CIBX8jNzfV3CV7F5HjwNV9POukPHFcAAKCh1Tqkf/LJJ7rmmmskSZ9++qnXCgJ8rdxZLkm6//77/VyJd9nCbDqYe5BAAZ/Iz89Xt+7dVFbqm8kf/YXjCgAANLRah/Rbb721xtdAY3fhwgVJ0g1jb1DHGzv6uRrvOHvsrLJeyGJyPPhMUVGRykrLlDQlSS2jfDOfha9xXAEAAG+o93PSv/vuO/3v//6v5xLhHj16KDk52XO2HWhswtuHyx5r93cZQJPSMqolxxUAAEAdmOvTKSsrSzExMVq4cKG+++47fffdd1q4cKE6deqkrKyshq4RAAAAAICAUK8z6ZMmTdKoUaO0ZMkSBQUFSZIqKiqUkpKiSZMmaf/+/Q1aJAA0Rb6arNDtdkuScnJyZDbX6/9m66ypT8QIAADgLfUK6YcPH9Y777zjCeiSFBQUJIfDoVWrVjVYcQDQFLnKnZJ8N1mhzWbT2rVrlZSUpLIy303kZpZUeqbUZ+MBAAA0BfUK6X369FFubq66du1apT03N1dxcXENUhgANFWXJit85q4uGtarrdfHc5utOi4p66lEmd1Or48nSXv+dkoT3syTs8Q34wEAADQVtQ7p+/bt87x+7LHHlJaWpsOHD+umm26SJH3++edavHixnnvuuYavEgCaoE72MPWJ8f7M5y5ZdFxSXHQLWeTy+niSVFJa4pNxAAAAmppah/T4+HiZTCZVVlZ62qZMmVJtvTFjxmjUqFENUx0AAAAAAAGk1iH9m2++8WYdAAAAAAAEvFqH9Ouuu86bdQAAAAAAEPDqNXHcJQcOHFB+fr6czqoTA/3Xf/3XVRUFAAAAAEAgqldI/9vf/qY777xT+/fvr3KfuslkknTxmekAAAAAAKBuzPXplJaWpk6dOunkyZMKCwvTV199paysLPXr109btmxp4BIBAAAAAAgM9TqTnp2drU8++UR2u11ms1lms1n/8R//oblz5+qxxx7Tl19+2dB1AgAAAADQ5NXrTHpFRYWaN28uSbLb7Tpx4oSki5PL5eXlNVx1AAAAAAAEkHqdSe/Zs6dycnLUqVMnJSQk6IUXXpDVatWyZcvUuXPnhq4RAAAAAICAUK+QPm3aNJWUlEiSZs+erV/+8pe65ZZbdO2112r9+vUNWiAAAAAAAIGiXiF9yJAhntc/+clPdPDgQZ05c0atW7f2zPAOAAAAAADq5qqeky5Jx44dkyRFRUVddTEAAAAAAASyek0cd+HCBU2fPl0tW7ZUTEyMYmJi1LJlS02bNk0ul6uhawQAAAAAICDU60z6o48+qvfee08vvPCCEhMTJV18LNvMmTN1+vRpLVmypEGLBAAAAAAgENQrpK9Zs0br1q3TL37xC09b7969FRUVpdGjRxPSAQAAAACoh3pd7h4SEqKYmJhq7Z06dZLVar3amgAAAAAACEj1Cumpqal65plnVF5e7mkrLy/XnDlzlJqa2mDFAQAAAAAQSGp9uftdd91VZfkvf/mLOnbsqLi4OElSTk6OnE6nfv7znzdshQAAAAAABIhah/SWLVtWWb777rurLPMINgAAAAAArk6tQ/rKlSu9WQcAAAAAAAGvXvekX3Lq1Cl99tln+uyzz3Tq1Kl6b2fx4sWKiYlRaGioEhIStHPnzlr1W7dunUwmk0aMGFHvsQEAAAAAMIp6hfSSkhI9+OCDioiIUFJSkpKSktShQwc99NBDKi0trdO21q9fL4fDofT0dO3Zs0dxcXEaMmSITp48ecV+R48e1eTJk3XLLbfUZxcAAAAAADCceoV0h8OhrVu36oMPPtD333+v77//Xn/84x+1detWPfHEE3Xa1vz58zVhwgQlJyerR48eWrp0qcLCwrRixYrL9qmoqNB9992nWbNmqXPnzvXZBQAAAAAADKfW96T/2Lvvvqt33nlHAwcO9LQNGzZMNptNI0eO1JIlS2q1HafTqd27d2vq1KmeNrPZrEGDBik7O/uy/WbPnq22bdvqoYce0v/93/9dcYzy8vIqj4orLi6WJLlcLrlcrlrVGcjcbrdsNpvcZqtcsvhkzEvj+Gq8yiCrbDabrEFWBVfW65AwPIvJcvFzdLsN/72/9J2zmKVgk9vf5XiFNcgkm80mBYf45Hvu62NK4riqK6MflwAAwHdMlZWVlXXtFBYWpt27d6t79+5V2r/66iv1799fJSUltdrOiRMnFBkZqe3btysxMdHTPmXKFG3dulU7duyo1uezzz7Tvffeq71798put2v8+PH6/vvvtWHDhhrHmDlzpmbNmlWtfc2aNQoLC6tVnQAAeFNpaanGjBmjs2fPqkWLFv4uBwAA+FG9Tm8kJiYqPT1dq1atUmhoqCSprKxMs2bNqhK2G9q5c+f0wAMP6LXXXpPdbq9Vn6lTp8rhcHiWi4uLFRUVpcGDB/NDqBZycnKUlJSkrKcSFRftm7+XSxZtbn2fbv9utSzy/tml7LxvNXTBPg14fIA6JzXN2ydOHzmtj3/7sbKyshQXF+fvcq7o0nfutsmvqnVUrL/L8Ypv8/Yp+9Un9Fpyb428McLr4/n6mJI4rurq0lVeAAAA9QrpGRkZGjp0qDp27Oj5YZKTk6PQ0FBt2rSp1tux2+0KCgpSYWFhlfbCwkK1b9++2vpHjhzR0aNHNXz4cE+b233xctjg4GDl5eXp+uuvr9InJCREISEh1bZlsVhksfju0s/Gymw2q6ysTGa302c/7i+xyOWTMU0VTpWVlclZ4dQF0wWvj+cPrkrXxc/RbDb89/7Sd87lli5UXtUDKAzLWVGpsrIy6UK5T48rXx1TEsdVXRn9uAQAAL5Tr5Deq1cvff3111q9erUOHjwoSRo9erTuu+++i/dZ1pLValXfvn2VmZnpeYya2+1WZmamUlNTq63frVs37d+/v0rbtGnTdO7cOS1YsEBRUVH12R0AAAAAAAyhziHd5XKpW7du+vDDDzVhwoSrLsDhcGjcuHHq16+f+vfvr4yMDJWUlCg5OVmSNHbsWEVGRmru3LkKDQ1Vz549q/Rv1aqVJFVrBwAAAACgsalzSLdYLDp//nyDFTBq1CidOnVKM2bMUEFBgeLj47Vx40a1a9dOkpSfny+zuWle8goAAAAAwI/V63L3SZMm6fnnn9fy5csVHHz1j9ZJTU2t8fJ2SdqyZcsV+77++utXPT4AAAAAAEZQr4S9a9cuZWZm6s9//rN69eqlZs2aVXn/vffea5DiAAAAAAAIJPUK6a1atdLdd9/d0LUAAAAAABDQ6hTS3W635s2bp0OHDsnpdOpnP/uZZs6cWacZ3QEAAAAAQM3qNCPbnDlz9PTTTys8PFyRkZFauHChJk2a5K3aAAAAAAAIKHUK6atWrdKrr76qTZs2acOGDfrggw+0evVqud1ub9UHAAAAAEDAqFNIz8/P17BhwzzLgwYNkslk0okTJxq8MAAAAAAAAk2dQvqFCxcUGhpapc1iscjlcjVoUQAAAAAABKI6TRxXWVmp8ePHKyQkxNN2/vx5/fd//3eVx7DxCDYAAAAAAOquTiF93Lhx1druv//+BisGAAAAAIBAVqeQvnLlSm/VAQAAAABAwKvTPekAAAAAAMB7COkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMwREhfvHixYmJiFBoaqoSEBO3cufOy67722mu65ZZb1Lp1a7Vu3VqDBg264voAAAAAADQWfg/p69evl8PhUHp6uvbs2aO4uDgNGTJEJ0+erHH9LVu2aPTo0fr000+VnZ2tqKgoDR48WMePH/dx5QAAAAAANCy/h/T58+drwoQJSk5OVo8ePbR06VKFhYVpxYoVNa6/evVqpaSkKD4+Xt26ddPy5cvldruVmZnp48oBAAAAAGhYwf4c3Ol0avfu3Zo6daqnzWw2a9CgQcrOzq7VNkpLS+VyuXTNNdfU+H55ebnKy8s9y8XFxZIkl8sll8t1FdVf9I9//EOnT5++6u0YVV5enmw2m9xmq1yy+GTMS+P4arzKIKtsNpusQVYFV/r1kPAai8ly8XN0uxvke+9NbrdbNptNFrMUbHL7uxyvsAaZZLPZpOAQn3zPfX1MSRxXdWX04xIAAPiOqbKystJfg584cUKRkZHavn27EhMTPe1TpkzR1q1btWPHjn+7jZSUFG3atElfffWVQkNDq70/c+ZMzZo1q1r7mjVrFBYWdnU7AABAAygtLdWYMWN09uxZtWjRwt/lAAAAP2rUpzeee+45rVu3Tlu2bKkxoEvS1KlT5XA4PMvFxcWe+9iv9odQTk6OkpKS1O+Bp9S8XfRVbcuoTv/9a+17+2W9ltxbI2+M8MmYLlm0ufV9uv271bLI+2eXsvO+1dAF+zTg8QHqnNTZ6+P5w+kjp/Xxbz9WVlaW4uLi/F3OFV06rm6b/KpaR8X6uxyv+DZvn7JffcJnx5WvjymJ46quLl3lBQAA4NeQbrfbFRQUpMLCwirthYWFat++/RX7vvjii3ruuef0l7/8Rb17977seiEhIQoJCanWbrFYZLFc3aWfZrNZZWVlCm0TreYdu17Vtoyq+FypysrKpAvlPvtxf4lFLp+MaapwqqysTM4Kpy6YLnh9PH9wVbpUVlYms9l81d97b7t0XLnc0oVKv0+b4RXOikq/HFe+OqYkjqu6MvpxCQAAfMevv4CtVqv69u1bZdK3S5PA/fjy93/1wgsv6JlnntHGjRvVr18/X5QKAAAAAIDX+f1yd4fDoXHjxqlfv37q37+/MjIyVFJSouTkZEnS2LFjFRkZqblz50qSnn/+ec2YMUNr1qxRTEyMCgoKJEnh4eEKDw/3234AAAAAAHC1/B7SR40apVOnTmnGjBkqKChQfHy8Nm7cqHbt2kmS8vPzZTb/84T/kiVL5HQ69atf/arKdtLT0zVz5kxflg4AAAAAQIPye0iXpNTUVKWmptb43pYtW6osHz161PsFAQAAAADgB01zViYAAAAAABohQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIYI6YsXL1ZMTIxCQ0OVkJCgnTt3XnH9t99+W926dVNoaKh69eqljz76yEeVAgAAAADgPX4P6evXr5fD4VB6err27NmjuLg4DRkyRCdPnqxx/e3bt2v06NF66KGH9OWXX2rEiBEaMWKE/vrXv/q4cgAAAAAAGpbfQ/r8+fM1YcIEJScnq0ePHlq6dKnCwsK0YsWKGtdfsGCBhg4dqt/+9rfq3r27nnnmGfXp00eLFi3yceUAAAAAADSsYH8O7nQ6tXv3bk2dOtXTZjabNWjQIGVnZ9fYJzs7Ww6Ho0rbkCFDtGHDhhrXLy8vV3l5uWf57NmzkqQzZ87I5XJdVf3FxcUKDQ3VD8cPSa6yq9qWUZUV/E2hoaHKK3Jqy6FzPhnTbbaq9Kel+r/DP8jsdnp9vL+ecCo0NFSlJ0pVtL/I6+P5w7lvzyk0NFTFxcU6ffq0v8u5Io6rhufrY0riuKrzts5d/B5UVlY2RGkAAKARM1X68RfBiRMnFBkZqe3btysxMdHTPmXKFG3dulU7duyo1sdqteqNN97Q6NGjPW2vvvqqZs2apcLCwmrrz5w5U7NmzfLODgAA0ICOHTumjh07+rsMAADgR349k+4LU6dOrXLm3e1268yZM7r22mtlMpn8WBkup7i4WFFRUTp27JhatGjh73KARo9jyvgqKyt17tw5dejQwd+lAAAAP/NrSLfb7QoKCqp2BrywsFDt27evsU/79u3rtH5ISIhCQkKqtLVq1ar+RcNnWrRoQaAAGhDHlLG1bNnS3yUAAAAD8OvEcVarVX379lVmZqanze12KzMzs8rl7z+WmJhYZX1J2rx582XXBwAAAACgsfD75e4Oh0Pjxo1Tv3791L9/f2VkZKikpETJycmSpLFjxyoyMlJz586VJKWlpenWW2/VSy+9pP/8z//UunXr9MUXX2jZsmX+3A0AAAAAAK6a30P6qFGjdOrUKc2YMUMFBQWKj4/Xxo0b1a5dO0lSfn6+zOZ/nvAfMGCA1qxZo2nTpunpp59WbGysNmzYoJ49e/prF9DAQkJClJ6eXu02BQD1wzEFAADQePh1dncAAAAAAPBPfr0nHQAAAAAA/BMhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOQ1m8eLFiYmIUGhqqhIQE7dy5098lAY1aVlaWhg8frg4dOshkMmnDhg3+LgkAAABXQEiHYaxfv14Oh0Pp6enas2eP4uLiNGTIEJ08edLfpQGNVklJieLi4rR48WJ/lwIAAIBa4BFsMIyEhATdeOONWrRokSTJ7XYrKipKjz76qJ566ik/Vwc0fiaTSX/4wx80YsQIf5cCAACAy+BMOgzB6XRq9+7dGjRokKfNbDZr0KBBys7O9mNlAAAAAOA7hHQYQlFRkSoqKtSuXbsq7e3atVNBQYGfqgIAAAAA3yKkAwAAAABgEIR0GILdbldQUJAKCwurtBcWFqp9+/Z+qgoAAAAAfIuQDkOwWq3q27evMjMzPW1ut1uZmZlKTEz0Y2UAAAAA4DvB/i4AuMThcGjcuHHq16+f+vfvr4yMDJWUlCg5OdnfpQGN1g8//KDDhw97lr/55hvt3btX11xzjaKjo/1YGQAAAGrCI9hgKIsWLdK8efNUUFCg+Ph4LVy4UAkJCf4uC2i0tmzZottuu61a+7hx4/T666/7viAAAABcESEdAAAAAACD4J50AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkA03IwIED9fjjj1/2/ZiYGGVkZPisHgAAAAB1Q0gHAsiuXbs0ceJEf5fxb7333nvq16+fWrVqpWbNmik+Pl5vvvmmv8sCAAAAvC7Y3wUA8J02bdp4fQyn0ymr1XpV27jmmmv0u9/9Tt26dZPVatWHH36o5ORktW3bVkOGDGmgSgEAAADj4Uw60MRcuHBBqampatmypex2u6ZPn67KykpJ1S93N5lMWr58ue68806FhYUpNjZW77//vuf9iooKPfTQQ+rUqZNsNpu6du2qBQsWVBlv/PjxGjFihObMmaMOHTqoa9eumj17tnr27Fmttvj4eE2fPv3f7sPAgQN15513qnv37rr++uuVlpam3r1767PPPqvnXwUAAABoHAjpQBPzxhtvKDg4WDt37tSCBQs0f/58LV++/LLrz5o1SyNHjtS+ffs0bNgw3XfffTpz5owkye12q2PHjnr77bd14MABzZgxQ08//bTeeuutKtvIzMxUXl6eNm/erA8//FAPPvigcnNztWvXLs86X375pfbt26fk5OQ67U9lZaVn+0lJSXXqCwAAADQ2XO4ONDFRUVF6+eWXZTKZ1LVrV+3fv18vv/yyJkyYUOP648eP1+jRoyVJzz77rBYuXKidO3dq6NChslgsmjVrlmfdTp06KTs7W2+99ZZGjhzpaW/WrJmWL19e5TL3IUOGaOXKlbrxxhslSStXrtStt96qzp0712o/zp49q8jISJWXlysoKEivvvqqbr/99jr/PQAAAIDGhDPpQBNz0003yWQyeZYTExP19ddfq6Kiosb1e/fu7XndrFkztWjRQidPnvS0LV68WH379lWbNm0UHh6uZcuWKT8/v8o2evXqVe0+9AkTJmjt2rU6f/68nE6n1qxZowcffLDW+9G8eXPt3btXu3bt0pw5c+RwOLRly5Za9wcAAAAaI86kAwHOYrFUWTaZTHK73ZKkdevWafLkyXrppZeUmJio5s2ba968edqxY0eVPs2aNau23eHDhyskJER/+MMfZLVa5XK59Ktf/arWdZnNZv3kJz+RdPFe9tzcXM2dO1cDBw6s4x4CAAAAjQchHWhi/jVAf/7554qNjVVQUFCdt7Vt2zYNGDBAKSkpnrYjR47Uqm9wcLDGjRunlStXymq16t5775XNZqtzDZe43W6Vl5fXuz8AAADQGBDSgSYmPz9fDodDv/71r7Vnzx698soreumll+q1rdjYWK1atUqbNm1Sp06d9Oabb2rXrl3q1KlTrfo//PDD6t69u6SLgb+25s6dq379+un6669XeXm5PvroI7355ptasmRJvfYDAAAAaCwI6UATM3bsWJWVlal///4KCgpSWlqaJk6cWK9t/frXv9aXX36pUaNGyWQyafTo0UpJSdHHH39cq/6xsbEaMGCAzpw5o4SEhFqPW1JSopSUFP3jH/+QzWZTt27d9Pvf/16jRo2q134AAAAAjYWp8tIDlAGggVVWVio2NlYpKSlyOBz+LgcAAAAwPM6kA/CKU6dOad26dSooKKjzs9EBAACAQEVIB+AVbdu2ld1u17Jly9S6desq74WHh1+238cff6xbbrnF2+UBAAAAhsTl7gB87vDhw5d9LzIy8qpmgQcAAAAaM0I6AAAAAAAGYfZ3AQAAAAAA4CJCOgAAAAAABkFIBwAAAADAIAjpAAAAAAAYBCEdAAAAAACDIKQDAAAAAGAQhHQAAAAAAAyCkA4AAAAAgEH8P/X3lz1dEq//AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1200x1800 with 7 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "objective = beta = BetaBalance(m)\n",
    "\n",
    "match = matcher.get_best_match()\n",
    "m_data = m.copy().get_population('pool')\n",
    "m_data.loc[:, 'population'] = m_data['population'] + ' (prematch)'\n",
    "match.append(m_data)\n",
    "fig = plot_per_feature_loss(match, beta, 'target', debin=False)\n",
    "fig = plot_numeric_features(match, hue_order=['pool (prematch)', 'pool', 'target', ])\n",
    "fig = plot_categoric_features(match,  hue_order=['pool (prematch)', 'pool', 'target'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "80d032db-fbd5-4b50-8501-c36ae0b3028f",
   "metadata": {},
   "source": [
    "## Improve upon PropensityScoreMatcher solution with ConstraintSatisfactionMatcher"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7070708e-18cf-491d-9dd7-56ed3951c6c6",
   "metadata": {},
   "source": [
    "Because the PropensityScoreMatcher doesn't directly optimize balance, it only achieves good balance when we find the right propensity score model. Depending on how we've parameterized the space of possible propensity score models, we may in fact never find the right model. This leaves us often with residual confounding that cannot be removed via propensity score matching. Here we show that the ConstraintSatisfactionMatcher is able to find a significantly better matched solution compared to the propensity score approach."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "e69b60d2-ae98-46bd-a232-7fd1a5b74174",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO [matcher.py:65] Scaling features by factor 240.00 in order to use integer solver with <= 0.2898% loss.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'objective': 'beta',\n",
       " 'pool_size': 1000,\n",
       " 'target_size': 1000,\n",
       " 'max_mismatch': None,\n",
       " 'time_limit': 300,\n",
       " 'num_workers': 4,\n",
       " 'ps_hinting': False,\n",
       " 'verbose': True}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from pybalance.lp import ConstraintSatisfactionMatcher\n",
    "matcher = ConstraintSatisfactionMatcher(\n",
    "    m, \n",
    "    time_limit=300,\n",
    "    objective=objective,\n",
    "    ps_hinting=False,\n",
    "    num_workers=4)\n",
    "matcher.get_params()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "08bd0619-cb3d-4179-b377-07d5ca9a401f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO [matcher.py:411] Solving for match population with pool size = 1000 and target size = 1000 subject to None balance constraint.\n",
      "INFO [matcher.py:414] Matching on 15 dimensions ...\n",
      "INFO [matcher.py:421] Building model variables and constraints ...\n",
      "INFO [matcher.py:430] Calculating bounds on feature variables ...\n",
      "INFO [matcher.py:520] Applying size constraints on pool and target ...\n",
      "INFO [matcher.py:604] Solving with 4 workers ...\n",
      "INFO [matcher.py:90] Initial balance score: 0.2449\n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 1, time = 0.02 m\n",
      "INFO [matcher.py:101] Objective:\t480270000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2421\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 2, time = 0.04 m\n",
      "INFO [matcher.py:101] Objective:\t479744000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2418\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 3, time = 0.04 m\n",
      "INFO [matcher.py:101] Objective:\t479679000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2418\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 4, time = 0.07 m\n",
      "INFO [matcher.py:101] Objective:\t479629000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2417\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 5, time = 0.08 m\n",
      "INFO [matcher.py:101] Objective:\t479552000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2417\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 6, time = 0.09 m\n",
      "INFO [matcher.py:101] Objective:\t479486000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2416\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 7, time = 0.09 m\n",
      "INFO [matcher.py:101] Objective:\t479423000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.2416\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 8, time = 0.11 m\n",
      "INFO [matcher.py:101] Objective:\t29842000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0165\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 9, time = 0.13 m\n",
      "INFO [matcher.py:101] Objective:\t29840000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0166\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 10, time = 0.15 m\n",
      "INFO [matcher.py:101] Objective:\t29819000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0165\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 11, time = 0.19 m\n",
      "INFO [matcher.py:101] Objective:\t29801000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0165\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 12, time = 0.21 m\n",
      "INFO [matcher.py:101] Objective:\t29777000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0140\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 13, time = 0.43 m\n",
      "INFO [matcher.py:101] Objective:\t29771000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0140\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 14, time = 0.72 m\n",
      "INFO [matcher.py:101] Objective:\t29767000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0136\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 15, time = 1.01 m\n",
      "INFO [matcher.py:101] Objective:\t29766000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0136\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 16, time = 1.79 m\n",
      "INFO [matcher.py:101] Objective:\t29764000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0140\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:96] =========================================\n",
      "INFO [matcher.py:97] Solution 17, time = 2.61 m\n",
      "INFO [matcher.py:101] Objective:\t29763000.0\n",
      "INFO [matcher.py:120] Balance (beta):\t0.0165\n",
      "INFO [matcher.py:125] Patients (pool):\t1000\n",
      "INFO [matcher.py:126] Patients (target):\t1000\n",
      "INFO [matcher.py:140]  \n",
      "INFO [matcher.py:611] Status = FEASIBLE\n",
      "INFO [matcher.py:612] Number of solutions found: 17\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "        <b>Headers Numeric: </b><br>\n",
       "        ['age', 'height', 'weight']<br><br>\n",
       "        <b>Headers Categoric: </b><br>\n",
       "        ['gender', 'haircolor', 'country', 'binary_0', 'binary_1', 'binary_2', 'binary_3'] <br><br>\n",
       "        <b>Populations</b> <br>\n",
       "        ['pool', 'target'] <br>\n",
       "        <div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>height</th>\n",
       "      <th>weight</th>\n",
       "      <th>gender</th>\n",
       "      <th>haircolor</th>\n",
       "      <th>country</th>\n",
       "      <th>population</th>\n",
       "      <th>binary_0</th>\n",
       "      <th>binary_1</th>\n",
       "      <th>binary_2</th>\n",
       "      <th>binary_3</th>\n",
       "      <th>patient_id</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>37.519341</td>\n",
       "      <td>178.337875</td>\n",
       "      <td>57.424543</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>4</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>10000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>23.722325</td>\n",
       "      <td>128.347114</td>\n",
       "      <td>102.183004</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>target</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10001</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>64.523502</td>\n",
       "      <td>144.600598</td>\n",
       "      <td>90.061948</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10002</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>25.377578</td>\n",
       "      <td>177.986337</td>\n",
       "      <td>82.076883</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10003</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>26.922515</td>\n",
       "      <td>155.633760</td>\n",
       "      <td>76.929413</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>5</td>\n",
       "      <td>target</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>10004</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9961</th>\n",
       "      <td>51.638489</td>\n",
       "      <td>145.531672</td>\n",
       "      <td>56.577659</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>9961</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9975</th>\n",
       "      <td>67.215985</td>\n",
       "      <td>132.431033</td>\n",
       "      <td>60.001705</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>9975</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9977</th>\n",
       "      <td>56.680409</td>\n",
       "      <td>172.400095</td>\n",
       "      <td>100.905653</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>9977</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9983</th>\n",
       "      <td>65.077128</td>\n",
       "      <td>175.593470</td>\n",
       "      <td>75.612613</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>pool</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>9983</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9993</th>\n",
       "      <td>62.762447</td>\n",
       "      <td>136.674765</td>\n",
       "      <td>69.491786</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>pool</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>9993</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2000 rows × 12 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "<pybalance.utils.matching_data.MatchingData at 0x7f86d0c22dc0>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "matcher.match()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99890264-1264-4bcc-bab6-79b51e4a0228",
   "metadata": {},
   "source": [
    "As one can already see from the reported balance metric, the ConstraintSatificationMatcher finds a much better solution. We also confirm this result visually below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "c0f18f39-6a98-48d3-be63-2ffd8d1ecfa0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAJjCAYAAACGIUCBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRbElEQVR4nOzdd1hT598G8DtsUJaiLFFAHKAoOOu27lFXbR214qpdUrW4W0fRVu1wz1rrarXa1tpatThwj2pduBfOVhEVAQElQJ73D17yIyYckwg5R7w/15VL85x15ySEL895zjkqIYQAEREREVEBrOQOQERERETKxoKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGITObv74/+/ftrn69YsQIqlQpHjx61yPabN2+O5s2bW2RblvDZZ59BpVLh/v37ckd5Jn9/f7z22mtFvp27d+/ijTfeQOnSpaFSqTB79uwi3yYRFYwFI5ECxMfH47333kNgYCAcHBzg4uKCRo0aYc6cOXj8+HGRbffcuXP47LPPcP369SLbhrmUmE2JmQqyZs2aF7rI+vjjj7F161aMGzcOP/zwA9q1a1ck25k6dSp+//33Ilk3UXFiI3cAopfd5s2b8eabb8Le3h4RERGoXr061Go19u/fj1GjRuHs2bNYsmRJkWz73LlziI6ORvPmzeHv72/0chcvXoSVVdH+vSmVbdu2bUW6bXMyKc2aNWtw5swZDB8+XO4oZtm5cye6dOmCkSNHFul2pk6dijfeeANdu3Yt0u0QvehYMBLJ6Nq1a+jVqxcqVKiAnTt3wtvbWzttyJAhuHLlCjZv3ixjwv8RQuDJkydwdHSEvb29rFns7Oxk3T4VvcTERLi5uckdwywajQZqtRoODg5yRyEqNDwkTSSjr776Cmlpafj+++91isU8QUFBGDZsmPZ5dnY2pkyZgooVK8Le3h7+/v745JNPkJmZqbNc3jiz/fv3o169enBwcEBgYCBWrVqlnWfFihV48803AQCvvvoqVCoVVCoVdu/erbOOrVu3ok6dOnB0dMS3336rnZZ/DGOejIwMvPfeeyhdujRcXFwQERGBhw8f6syjUqnw2Wef6S2bf53PymZoDGNiYiIGDRoET09PODg4oGbNmli5cqXOPNevX4dKpcI333yDJUuWaPdj3bp18c8//+hlyu9ZmQBg4cKFqFatGuzt7eHj44MhQ4YgOTlZcr353b9/Hz169ICLiwtKly6NYcOG4cmTJ3rz/fjjj6hduzYcHR1RqlQp9OrVC7du3dJOb968OTZv3owbN25oc+b1iKrVakycOBG1a9eGq6srSpQogSZNmmDXrl1G5wRye3nDwsLg4OCAkJAQ/Pbbb9ppV69ehUqlwqxZs/SWO3jwIFQqFX766SeD680bDyuEwIIFC7T58yQnJ2P48OHw8/ODvb09goKC8OWXX0Kj0eis55tvvkHDhg1RunRpODo6onbt2vj111915lGpVEhPT8fKlSu128n7DPbv399gL3LeeNOn1xMZGYnVq1dr3/+YmBgAwH///YeBAwfC09MT9vb2qFatGpYtW1bwjiVSKkFEsvH19RWBgYFGz9+vXz8BQLzxxhtiwYIFIiIiQgAQXbt21ZmvQoUKokqVKsLT01N88sknYv78+aJWrVpCpVKJM2fOCCGEiI+PF0OHDhUAxCeffCJ++OEH8cMPP4iEhATtOoKCgoS7u7sYO3asWLx4sdi1a5d2Wr9+/bTbW758uQAgQkNDRZMmTcTcuXPFkCFDhJWVlWjatKnQaDTaeQGISZMm6b22/Ot8VrZmzZqJZs2aaZfNyMgQwcHBwtbWVnz88cdi7ty5okmTJgKAmD17tna+a9euCQAiPDxcBAUFiS+//FJ89dVXwsPDQ5QrV06o1eoC9/2zMk2aNEkAEK1atRLz5s0TkZGRwtraWtStW1dyvfmXDQ0NFZ06dRLz588Xb7/9tgAg+vbtqzPv559/LlQqlejZs6dYuHChiI6OFh4eHsLf3188fPhQCCHEtm3bRFhYmPDw8NDm3LBhgxBCiHv37glvb28RFRUlFi1aJL766itRpUoVYWtrK06cOCGZM+99qly5snBzcxNjx44VM2fOFKGhocLKykps27ZNO1+jRo1E7dq19Zb/8MMPhbOzs0hPTy9wP//www8CgGjdurU2vxBCpKenixo1aojSpUuLTz75RCxevFhEREQIlUolhg0bprOecuXKiQ8//FDMnz9fzJw5U9SrV08AEJs2bdLO88MPPwh7e3vRpEkT7XYOHjwohMj9WatQoYJevrz3Kj8AIjg4WJQpU0ZER0eLBQsWiBMnToiEhARRrlw54efnJyZPniwWLVokOnfuLACIWbNmPXNfEykJC0YimaSkpAgAokuXLkbNf/LkSQFAvPPOOzrtI0eOFADEzp07tW0VKlQQAMTevXu1bYmJicLe3l6MGDFC2/bLL78IANpCML+8dcTExBicZqhgrF27tk5x9NVXXwkA4o8//tC2GVMwPivb0wXj7NmzBQDx448/atvUarVo0KCBKFmypEhNTRVC/K9gLF26tEhKStLO+8cffwgA4s8//9TbVn4FZUpMTBR2dnaiTZs2IicnR9s+f/58AUAsW7ZMcr15RUjnzp112j/88EMBQMTFxQkhhLh+/bqwtrYWX3zxhc58p0+fFjY2NjrtHTt2NFjwZGdni8zMTJ22hw8fCk9PTzFw4EDJnEL873Oxfv16bVtKSorw9vYW4eHh2rZvv/1WABDnz5/XtqnVauHh4aHzPhcEgBgyZIhO25QpU0SJEiXEpUuXdNrHjh0rrK2txc2bN7VtGRkZOvOo1WpRvXp10aJFC532EiVKGMxjasFoZWUlzp49q9M+aNAg4e3tLe7fv6/T3qtXL+Hq6qqXkUjJeEiaSCapqakAAGdnZ6Pm37JlCwAgKipKp33EiBEAoDfWMSQkBE2aNNE+L1OmDKpUqYKrV68anTEgIABt27Y1ev53330Xtra22ucffPABbGxstNmLypYtW+Dl5YXevXtr22xtbTF06FCkpaVhz549OvP37NkT7u7u2ud5+8mUfZPfjh07oFarMXz4cJ2TgQYPHgwXFxejx6EOGTJE5/lHH30E4H/v/W+//QaNRoMePXrg/v372oeXlxcqVapk1GFla2tr7RhQjUaDpKQkZGdno06dOjh+/LhROX18fNCtWzft87zhBydOnEBCQgIAoEePHnBwcMDq1au1823duhX379/H22+/bdR2nvbLL7+gSZMmcHd313n9rVq1Qk5ODvbu3aud19HRUfv/hw8fIiUlBU2aNDH6NZqqWbNmCAkJ0T4XQmD9+vXo1KkThBA6edu2bYuUlJQiy0JUFHjSC5FMXFxcAACPHj0yav4bN27AysoKQUFBOu1eXl5wc3PDjRs3dNrLly+vtw53d3e9MYVSAgICjJ4XACpVqqTzvGTJkvD29i7yy9DcuHEDlSpV0jtzOzg4WDs9v6f3TV7xaMq+eXr7AFClShWddjs7OwQGBuptvyBP77+KFSvCyspKu/8uX74MIYTefHnyF+tSVq5ciRkzZuDChQvIysrSthv7fgcFBemN46tcuTKA3HGieZ/JTp06Yc2aNZgyZQoAYPXq1fD19UWLFi2M2s7TLl++jFOnTqFMmTIGpycmJmr/v2nTJnz++ec4efKkzhjfp3MXlqf33b1795CcnIwlS5YUeJWD/HmJlI4FI5FMXFxc4OPjgzNnzpi0nLG/8KytrQ22CyGM3lb+XpqilpOTY7FtFca+sYSn32uNRgOVSoW//vrL4GsoWbLkM9f5448/on///ujatStGjRqFsmXLwtraGtOmTUN8fHyhZQeAiIgI/PLLLzh48CBCQ0OxceNGfPjhh2Zfkkmj0aB169YYPXq0wel5Reu+ffvQuXNnNG3aFAsXLoS3tzdsbW2xfPlyrFmzxqhtFfRzVtDn9OmflbyTcN5++23069fP4DI1atQwKguRErBgJJLRa6+9hiVLluDQoUNo0KCB5LwVKlSARqPB5cuXtT1nQO4dMZKTk1GhQgWTt1/YvS2XL1/Gq6++qn2elpaGO3fuoEOHDto2d3d3vTOH1Wo17ty5Y3a2ChUq4NSpU9BoNDrFyIULF7TTC0NBmfLWf/HiRQQGBmrb1Wo1rl27hlatWhm1/suXL+v0VF25cgUajUZ7tm7FihUhhEBAQIC2ODI166+//orAwED89ttvOvNMmjTJqIx5uYQQOstfunQJAHTOLG7Xrh3KlCmD1atXo379+sjIyEDfvn2N3s7TKlasiLS0tGfuz/Xr18PBwQFbt27VuQTU8uXL9eYtaD8Z+pwC+r3VBSlTpgycnZ2Rk5Nj9PtPpGQcw0gko9GjR6NEiRJ45513cPfuXb3p8fHxmDNnDgBoi66n794xc+ZMAEDHjh1N3n6JEiUAwKRLv0hZsmSJziHORYsWITs7G+3bt9e2VaxYUWesWd5yT/fcmJKtQ4cOSEhIwLp167Rt2dnZmDdvHkqWLIlmzZqZ83L0FJSpVatWsLOzw9y5c3V6Kb///nukpKQY/d4sWLBA5/m8efMAQLv/Xn/9dVhbWyM6OlqvN1QIgQcPHuhkTUlJ0dtGXs9k/uUPHz6MQ4cOGZURAG7fvo0NGzZon6empmLVqlUICwuDl5eXtt3Gxga9e/fGzz//jBUrViA0NPS5etV69OiBQ4cOYevWrXrTkpOTkZ2dDSD3NapUKp3P1PXr1w3e0aVEiRIGP2MVK1ZESkoKTp06pW27c+eOzuuWYm1tje7du2P9+vUGjyLcu3fPqPUQKQV7GIlkVLFiRaxZswY9e/ZEcHCwzp1eDh48iF9++UV7XbiaNWuiX79+WLJkCZKTk9GsWTMcOXIEK1euRNeuXXV69owVFhYGa2trfPnll0hJSYG9vT1atGiBsmXLmvV61Go1WrZsiR49euDixYtYuHAhGjdujM6dO2vneeedd/D++++je/fuaN26NeLi4rB161Z4eHiYne3dd9/Ft99+i/79++PYsWPw9/fHr7/+igMHDmD27NlGn1j0LFKZxo0bh+joaLRr1w6dO3fWvv66desafZLHtWvX0LlzZ7Rr1w6HDh3Cjz/+iLfeegs1a9YEkPt5+fzzzzFu3Dhcv34dXbt2hbOzM65du4YNGzbg3Xff1d4ZpXbt2li3bh2ioqJQt25dlCxZEp06dcJrr72G3377Dd26dUPHjh1x7do1LF68GCEhIUhLSzMqZ+XKlTFo0CD8888/8PT0xLJly3D37l2DPXgRERGYO3cudu3ahS+//NLIPW3YqFGjsHHjRrz22mvo378/ateujfT0dJw+fRq//vorrl+/Dg8PD3Ts2BEzZ85Eu3bt8NZbbyExMRELFixAUFCQTgGYt5927NiBmTNnwsfHBwEBAahfvz569eqFMWPGoFu3bhg6dCgyMjKwaNEiVK5c2eiTVaZPn45du3ahfv36GDx4MEJCQpCUlITjx49jx44dSEpKeq79QWRRMp2dTUT5XLp0SQwePFj4+/sLOzs74ezsLBo1aiTmzZsnnjx5op0vKytLREdHi4CAAGFrayv8/PzEuHHjdOYRIvfSJx07dtTbztOXoxFCiO+++04EBgYKa2trnUvGFLSOvGmGLquzZ88e8e677wp3d3dRsmRJ0adPH/HgwQOdZXNycsSYMWOEh4eHcHJyEm3bthVXrlzRW6dUNkOv4+7du2LAgAHCw8ND2NnZidDQULF8+XKdefIuq/P111/rvSYUcLmfpxWUSYjcy+hUrVpV2NraCk9PT/HBBx9or40oJe9SLefOnRNvvPGGcHZ2Fu7u7iIyMlI8fvxYb/7169eLxo0bixIlSogSJUqIqlWriiFDhoiLFy9q50lLSxNvvfWWcHNzEwC0l4jRaDRi6tSpokKFCsLe3l6Eh4eLTZs2FXgZmaflfS62bt0qatSoIezt7UXVqlXFL7/8UuAy1apVE1ZWVuLff/995vrzwMBldYQQ4tGjR2LcuHEiKChI2NnZCQ8PD9GwYUPxzTff6FzS6fvvvxeVKlXS5lu+fLnBS+JcuHBBNG3aVDg6OgoAOp/Bbdu2ierVqws7OztRpUoV8eOPPxZ4WR1DWYXI/VwOGTJE+Pn5CVtbW+Hl5SVatmwplixZYvS+IFIClRAKG+VNRETFSnh4OEqVKoXY2Fi5oxCRmTiGkYiIiszRo0dx8uRJREREyB2FiJ4DexiJiKjQnTlzBseOHcOMGTNw//59XL16FQ4ODnLHIiIzsYeRiIgK3a+//ooBAwYgKysLP/30E4tFohccexiJiIiISBJ7GImIiIhI0kt3HUaNRoPbt2/D2dm5yO4pSkRERPQiEELg0aNH8PHxkbxt50tXMN6+fRt+fn5yxyAiIiJSjFu3bqFcuXIFTn/pCsa8Oz7cunULLi4uMqfRFxQUhCtXrsgdwyBmM51ScwHMZi6lZlNqLoDZzKXUbErNBTCbOVJTU+Hn5/fMO2K9dAVj3mFoFxcXRRaMVlZWiswFMJs5lJoLYDZzKTWbUnMBzGYupWZTai6A2Z7Hs4bp8aQXIiIiIpLEgpGIiIiIJLFgJCIiIiJJL90YRmPl5OQgKyvL4tstV64cnjx5YvHtGoPZTKfUXACzmSsvm62tLaytreWOQ0RkES/dnV5SU1Ph6uqKlJQUg4NPhRBISEhAcnKy5cMh9+xtpV72h9lMp9RcALOZK382Nzc3eHl5KeKarl5eXkhISJA7hkHMZh6lZlNqLoDZzPGsuigPexifklcsli1bFk5OThb/RZCZmYmAgACLbtNYzGY6peYCmM1cmZmZ8Pf3R0ZGBhITEwEA3t7eMqciIipaLBjzycnJ0RaLpUuXliWDSqWCg4ODLNt+FmYznVJzAcxmLpVKBUdHRzg6OgIAEhMTUbZsWR6eJqJijSe95JM3ZtHJyUnmJET0Isj7rpBjvDMRkSWxYDRACeORiEj5+F1BRC8LFoxEREREJIkFIxERERFJ4kkvRqo9apXlNvZjHI59HWG57ZnA398fw4cPx/DhwwucR61WIyQkBKtWrULDhg1x/fp1BAQE4MSJEwgLC7NY1pdVr169ULduXYwYMULuKEREVEywh5EK3eLFixEQEICGDRsW6nqbN28uWaha0s2bN9GxY0c4OTmhbNmyGDVqFLKzsyWXSUpKQp8+feDi4gI3NzcMGjQIaWlp2ulPnjxB//79ERoaChsbG3Tt2lVvHf3794dKpdJ7VKtWTTvP+PHj8cUXXyAlJaXQXi8REb3cWDBSoRJCYP78+Rg0aJDcUYpMTk4OOnbsCLVajYMHD2LlypVYsWIFJk6cKLlcnz59cPbsWWzfvh2bNm3C3r178e677+qs19HREUOHDkWrVq0MrmPOnDm4c+eO9nHr1i2UKlUKb775pnae6tWro2LFivjxxx8L5wUTEdFLjwVjMdG8eXNERkYiMjISrq6u8PDwwIQJE5D/Rj4PHz5EREQE3N3d4eTkhPbt2+Py5cs661m/fj2qVasGe3t7+Pv7Y8aMGSblOHbsGOLj49GxY0e9aRcuXEDDhg3h4OCA6tWrY8+ePTrTz5w5g/bt26NkyZLw9PRE3759cf/+fQC5PWt79uzBnDlztL1q169fR05ODgYNGoQOHTrA0dERVapUwZw5c0zKbKpt27bh3Llz+PHHHxEWFob27dtjypQpWLBgAdRqtcFlzp8/j5iYGCxduhT169dH48aNMW/ePKxduxa3b98GAJQoUQKLFi3C4MGD4eXlZXA9rq6u8PLy0j6OHj2Khw8fYsCAATrzderUCWvXri3cF05ERC8tFozFyMqVK2FjY4MjR45gzpw5mDlzJpYuXaqd3r9/fxw9ehQbN27EoUOHIIRAhw4dtNeQO3bsGHr06IFevXrh9OnT+OyzzzBhwgSsWLHC6Az79u1D5cqV4ezsrDdt1KhRGDFiBE6cOIEGDRqgU6dOePDgAQAgOTkZLVq0QHh4OI4ePYqYmBjcvXsXPXr0AJDbs9agQQMMHjxY27vm5+cHjUaDcuXK4euvv8a5c+cwceJEfPLJJ/j5558lc5YsWVLy8f777xe47KFDhxAaGgpPT09tW9u2bZGamoqzZ88WuIybmxvq1KmjbWvVqhWsrKxw+PBhyaxSvv/+e7Rq1QoVKlTQaa9Xrx6OHDmCzMxMs9dNRESUhye9FCN+fn6YNWsWVCoVqlSpgtOnT2PWrFkYPHgwLl++jI0bN+LAgQPasYWrV6+Gn58ffv/9d7z55puYOXMmWrZsiQkTJgAAKleujHPnzuHrr79G//79jcpw48YN+Pj4GJwWGRmJ7t27AwAWLVqEmJgYfP/99xg9ejTmz5+P8PBwTJ06VTv/smXL4Ofnh0uXLqFy5cqws7ODk5OTTu+btbU1oqOjERcXh4CAAAQEBODQoUP4+eeftcWmISdPnpR8HVL300xISNApFgFonxd0n9CEhASULVtWp83GxgalSpUy+96it2/fxl9//YU1a9boTfPx8YFarUZCQoJeMUlERGQqFozFyCuvvKJzIeEGDRpgxowZyMnJwfnz52FjY4P69etrp5cuXRpVqlTB+fPnAeQeNu3SpYvOOhs1aoTZs2cjJyfHqAyPHz8u8JZuDRo00P7fxsYGderU0W47Li4Ou3btQsmSJfWWi4+PR+XKlQvc5oIFC7BgwQLcu3cPjx8/hlqtfubZ2EFBQUa8GmVbuXIl3NzcDJ4ck3fbuoyMDAunIiKi4oiHpKlQeXh44OHDhyYvl5aWhk6dOuHkyZM6j8uXL6Np06YFLrd27VqMHDkSXbt2xbZt23Dy5EkMGDCgwLGEeZ7nkLSXlxfu3r2r05b3vKCxh15eXkhMTNRpy87ORlJSUoHLSBFCYNmyZejbty/s7Oz0piclJQEAypQpY/K6iYiInsYexmLk6bFwf//9NypVqgRra2sEBwcjOzsbhw8f1h6SfvDgAS5evIiQkBAAQHBwMA4cOKCzjgMHDqBy5cqwtrY2KkN4eDgWLVoEIYTebdP+/vtvbfGXnZ2NY8eOITIyEgBQq1YtrF+/Hv7+/rCxMfyxtLOz0+vpzDvE3rNnT9SsWRNAbo/kszzPIekGDRrgiy++QGJiovYw8/bt2+Hi4qLdl4aWSU5OxrFjx1C7dm0AwM6dO6HRaHR6fY21Z88eXLlypcCz0c+cOYNy5crBw8PD5HUT0Yvt5uRQo+YrP/F0ESeh4oQ9jMXIzZs3ERUVhYsXL+Knn37CvHnzMGzYMABApUqV0KVLFwwePBj79+9HXFwc3n77bfj6+moPQ48YMQKxsbGYMmUKLl26hJUrV2L+/PkYOXKk0RleffVVpKWlGTz5Y8GCBdiwYQMuXLiAIUOG4OHDhxg4cCAAYMiQIUhKSkLv3r3xzz//ID4+Hlu3bsWAAQO0RaK/vz8OHz6M69ev4/79+9BoNKhUqRKOHj2KgwcP4tKlS5gwYQL++eefZ+YMCgqSfDw93jC/Nm3aICQkBH379kVcXBy2bt2K8ePHY8iQIbC3twcAHDlyBFWrVtX2PAYHB6Ndu3YYPHgwjhw5ggMHDiAyMhK9evXSGfN57tw5nDx5EklJSUhJSdH2tD7t+++/R/369VG9enWDGfft24c2bdo8cz8QEREZgz2MRrLUnVfi4uK0PWWmioiIwOPHj1GvXj1YW1tj2LBhOtf5W758OYYNG4bXXnsNarUaTZs2xZYtW2Brawsgt5fv559/xsSJEzFlyhR4e3tj8uTJRp/wAuSOi+zWrRtWr16NadOm6UybPn06pk+fjpMnTyIoKAgbN27U9oD5+PjgwIEDGDNmDNq0aYPMzExUqFAB7dq1g5VV7t81I0eORL9+/RASEoLHjx/j2rVreO+993DixAmMHj0aNjY26N27Nz788EP89ddfZu1DY1hbW2PTpk344IMP0KBBA5QoUQL9+vXD5MmTtfNkZGTg4sWLOhfzXr16NSIjI9GyZUtYWVmhe/fumDt3rs66O3TogBs3bmifh4eHA4DO5ZFSUlKwfv36Ai8f9OTJE/z++++IiYkplNdLRESkEvl/E70EUlNT4erqipSUFL3Djk+ePMG1a9cQEBBQ4IkbRc3cgrF58+YICwvD7NmzCz/U/zM226lTp9C6dWvEx8cbPImlKDxPoV2U5Mi1aNEibNiwAdu2bZOcT6n7DHhxsinhOyOPl5eX2WfcFzVmM4+52Yr6kHRx3GeWoNRsUnVRfjwkTYWuRo0a+PLLL3Ht2jW5o7yUbG1tMW/ePLljEBFRMcJD0lQkTDmMTYXrnXfekTsCEREVMywYi4ndu3fLHYGIiIiKKR6SJiIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSL6tjJGOvnP+83AHc/EO5N4X39/fH8OHDMXz48ALnUavVCAkJwapVq9CwYUPLhVMAlUqFDRs2oGvXrgannzt3Dm3atMHFixdRokSJZ66vadOmeP/99/HWW28ZtX4qPL169ULdunUxYsQIuaMQEcmOPYxU6BYvXoyAgIAXuli8fv06VCoVTp48WajrDQkJwSuvvIKZM2c+c96NGzfi7t276NWrV6Fm6N+/v2IKzqSkJPTp0wcuLi5wc3PDoEGDkJaWJjn/Rx99hCpVqsDR0RHly5fH0KFDkZKSYnD+Bw8eoFy5clCpVEhOTta27969GyqVSu+R/7Zd48ePxxdffFHguomIXiYsGKlQCSEwf/58DBo06LnXk52dXUiplGXAgAFYtGjRM1/f3LlzMWDAAFhZFd8f0z59+uDs2bPYvn07Nm3ahL179+Ldd98tcP7bt2/j9u3b+Oabb3DmzBmsWLECMTExBX7eBg0ahBo1ahS4vosXL+LOnTvaR9myZbXTqlevjooVK+LHH380/wUSERUTxfc30UumefPmiIyMRGRkJFxdXeHh4YEJEyZACKGd5+HDh4iIiIC7uzucnJzQvn17XL58WWc969evR7Vq1WBvbw9/f3/MmDHDpBzHjh1DfHw8OnbsqG3L661bu3YtGjZsCAcHB1SvXh179uzRzpPX4/PXX3+hdu3asLe3x/79+6HRaDBt2jQEBATA0dERNWvWxK+//qq33MGDBxEeHg5HR0e0aNECiYmJ+OuvvxAcHAwXFxe89dZbyMjI0C4XExODxo0bw83NDaVLl8Zrr72G+Ph47fSAgAAAQHh4OFQqFZo3b66dtmzZMu0+8vb2RmRkpM4+uH//Prp16wYnJyd06tQJGzdu1JneunVrJCUl6bz+p927dw87d+5Ep06d9KbduXMH7du3h6OjIwIDA3X2BwDcunULPXr0gJubG0qVKoUuXbrg+vXrAIDPPvsMK1euxB9//IGwsDCoVCrtXYLGjBmDypUrw8nJCYGBgZgwYQKysrIKzPi8zp8/j5iYGCxduhT169dH48aNMW/ePKxduxaJiYkGl6levTrWr1+PTp06oWLFimjRogW++OIL/Pnnn3oF+KJFi5CcnIyRI0cWmKFs2bLw8vLSPp4uzjt16oS1a9c+/4slInrBsWAsRlauXAkbGxscOXIEc+bMwcyZM7F06VLt9P79++Po0aPYuHEjDh06BCEEOnTooC0Kjh07hh49eqBXr144ffo0PvvsM0yYMAErVqwwOsO+fftQuXJlODs7600bNWoURowYgRMnTqBBgwbo1KkTHjx4oDPP2LFjMX36dJw/fx41atTAtGnTsGrVKixevBhnz57Fxx9/jLfffluv2Fq8eDHmz5+PgwcPagum2bNnY82aNdi8eTO2bduGefPmaedPT09HVFQUjh49itjYWFhZWaFbt27QaDQAgCNHjgAAduzYgTt37uC3334DkFuEDBkyBO+++y5Onz6NjRs3IigoSCdLdHQ0evTogVOnTqFx48bo06cPkpKStNPt7OwQFhaGffv2Fbgf9+/fDycnJwQHB+tNmzBhArp37464uDj06dMHvXr1wvnz5wEAWVlZaNu2LZydnbFv3z4cOHAAJUuWRLt27aBWqzFy5Ej06NED7dq10762vKEDzs7OWLFiBc6dO4c5c+bgu+++w6xZswrMCADVqlVDyZIlC3y0b9++wGUPHToENzc31KlTR9vWqlUrWFlZ4cyZM5LbzS8lJQUuLi6wsfnfkOxz585h8uTJWLVqlWQPbVhYGLy9vdG6dWscOHBAb3q9evVw5MgRZGZmGp2HiKg44kkvxYifnx9mzZoFlUqFKlWq4PTp05g1axYGDx6My5cvY+PGjThw4IC2QFi9ejX8/Pzw+++/480338TMmTPRsmVLTJgwAQBQuXJlnDt3Dl9//TX69+9vVIYbN27Ax8fH4LTIyEh0794dQG7hFRMTg++//x6jR4/WzjN58mS0bt0aAJCZmYmpU6dix44daNCgAQAgMDAQ+/fvx7fffotmzZpplxsyZAgaNWoEIPcw5Lhx4xAfH4/AwEAAwBtvvIFdu3ZhzJgxAKDNkWfZsmUoU6YMzp07h+rVq6NMmTIAgNKlS8PLy0s73+eff44RI0Zg2LBh2ra6devqrKt///7o3bs3AGDo0KH46aefcOTIEbRr1047j4+PD27cuCG5Hz09PQ0WO2+++SbeeecdAMCUKVOwfft2zJs3DwsXLsS6deug0WiwdOlSqFQqAMDy5cvh5uaG3bt3o02bNnB0dERmZiY8PDx0Xtv48eO1//f398fIkSOxdu1anffnaVu2bJHshXR0dCxwWkJCgs4hYACwsbFBqVKlcP/+/QKXy+/+/fuYMmWKzmHszMxM9O7dG19//TXKly+Pq1ev6i3n7e2NxYsXo06dOsjMzMTSpUvRvHlzHD58GLVq1dLO5+PjA7VajYSEBFSoUMGoTERExRELxmLklVde0RYJANCgQQPMmDEDOTk5OH/+PGxsbFC/fn3t9NKlS6NKlSra3qnz58+jS5cuOuts1KgRZs+ejZycHKMyPH78GA4ODgan5RV9QG5hUKdOHe228+Tvbbpy5QoyMjK0BWQetVqN8PBwnbZKlSpp/+/p6ak9rJq/La/XEAAuX76MiRMn4vDhw7h//762Z/HmzZuoXr26wfyJiYm4ffs2WrZsaXB6nvxj5hwdHeHi4qJ3iNXR0VHnEPnTjN2Pec/zTs6Ji4vDlStX9Hp4nzx5onPI3ZB169Zh7ty5iI+PR1paGrKzs+Hi4iK5jJxFVGpqKjp27IiQkBB89tln2vZx48YhODgYb7/9doHLVqlSBVWqVNE+b9iwIeLj4zFr1iz88MMP2va8glfqvSIiehmwYKRC5eHhgdOnzb8kUP5LzeSdLbt582b4+vrqzGdvb6/zPP/hSJVKBVtbW53pKpVKWxQCuWPTKlSogO+++w4+Pj7QaDSoXr061Gp1gdmkesvye9a2gdyzfStWrFjgOjw8PPDw4UOjtpdfWloaateujdWrV+tNy+s1NeTQoUPo06cPoqOj0bZtW7i6umLt2rXPHMNarVo1yZ7SJk2a4K+//jI4zcvLS6+Qzs7ORlJSEjw8PCS3++jRI7Rr1w7Ozs7YsGGDzj7fuXMnTp8+rR3bmTeO18PDA59++imio6MNrrNevXrYv3+/TlveUAKpfUdE9DJgwViMHD58WOf533//jUqVKsHa2hrBwcHIzs7G4cOHtYekHzx4gIsXLyIkJAQAEBwcrDeO68CBA6hcuTKsra2NyhAeHo5FixZBCKHT25mXp2nTpgByC4Njx47pnTCSX0hICOzt7XHz5k2dw8/PK+91f/fdd2jSpAkA6BUKdnZ2AKDTs+rs7Ax/f3/Exsbi1Vdffa4MZ86cwRtvvFHg9PDwcCQkJODhw4dwd3fXmfb3338jIiJC53lej2utWrWwbt06lC1btsDeQTs7O70e44MHD6JChQr49NNPtW1ShWCe5zkk3aBBAyQnJ+PYsWOoXbs2gNxiL694L0hqairatm0Le3t7bNy4Ua8ndv369Xj8+LH2+T///IOBAwdi3759kkX6yZMn4e3trdN25swZlCtX7pkFLBFRcceCsRi5efMmoqKi8N577+H48eOYN2+etoeoUqVK6NKlCwYPHoxvv/0Wzs7OGDt2LHx9fbWHoUeMGIG6detiypQp6NmzJw4dOoT58+dj4cKFRmd49dVXkZaWhrNnz+r90l+wYAEqVaqE4OBgzJo1Cw8fPsTAgQMLXJezszNGjhyJjz/+GBqNBo0bN0ZKSgoOHDgAFxcX9OvXz4y9BLi7u6N06dJYsmQJvL29cfPmTYwdO1ZnnrJly8LR0RExMTEoV64cHBwc4Orqis8++wzvv/8+ypYti/bt2+PRo0c4cOAAPvroI6O3f/36dfz3339o1apVgfOEh4fDw8MDBw4cwGuvvaYz7ZdffkGdOnXQuHFjrF69GkeOHMH3338PIPcyNV9//TW6dOmCyZMno1y5crhx4wZ+++03jB49GuXKlYO/vz+2bt2K69evw9fXF66urqhUqRJu3ryJtWvXom7duti8eTM2bNjwzNfyPIekg4OD0a5dOwwePBiLFy9GVlYWIiMj0atXL+3Yxv/++w8tW7bEqlWrUK9ePaSmpqJNmzbIyMjAjz/+iNTUVKSmpgLI7QW0trbWKwrzxkMGBwfDzc0NADB79mwEBASgWrVqePLkCZYuXYqdO3di27ZtOsvu27cPbdq0Mfs1EhEVFywYjWSpO6/ExcWhZs2aZi0bERGBx48fo169erC2tsawYcN0TgZYvnw5hg0bhtdeew1qtRpNmzbFli1btIfzatWqhZ9//hkTJ07ElClT4O3tjcmTJxt9wguQOy6yW7duWL16NaZNm6Yzbfr06Zg+fTpOnjyJoKAgbNy48Zk9N1OmTEGZMmUwbdo0XL16FW5ubqhVqxY++eQT43fMU6ysrLB27VoMHToU1atXR5UqVTB37lydS+fY2Nhg7ty5mDx5MiZOnIgmTZpg9+7d6NevH548eYJZs2Zh5MiR8PDwkOwpNOSnn35CmzZtJIsta2trDBgwAKtXr9YrGKOjo7F27Vp8+OGH8Pb2xk8//aTtJXZycsLevXsxZswYvP7663j06BF8fX3RsmVLbY/j4MGDsXv3bu2lhnbt2oXOnTvj448/RmRkJDIzM9GxY0dMmDBBZ2xgUVi9ejUiIyPRsmVLWFlZoXv37tpxlEDuWd8XL17UjiE8fvy4tif96bPTr127Bn9/f6O2q1arMWLECPz3339wcnJCjRo1sGPHDp2e4ydPnuD3339HTExMIbxSIqIXm0rkv1DfSyA1NRWurq7aS3Hk9+TJE1y7dg0BAQEFnnBQ1MwtGJs3b46wsDDMnj278EP9P2OznTp1Cq1bt0Z8fDxKliyJ69evIyAgACdOnEBYWJis2Szt6VxqtRqVKlXCmjVrtGd1FyQhIQHVqlXD8ePHi+TkEqXuM0AZ2RYtWoQNGzbo9Trmz6aE74w8Xl5eOneqURJmM4+52Yy9la25HSHFcZ9ZglKzSdVF+fE6jFToatSogS+//BLXrl2TO4ri3Lx5E5988skzi0Ug98vl+++/x82bNy2QjJ5ma2urc+1OIqKXGQ9JU5Ew5TD2yyQoKEjvUKoUpdzz+WWUd61LIiJiwVhs5N3eTYn8/f3xko18ICIiKlZ4SJqIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSbysjpEazXv2hZYLzV7gwEcHLLc9Bbh48SKaNWuGy5cvw9nZGStWrMDw4cORnJwsd7Ri7/79+wgJCcHx48dRrlw5ueMQEZECsYexmGjevDmGDx8udwwdpmQaN24cPvroIzg7OxdqBpVKhd9//71Q12mu3bt3o1atWrC3t0dQUBBWrFjxzGVOnTqFJk2awMHBAX5+fvjqq6/05vnll19QtWpVODg4IDQ0FFu2bNGZLoTAxIkT4e3tDUdHR7Rq1QqXL1/WTvfw8EBERAQmTZr03K+RiIiKJxaMpEOtVlt8mzdv3sSmTZuK9d1hrl27ho4dO+LVV1/FyZMnMXz4cLzzzjvYunVrgcukpqaiTZs2qFChAo4dO4avv/4an332GZYsWaKd5+DBg+jduzcGDRqEEydOoGvXrujatSvOnDmjneerr77C3LlzsXjxYhw+fBglSpRA27ZtkZmZqZ1nwIABWL16NZKSkopmBxAR0QuNBWMx0L9/f+zZswdz5syBSqWCSqXC9evXkZOTg0GDBiEgIACOjo6oUqUK5syZo7ds165d8cUXX8DHxwdVqlQBkFuIhIWFwcHBAXXq1MHvv/+OsLAwnDx5UrvsmTNn0L59e5QsWRKenp7o27cv7t+/L5nJkJ9//hk1a9aEr6+v3rTff/8dlSpVgoODA9q2bYtbt27pTP/jjz9Qq1Yt1KtXD4GBgYiOjkZ2djaA3DvMAEC3bt2gUqm0z+Pj49GlSxd4enqiZMmSqFu3Lnbs2GHqbjfJ4sWLERAQgBkzZiA4OBiRkZF44403MGvWrAKXWb16NdRqNZYtW4Zq1aqhV69eGDp0KGbOnKmdZ86cOWjXrh1GjRqF4OBgTJkyBbVq1cL8+fMB5PYuzp49G+PHj0eXLl1Qo0YNrFq1Crdv38auXbu066lWrRp8fHywYcOGotsJRET0wmLBWAzMmTMHDRo0wODBg3Hnzh3cuXMHfn5+0Gg0KFeuHH755RecO3cOEydOxCeffIKff/5ZZ/nY2FhcvHgR27dvx6ZNm5CamopOnTohNDQUx48fx5QpUzBmzBidZZKTk9GiRQuEh4fj6NGjiImJwd27d9GjRw/JTIbs27cPderU0WvPyMjAF198gVWrVuHAgQNITk5Gr169dJaLiIjAsGHD8Ntvv+Hbb7/FihUr8MUXXwAA/vnnHwDA8uXLcefOHe3ztLQ0dOjQAbGxsThx4gTatWuHTp064ebNmwXu43379qFkyZKSj9WrVxe4/KFDh9CqVSudtrZt2+LQoUOSyzRt2hR2dnY6y1y8eBEPHz40ar3Xrl1DQkKCzjyurq6oX78+4uLidJarV68e9u3bV2AeIiJ6efGkl2LA1dUVdnZ2cHJygpeXl7bd2toa0dHR2ucBAQE4dOgQfv75Z21hBwAlSpTA0qVLtYXJ4sWLoVKp8N1338HBwQEhISH477//MHjwYO0y8+fPR3h4OKZOnaptW7ZsGfz8/HDp0iVUrlzZYCZDbty4YbBgzMrKwvz581G/fn0AwMqVKxEcHIwjR46gXr16iI6OxtixY9GvXz/ExcWhZs2amDJlCkaPHo1JkyahTJkyAAA3NzedDDVr1kTNmjW1z6dMmYINGzZg48aNiIyMNJixTp06Or2rhnh6ehY4LSEhQW+6p6cnUlNT8fjxYzg6OhpcJiAgwOA2EhIS4O7uXuB6ExIStPMZyubp6YkHDx7otPn4+ODEiRNSL5GIiF5SLBiLuQULFmDZsmW4efMmHj9+DLVajbCwMJ15QkNDdXqxLl68iBo1asDBwUHbVq9ePZ1l4uLisGvXLpQsWVJvm/Hx8ahcubLRGR8/fqyzrTw2NjaoW7eu9nnVqlXh5uaG8+fPo169eoiLi8OBAwfwxRdfQKPRwMrKCjk5OXjy5AkyMjLg5ORkcHtpaWn47LPPsHnzZty5cwfZ2dl4/PixZA+jo6MjgoKCjH5NLyJHR0dkZGTIHYOIiBSIBWMxtnbtWowcORIzZsxAgwYN4OzsjK+//hqHDx/Wma9EiRImrzstLQ2dOnXCl19+qTfN29vbpHV5eHhoD7GamiE6Ohqvv/46zp8/j+DgYO00QwVonpEjR2L79u345ptvEBQUBEdHR7zxxhuSJ/zs27cP7du3l8zz7bffok+fPganeXl54e7duzptd+/ehYuLi8HeRall8qZJzZN/el5b/vfl7t27emNGk5KStL2yRERE+bFgLCbs7OyQk5Oj03bgwAE0bNgQH374obYtPj7+meuqUqUKfvzxR2RmZsLe3h7A/8YD5qlVqxbWr18Pf39/2NgY/hgZymRIeHg4zp07p9eenZ2No0ePans3L168iOTkZG1hWKtWLVy8eBFBQUFIT0832ANoa2trcL/0798f3bp1A5BbeBZ0Qk6e5z0k3aBBA73L3Wzfvh0NGjSQXObTTz9FVlYWbG1ttctUqVIF7u7u2nliY2N1Ll+Uf70BAQHw8vJCbGystmc5NTUVhw8f1hmuAOSexNS8eXPJ10hERC8nnvRSTPj7++Pw4cO4fv067t+/D41Gg0qVKuHo0aPYunUrLl26hAkTJugVfoa89dZb0Gg0ePfdd3H+/Hls3boV33zzDYDc6xoCwJAhQ5CUlITevXvjn3/+QXx8PLZu3YoBAwZoCzRDmQzJO0nj6cLO1tYWH330EQ4fPoxjx46hf//+eOWVV7QF5MSJE7Fq1SpER0fjypUrOH/+PNauXYvx48fr7JfY2FgkJCRoezErVaqE3377DSdPnkRcXJz29UrJOyQt9ZC6huT777+Pq1evYvTo0bhw4QIWLlyIn3/+GR9//LF2nvnz56Nly5Y674OdnR0GDRqEs2fPYt26dZgzZw6ioqK08wwbNgwxMTGYMWMGLly4gM8++wxHjx7VjsVUqVQYPnw4Pv/8c2zcuBGnT59GREQEfHx88Oqrr2rXk5GRgWPHjqFNmzaS+4GIiF5S4iWTkpIiAIiUlBS9aY8fPxbnzp0Tjx8/liFZrpMnT5q13MWLF8Urr7wiHB0dBQBx7do18eTJE9G/f3/h6uoq3NzcxAcffCDGjh0ratasqV2uX79+okuXLnrrO3DggKhRo4aws7MTtWvXFmvWrBEAxIULF7TzXLp0SXTr1k24ubkJR0dHUbVqVTF8+HCh0WgKzGRIVlaW8PHxETExMdq25cuXC1dXV7F+/XoRGBgo7O3tRatWrcSNGzd0lo2JiRENGzYUDg4OwsXFRdSrV08sWbJEO33jxo0iKChI2NjYiAoVKgghhLh27Zp49dVXhaOjo/Dz8xPz588XzZo1E8OGDTNtpxsh//u5a9cuERYWJuzs7ERgYKBYvny5zryTJk3SZswTFxcnGjduLOzt7YWvr6+YPn263jZ+/vlnUblyZWFnZyeqVasmNm/erDNdo9GICRMmCE9PT2Fvby9atmwpLl68qJNtzZo1okqVKs//gguJuT8HlpA/mxK+M/J4enrKHaFAzGYec7PdiK5u1MPSuSyB2UwnVRflpxJCCFkrVgtLTU2Fq6srUlJS4OLiojPtyZMnuHbtGgICAiTHwBWlvLN9lWb16tXo378/UlNTCxxz9zwWLFiAjRs3Sl7IWopS95tScwG62V555RUMHToUb731lsypcr0o+00J3xl5vLy8tGfFKw2zmcfcbDcnhxo1X/mJp01eN1A895klKDWbVF2UH8cwkkGrVq1CYGAgfH19ERcXhzFjxqBNmzZFUiwCwHvvvYfk5GQ8evSo0G8PSNLu37+P119/Hb1795Y7ChERKRQLRjIoISEBEydOREJCAry9vfHmm2+iZ8+eRbY9GxsbfPrpp0W2fiqYh4cHRo8eLXcMIiJSMBaMZNDo0aP1ioin7wxCRERELweeJU1EREREklgwGvCsS6wQEQH8riCilwcPSedjZ2cHKysr3L59G2XKlIGdnZ32uoOWIoTAkydPLLpNYzGb6ZSaC2A2cwkhtLfZvHfvHqysrHRurUlEVByxYMzHysoKAQEBuHPnDm7fvi1LhsTERO3dVZSG2Uyn1FwAs5krfzYnJyeUL18eVlY8WENExRsLxqfY2dmhfPnyyM7ONuq2doWtb9++2L9/v8W3awxmM51ScwHMZq68bNbW1rCxsbH4UQgiIjmwYDRApVLB1tZWe/9eS/r3339lvwBwQZjNdErNBTCbuZScjYioqPA4ChERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSVJEwbhgwQL4+/vDwcEB9evXx5EjR4xabu3atVCpVOjatWvRBiQiIiJ6icleMK5btw5RUVGYNGkSjh8/jpo1a6Jt27ZITEyUXO769esYOXIkmjRpYqGkRERERC8n2QvGmTNnYvDgwRgwYABCQkKwePFiODk5YdmyZQUuk5OTgz59+iA6OhqBgYEWTEtERET08pH1wt1qtRrHjh3DuHHjtG1WVlZo1aoVDh06VOBykydPRtmyZTFo0CDs27dPchuZmZnIzMzUPk9NTQUAZGVlISsr6zlfQeETQigyF8Bs5lBqLoDZzKXUbErNBTCbuczNlmNl3G01zX3dxXGfWYJSsxmbSdaC8f79+8jJyYGnp6dOu6enJy5cuGBwmf379+P777/HyZMnjdrGtGnTEB0drde+bds2ODk5mZy5qKnVamzZskXuGAYxm+mUmgtgNnMpNZtScwHMZi6zs4VOMGq2U2a+7mK5zyxAqdkyMjKMmu+FujXgo0eP0LdvX3z33Xfw8PAwaplx48YhKipK+zw1NRV+fn5o06YNXFxciiqq2ezs7NChQwe5YxjEbKZTai6A2cyl1GxKzQUwm7nMzfbvlw2Mmq/cmIKP5EkpjvvMEpSaLe/I67PIWjB6eHjA2toad+/e1Wm/e/cuvLy89OaPj4/H9evX0alTJ22bRqMBANjY2ODixYuoWLGizjL29vawt9fvnpfrXtHPkncfayViNtMpNRfAbOZSajal5gKYzVzmZrPWZD57JsDs110c95klKDWbsZlkPenFzs4OtWvXRmxsrLZNo9EgNjYWDRro/4VUtWpVnD59GidPntQ+OnfujFdffRUnT56En5+fJeMTERERvRRkPyQdFRWFfv36oU6dOqhXrx5mz56N9PR0DBgwAAAQEREBX19fTJs2DQ4ODqhevbrO8m5ubgCg105EREREhUP2grFnz564d+8eJk6ciISEBISFhSEmJkZ7IszNmzdhZSX71X+IiIiIXlqyF4wAEBkZicjISIPTdu/eLbnsihUrCj8QEREREWmx646IiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSpIiTXojoxXFzcqjR85afeLoIkxARkaWwh5GIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEu8lTUT0EuO9wYnIGOxhJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkm80wsREREVOd5V6MXGHkYiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEiSjdwBiIiIXjQ3J4caNV/5iaeLOAmRZbCHkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISJIiCsYFCxbA398fDg4OqF+/Po4cOVLgvL/99hvq1KkDNzc3lChRAmFhYfjhhx8smJaIiIjo5SJ7wbhu3TpERUVh0qRJOH78OGrWrIm2bdsiMTHR4PylSpXCp59+ikOHDuHUqVMYMGAABgwYgK1bt1o4OREREdHLQfaCcebMmRg8eDAGDBiAkJAQLF68GE5OTli2bJnB+Zs3b45u3bohODgYFStWxLBhw1CjRg3s37/fwsmJiIiIXg6y3hpQrVbj2LFjGDdunLbNysoKrVq1wqFDh565vBACO3fuxMWLF/Hll18anCczMxOZmZna56mpqQCArKwsZGVlPecrKHxCCEXmApjNHErNBZifLcfK3uh5zX3txXG/FTW+n+Yp6v32PK9bqdn4WTOPUrMZm0nWgvH+/fvIycmBp6enTrunpycuXLhQ4HIpKSnw9fVFZmYmrK2tsXDhQrRu3drgvNOmTUN0dLRe+7Zt2+Dk5PR8L6AIqNVqbNmyRe4YBjGb6ZSaC3iObKETjJ71lJmvvVjutyLG99M8Rb3fzN1ngHKz8bNmHqVmy8jIMGo+lRBCFHGWAt2+fRu+vr44ePAgGjRooG0fPXo09uzZg8OHDxtcTqPR4OrVq0hLS0NsbCymTJmC33//Hc2bN9eb11APo5+fH+7fvw8XF5dCf03Pq1y5cvj333/ljmEQs5lOqbkA87P9+2WDZ8+Ut40xzz5SYHC5YrjfihrfT/MU9X4zd58Bys3Gz5p5lJotNTUVHh4eSElJkayLZO1h9PDwgLW1Ne7evavTfvfuXXh5eRW4nJWVFYKCggAAYWFhOH/+PKZNm2awYLS3t4e9vX43uK2tLWxtbZ/vBRQBlUqlyFwAs5lDqbkA87NZazKfPdP/M/e1F8f9VtT4fpqnqPfb87xupWbjZ808Ss1mbCZZT3qxs7ND7dq1ERsbq23TaDSIjY3V6XF8Fo1Go9OLSERERESFR9YeRgCIiopCv379UKdOHdSrVw+zZ89Geno6BgwYAACIiIiAr68vpk2bBiB3TGKdOnVQsWJFZGZmYsuWLfjhhx+waNEiOV8GERERUbEle8HYs2dP3Lt3DxMnTkRCQgLCwsIQExOjPRHm5s2bsLL6X0doeno6PvzwQ/z7779wdHRE1apV8eOPP6Jnz55yvQQiIiKiYk32ghEAIiMjERkZaXDa7t27dZ5//vnn+Pzzzy2QioiIiIgABVy4m4iIiIiUjQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREkmzMXTA5ORlHjhxBYmIiNBqNzrSIiIjnDkZEREREymBWwfjnn3+iT58+SEtLg4uLC1QqlXaaSqViwUhERERUjJhVMI4YMQIDBw7E1KlT4eTkVNiZiIiIcHNyqNHzlp94ugiTEJFZYxj/++8/DB06lMUiERER0UvArIKxbdu2OHr0aGFnISIiIiIFMvqQ9MaNG7X/79ixI0aNGoVz584hNDQUtra2OvN27ty58BISERERkayMLhi7du2q1zZ58mS9NpVKhZycnOcKRURERETKYXTB+PSlc4iIiIjo5cALdxMRERGRJLMKxqFDh2Lu3Ll67fPnz8fw4cOfNxMRERERKYhZBeP69evRqFEjvfaGDRvi119/fe5QRERERKQcZhWMDx48gKurq167i4sL7t+//9yhiIiIiEg5zCoYg4KCEBMTo9f+119/ITAw8LlDEREREZFymHVrwKioKERGRuLevXto0aIFACA2NhYzZszA7NmzCzMfEREREcnMrIJx4MCByMzMxBdffIEpU6YAAPz9/bFo0SJEREQUakAiIiKil5Wx91Qv6vupm1UwAsAHH3yADz74APfu3YOjoyNKlixZmLmIiIiISCHMGsPYokULJCcnAwDKlCmjLRZTU1O1h6iJiIiIqHgwq2DcvXs31Gq1XvuTJ0+wb9++5w5FRERERMph0iHpU6dOaf9/7tw5JCQkaJ/n5OQgJiYGvr6+hZeOiIiIiGRnUsEYFhYGlUoFlUpl8NCzo6Mj5s2bV2jhiIiIiEh+JhWM165dgxACgYGBOHLkCMqUKaOdZmdnh7Jly8La2rrQQxIRERGRfEwqGCtUqAAA0Gg0RRKGiIiIiJTH7MvqALnjGG/evKl3Akznzp2fKxQRERERKYdZBePVq1fRrVs3nD59GiqVCkIIAIBKpQKQewIMERERERUPZl1WZ9iwYQgICEBiYiKcnJxw9uxZ7N27F3Xq1MHu3bsLOSIRERERycmsHsZDhw5h586d8PDwgJWVFaysrNC4cWNMmzYNQ4cOxYkTJwo7JxERERHJxKwexpycHDg7OwMAPDw8cPv2bQC5J8VcvHix8NIRERERkezM6mGsXr064uLiEBAQgPr16+Orr76CnZ0dlixZgsDAwMLOSEREREQyMqtgHD9+PNLT0wEAkydPxmuvvYYmTZqgdOnSWLduXaEGJCLLqD1qlVHzbXAu4iBERKQ4ZhWMbdu21f4/KCgIFy5cQFJSEtzd3bVnShMRERFR8fBc12HMr1SpUoW1KiIiIiJSELMKxidPnmDevHnYtWsXEhMT9e78cvz48UIJR0RERETyM6tgHDRoELZt24Y33ngD9erV42FoIiIiomLMrIJx06ZN2LJlCxo1alTYeYiIiIhIYcy6DqOvr6/2OoxEREREVLyZVTDOmDEDY8aMwY0bNwo7DxEREREpjFmHpOvUqYMnT54gMDAQTk5OsLW11ZmelJRUKOGIiIiISH5mFYy9e/fGf//9h6lTp8LT05MnvRAREREVY2YVjAcPHsShQ4dQs2bNws5DRERERApj1hjGqlWr4vHjx4WdhYiIiIgUyKyCcfr06RgxYgR2796NBw8eIDU1VedBRERERMWHWYek27VrBwBo2bKlTrsQAiqVCjk5Oc+fjIiIiIgUwayCcdeuXYWdg4iIiIgUyqyCsVmzZoWdg0gWNyeHGjVf+YmnizgJERGRcpk1hjEmJgb79+/XPl+wYAHCwsLw1ltv4eHDh4UWjoiIiIjkZ1bBOGrUKO3JLadPn0ZUVBQ6dOiAa9euISoqqlADEhEREZG8zDokfe3aNYSEhAAA1q9fj06dOmHq1Kk4fvw4OnToUKgBiYiIiEheZvUw2tnZISMjAwCwY8cOtGnTBgBQqlQpXlaHiIiIqJgxq4excePGiIqKQqNGjXDkyBGsW7cOAHDp0iWUK1euUAMSERERkbzM6mGcP38+bGxs8Ouvv2LRokXw9fUFAPz111/aazQSERERUfFgVg9j+fLlsWnTJr32WbNmPXcgIiIiIlIWowvG1NRUuLi4aP8vJW8+IiIiInrxGV0wuru7486dOyhbtizc3NygUqn05uGtAYmIiIiKH6MLxp07d6JUqVIAeGtAIiIiopeJ0QVj/tsBNmvWDE+ePMGpU6eQmJgIjUZTJOGIiIiISH5mnfQSExODiIgI3L9/X28aD0kTERERFS9mXVbno48+wptvvok7d+5Ao9HoPFgsEhERERUvZhWMd+/eRVRUFDw9PQs7DxEREREpjFkF4xtvvIHdu3cXchQiIiIiUiKzxjDOnz8fb775Jvbt24fQ0FDY2trqTB86dGihhCMiIiIi+ZlVMP7000/Ytm0bHBwcsHv3bp1rMqpUKhaMRERERMWIWQXjp59+iujoaIwdOxZWVmYd1SYiKnQ3J4caNV/5iaeLOAkRUfFiVrWnVqvRs2dPFotERERELwGzKr5+/fph3bp1hZ2FiIiIiBTIrEPSOTk5+Oqrr7B161bUqFFD76SXmTNnFko4IiIiIpKfWQXj6dOnER4eDgA4c+aMzrT8J8AQERER0YvPrIJx165dhZ2DiIiISBbGnjAHvLwnzfGsFSIiIiKSpIiCccGCBfD394eDgwPq16+PI0eOFDjvd999hyZNmsDd3R3u7u5o1aqV5PxERERE9HxkLxjXrVuHqKgoTJo0CcePH0fNmjXRtm1bJCYmGpx/9+7d6N27N3bt2oVDhw7Bz88Pbdq0wX///Wfh5EREREQvB9kLxpkzZ2Lw4MEYMGAAQkJCsHjxYjg5OWHZsmUG51+9ejU+/PBDhIWFoWrVqli6dCk0Gg1iY2MtnJyIiIjo5WDWSS+FRa1W49ixYxg3bpy2zcrKCq1atcKhQ4eMWkdGRgaysrJQqlQpg9MzMzORmZmpfZ6amgoAyMrKQlZW1nOkLxpCCEXmAopnthwre6PmM/d1v0j7zM7auOWM3WeA5fdbUb+fgPnZ/v2ygVHzlRtj3Hff04p6nwHKfT8B5WaT47Om1O+14vB+AsrNZm4uY5eTtWC8f/8+cnJy4OnpqdPu6emJCxcuGLWOMWPGwMfHB61atTI4fdq0aYiOjtZr37ZtG5ycnEwPXcTUajW2bNkidwyDimW20AlGzXbKzNf9Iu2zsQ1cjVruFIzbZ4AM+62I309AudmKOhfAbDr4WTN9wWLwfgLKzWZuroyMDKPmUwkhhFlbKAS3b9+Gr68vDh48iAYN/vfX9+jRo7Fnzx4cPnxYcvnp06fjq6++wu7du1GjRg2D8xjqYfTz88P9+/fh4uJSOC+kEJUrVw7//vuv3DEMKo7ZirrX50XaZ00n/GTUcmtKzjV+Gxbeb0X9fgLKzVbUuQBmy4+ftZfz/QSUm83cXKmpqfDw8EBKSopkXSRrD6OHhwesra1x9+5dnfa7d+/Cy8tLctlvvvkG06dPx44dOwosFgHA3t4e9vb63bm2trZ6d6hRApVKpchcQPHMZq3JfPZMgNmv+0XaZ+oc45Yzdp8Blt9vRf1+AsrNVtS5AGbLj5+1l/P9BJSbzdxcxi4n60kvdnZ2qF27ts4JK3knsOTvcXzaV199hSlTpiAmJgZ16tSxRFQiIiKil5asPYwAEBUVhX79+qFOnTqoV68eZs+ejfT0dAwYMAAAEBERAV9fX0ybNg0A8OWXX2LixIlYs2YN/P39kZCQAAAoWbIkSpYsKdvrICIiIiquZC8Ye/bsiXv37mHixIlISEhAWFgYYmJitCfC3Lx5E1ZW/+sIXbRoEdRqNd544w2d9UyaNAmfffaZJaMTERERvRRkLxgBIDIyEpGRkQan7d69W+f59evXiz4QEREREWkpomCk4s3Ym7q/rDd0JyIiUjrZ7/RCRERERMrGgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgk2cgdgArHzcmhRs9bfuLpIkxCRERExQ17GImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkksGImIiIhIEgtGIiIiIpLEgpGIiIiIJLFgJCIiIiJJLBiJiIiISBILRiIiIiKSxIKRiIiIiCSxYCQiIiIiSSwYiYiIiEgSC0YiIiIiksSCkYiIiIgksWAkIiIiIkmyF4wLFiyAv78/HBwcUL9+fRw5cqTAec+ePYvu3bvD398fKpUKs2fPtlxQIiIiopeUjZwbX7duHaKiorB48WLUr18fs2fPRtu2bXHx4kWULVtWb/6MjAwEBgbizTffxMcff/xc2z506BBKlChh9PxVqlRBmTJldNrUarVkgWuIq6srQkND9drPnTuHpKQkqNVq7N+/36h11apVC05OTjptyRnZuHwvU3K5m0+t38fHB4GBgXrzHTlyBGq1Wvv8WdmsrKzQsGFDvfb/ktW4nZIlmenpXJUrV9b7DGRlZeHw4cMGly0om4uLC2rUqKHXfv78eTx48AB3b6Q/M1detvDwcL3PzMOHD3H27NkClzOUy9vbGxUrVtSb959//kFmpvR7l59KpUKjRo302m/duoUbN248c/n82SpVqqQ3XeRkI/3OVf2cTgXvsxL2VgjxctRrz9vfxlKr1UhPT9fb38nJyThz5kyByxl6P8s626BCKXu99qNHj+LJkydGZwKAxo0b67X9+++/uH79+jOXzZ+tQik7lHW21ZmenSNw4t8MvZ9PKSVLlkRYWJhe+4ULF3D//n2j1pGXK8TLASXsrXWmpT7JwcW7/9tHxmTz8vJCUFCQXvuxY8fw+PFjozLlKW+gLSE1C7ceqvXapbJVrFgR3t7eOm05OTk4dOiQSd+5JUqUQHh4uF57/P1MJKVnG1ymoFw1a9aEs7OzTltKSgpOnz6tfW5MNk9PT4M/v6dvP8aTLI3ksk9na9SoEVQqlU7b7du3cfWq7vfAs3IFBgbCx8dHp02j0eAfI79v87I5OTmhVq1aetMuXbqExMREg8sVlK1GjRpwcXHRaUtNTcWpU6cAGP7uMKR0CRuDn8vjx48jIyNDctmnszVs2BBWVrr9dob297OylXe3g6eL7veJEAIHDhyQXC5PerqR74uQUb169cSQIUO0z3NycoSPj4+YNm3aM5etUKGCmDVr1jPne/LkiUhJSdE+bt26JQCY/Fi1apVQq9U6jxs3bpi8nqZNm+qtR61Wi44dO5q8rtOnT2uXvzqltrg6pbZY+naQyesZNmyYwUy+vr4mrcfJycngeqJa+picafny5Xrr+e+//0xeT8OGDQ1m6tKli8nrOnHihN56Nm3aZPJ6hgwZYjBThQoVTFqPnZ2dwfVMmTLF5ExLly4Vr4xZqfOoM3SByesJ9yuh/SxenVJbm+n11183eV1Hjx7Ve21//fWXyet5u14ZnUx5uSpWrGjSeqytrYVarRZly5bVyTRt2jSTM03rUkEvU9ynYSavp3bt/+3j/Ll69Ohh8ro2fhCsl2nNwMomr+edd97Re9/Kli0rKlWqZPK6ns5zdUpt8Um7ciavZ8GCBXqZHj58aPJ6wsLC9L5zr06pLbrUKGXyug4ePKiXadeuXSavZ8CAAXrruTqltqhUxsHkdWVkZOita+bMmSavZ86cOXrrefTokcnrqV69usHvuL59+5q8rr179+qtZ+/evSavp3t4aYOZqlevbvK6Hj16pLeeOXPmmLyeiR38dL5v1Wq1yMjIMHk9KSkpkvWUbD2MarUax44dw7hx47RtVlZWaNWqFQ4dOlRo25k2bRqio6Ofez0nT57U++skKSnJ5PU8ePAAW7Zs0Wsv6K8lKXv37kV8fHzuk9AJAIDrmUcBfG7Seq5du2Ywk6m9Lzk5OQbXk+DZHMAak9YVFxcHd3d3nbaUlBST1gHk9gAaynT37l2T17Vv3z69nrsTJ06YvJ7r168bzPSsv06fptFoDK7n4sWLJmeKi4vD2JYtddoePbJCXxPXk+FUDqf+/7MIAKf+P19CQoLJmfbv349///1XL6epHpSug1Oh7+m0ndqyxfi/qv+fEAJbtmyBWq3W2e8XLlwwOdO/5V7DqdDWOm257/9bJq0nJSVFmyV/rjt37pic6XLQO9A81fMdj9MAJhheoAA3b97U+1zm9RibKv9nKc+dq38AWG7Ses6cOaOXydTvNyC3R0q7nnzZknfMArDHpHUdOHBA73v/3LlzJme6deuW/vdA6AQ8cfgIwC2T1vXXX3/B2lq3l9mcTGfPntXLlJX17KNMT3v06JHB77invxeMcfDgQb3f2eb87Ca51TCY6dGjRyavKyYmBra2uj2DUkesCnLbpy1Ohb6m/b4Fcn8fFzbZCsb79+8jJycHnp6eOu2enp5mvYkFGTduHKKiorTPU1NT4efnZ/J6wsLC0KFDB502c76US5curbceAPjuu+9MXlfTpk1RpUoVAMC/XzYAANy/bnpRFRAQYDCTg4ODSeuxtrY2uJ698z40OVPNmjX11nXv3j2T1+Pu7m4w0/Llpv3CAYAmTZqgWrVqOm02Nqb/CPn7+xvM9PTwgmexsrIyuJ78h7SMVbNmTUw/pPvZyX6cZvJ6nDL+RY3TU7TPy43J/eNv1apVJq+rcePGesMJ7O31Dy0/S+kHR1HjtO4v5nJjTBuSAuQOAejQoQPs7Ox09vv58+dNzlTu302ocfpvnbZHT0z/gnd1ddVmyZ9rzRrT/kADgEpXlqJ6hu5nMOOa6b8Ey5cvr/e5tLOzM3l/A9D5LOU5csf0P/aqV6+ul8mcAtbFxUW7nrzvXABwe3jN5HU1atQIderU0WlzdXU1eT1+fn56r+3fLxvA4Ynp35ft27fX+057+vCoMapVq6aXyZThNnmcnZ0NfsetX7/e5HU1bNgQr7zyik5bqVKlTF5PqeRTBjONHz/e5HW1a9dO7zvNmOFET/O5vRU1Tp/Qft8CQHa24SESz0MlhBCFvlYj3L59G76+vjh48CAaNPjfD97o0aOxZ8+eAseq5fH398fw4cMxfPhwk7abmpoKV1dXxMTEKHIMY+fOnbFx40aj1pV/DOPNybnrNGYMo+cA3V/exo5hfFa2gsYwHoqqYtQYxvy5TB3DWFC2Z45hXB7xzFx52cwZw2gol1LGMObPVqlSJXT4ZqvO9ILGME51KrgYeXoMY/mJucWrqWMYO3fujFu3bpk+htHA+2loDGP5iafNHsPo5eWl02Nq9BjGfNmkxjA+/fMpJf8Yxvy5TBrD+P+5jBnDaEw2Q2MYvby8sHnzZtPHMO78QK+toDGMUtmkxjCa8p2bfwxj3ncuID2GsaBcxoxhNCaboTGMNyeHGjWG8elsxo5hfFaugsYwbhisP7ZVKps5YxgLyvbMMYxG/i4oXcIGzede0ms3Zgzj09mMHsP4jGx5Yxjzvm8BmDyGsV27dkhJSdHbR/nJ1sPo4eEBa2trvUODd+/ehZeXV5Fvv0GDBpI7xhh2dnYGB8GbIyQkpFDW6eZkg7oVpN/W8kauv169ejrPzc3m62YHXze7Z873rFy2trYFbt/UbMHBwQCAmzuN+6OhoGzu7u6S2zUlV926dY2a71n8/PyM6kV/VjaVtQ1Klqus117X2fSeorz9bayCeqTc3NwkMxv7fgLQ690xV7ly5VCuXLlnzvesbDbWKtStUMLon08pVatWNXpeqVwuDtaoW+F/058nW+3atU1e5uZO/TYvF1t4PTXAHzA9m7W1NRo3blwo3+MVPexR0cNw77cpuVxdXXWyPE+2UB/9k8/Myebj46NX/JmTy8rKSuez9DzZKleujMqV9b+bTM3m4uKindeU7w5DDBW25mQztL/NyaZSqYzeD6mpqUbNJ9tldezs7FC7dm3ExsZq2zQaDWJjY3V6HImIiIhIXrJeVicqKgr9+vVDnTp1UK9ePcyePRvp6ekYMGAAACAiIgK+vr6YNm0agNxDwHkDcNVqNf777z+cPHkSJUuWNHgZByIiIiJ6frIWjD179sS9e/cwceJEJCQkICwsDDExMdoTYW7evKlzfP/27ds618D65ptv8M0336BZs2bYvXu3peMTERERvRRkLRgBIDIyEpGRkQanPV0E+vv7Q6ZzdIiIiIheWrLfGpCIiIiIlI0FIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJs5A7wIrk5OdToectPPF2ESYiIiIgshz2MRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDASERERkSQWjEREREQkiQUjEREREUliwUhEREREklgwEhEREZEkFoxEREREJIkFIxERERFJYsFIRERERJJYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSbOQOQET6bk4ONXre8hNPF2ESIiIi9jASERER0TOwYCQiIiIiSSwYiYiIiEiSIgrGBQsWwN/fHw4ODqhfvz6OHDkiOf8vv/yCqlWrwsHBAaGhodiyZYuFkhIRERG9fGQvGNetW4eoqChMmjQJx48fR82aNdG2bVskJiYanP/gwYPo3bs3Bg0ahBMnTqBr167o2rUrzpw5Y+HkRERERC8H2c+SnjlzJgYPHowBAwYAABYvXozNmzdj2bJlGDt2rN78c+bMQbt27TBq1CgAwJQpU7B9+3bMnz8fixcv1ps/MzMTmZmZ2ucpKSkAgKSkJGRlZZmUNVlt/O4q8eCBSevOk5OTgwdmLFscspmbC1Buthfp/bTKfmzUcvysKTPbi/RZM1ZxyMbP2v8Uh/cTUG42c3M9evQIACCEkJ5RyCgzM1NYW1uLDRs26LRHRESIzp07G1zGz89PzJo1S6dt4sSJokaNGgbnnzRpkgDABx988MEHH3zwwUcBj1u3bknWbLL2MN6/fx85OTnw9PTUaff09MSFCxcMLpOQkGBw/oSEBIPzjxs3DlFRUdrnGo0GSUlJKF26NFQq1XO+AiA1NRV+fn64desWXFxcnnt9hUWpuQBmM5dSsyk1F8Bs5lJqNqXmApjNXErNptRcQOFnE0Lg0aNH8PHxkZxP9kPSRc3e3h729vY6bW5uboW+HRcXF8V9qADl5gKYzVxKzabUXACzmUup2ZSaC2A2cyk1m1JzAYWbzdXV9ZnzyHrSi4eHB6ytrXH37l2d9rt378LLy8vgMl5eXibNT0RERETPR9aC0c7ODrVr10ZsbKy2TaPRIDY2Fg0aNDC4TIMGDXTmB4Dt27cXOD8RERERPR/ZD0lHRUWhX79+qFOnDurVq4fZs2cjPT1de9Z0REQEfH19MW3aNADAsGHD0KxZM8yYMQMdO3bE2rVrcfToUSxZskSW/Pb29pg0aZLeYW+5KTUXwGzmUmo2peYCmM1cSs2m1FwAs5lLqdmUmguQL5tKiGedR1305s+fj6+//hoJCQkICwvD3LlzUb9+fQBA8+bN4e/vjxUrVmjn/+WXXzB+/Hhcv34dlSpVwldffYUOHTrIlJ6IiIioeFNEwUhEREREyiX7nV6IiIiISNlYMBIRERGRJBaMRERERCSJBSMRERERSWLBSERERESSWDCaKDs7G3Fxcdi6dSu2bt2KuLg4ZGVlyR2LiApw7do1ZGdnyx2DiJ5y5coVbN26FY8fPwaQe09jMmzy5MnIyMjQa3/8+DEmT55skQwsGI2k0Wgwfvx4lClTBuHh4Wjfvj3at2+P8PBwlC1bFhMmTIBGo5E7JhWi+Ph4tGjRQpZt37lzBz/++CO2bNkCtVqtMy09Pd1iXxCGbN++HZMmTcLOnTsBAHv37kX79u3RokULLF++XLZcBalSpQouX74sdwwdt2/fxqRJk9CnTx+MHDkSFy5ckDsSkcU8ePAArVq1QuXKldGhQwfcuXMHADBo0CCMGDFC1myBgYF48OCBXntycjICAwNlSJQrOjoaaWlpeu0ZGRmIjo62SAYWjEYaO3YslixZgunTp+Pq1atIT09Heno6rl69ii+//BJLlizBuHHj5I5ZoFu3bmHgwIGybPvx48fYv38/zp07pzftyZMnWLVqlQypni0tLQ179uyx+Hb/+ecfhISEYMiQIXjjjTdQrVo1nD17VieXpb4gnvbjjz+iQ4cO2LRpE7p06YIVK1agS5cuKFeuHAICAvD+++/j119/lSXb66+/bvCRk5ODoUOHap/LwcnJCffu3QMAnDt3DiEhIVizZg2ysrKwefNm1K5dG6dOnZIl27PcvXtX1j9QpMj5vSZFyftMCdk+/vhj2NjY4ObNm3ByctK29+zZEzExMTImA65fv46cnBy99szMTPz3338yJMolhIBKpdJrj4uLQ6lSpSySgRfuNpKXlxdWrlyJtm3bGpy+detWRERE4O7duxZOZpy4uDjUqlXL4A9CUbp06RLatGmDmzdvQqVSoXHjxli7di28vb0B5H55+fj4WDwXAMydO1dy+n///YdvvvnG4tlat24NPz8/LF26FOnp6RgzZgx+/vlnbN++HeHh4bLus/DwcAwYMABDhw5FbGwsOnXqhC+++AIff/wxAGDGjBnYsGED9u/fb/FsVlZWaNq0KQICAnTaV61ahc6dO8PNzQ0AZOkFtbKyQkJCAsqWLYuuXbtCo9Hgt99+g42NDTQaDfr06YO0tDT8+eefFs/2LHJ9dxhDqdmUmgtQRjYvLy9s3boVNWvWhLOzM+Li4hAYGIirV6+iRo0aBnvSitrGjRsBAF27dsXKlSvh6uqqnZaTk4PY2Fhs374dFy9etGgud3d3qFQqpKSkwMXFRadozMnJQVpaGt5//30sWLCgyLPIfi/pF8WjR4/g4+NT4HRvb2+kp6dbMJGuvA97Qa5evWqhJLrGjBmD6tWr4+jRo0hOTsbw4cPRqFEj7N69G+XLl5clU57hw4fD29sbdnZ2Bqc/fSjYUo4dO4YFCxbAysoKzs7OWLhwIcqXL4+WLVti69atsu63y5cvo1OnTgCAli1bIjs7Gy1bttRO79ixo/a+75a2Zs0ajBo1Cv369dPeix7I7RX94osvEBISIkuupx0/fhyrV6+GjU3u16+VlRVGjx6Njh07ypLnWT2blv4FmZ9Sv9eUvM+UnC1Penq6Ts9inqSkJNnu3dy1a1cAgEqlQr9+/XSm2drawt/fHzNmzLB4rtmzZ0MIgYEDByI6OlqnkLWzs4O/vz8aNGhgmTCCjNKhQwfRpk0bce/ePb1p9+7dE+3atRMdO3aUIVkulUolrKyshEqlKvBhZWVl8Vxly5YVp06d0j7XaDTi/fffF+XLlxfx8fEiISFBllxCCOHv7y/WrVtX4PQTJ07Iks3d3V3ExcXptX/99dfCzc1N/Pbbb7LtMzc3N3HhwgXt85IlS4r4+Hjt86tXrwonJyc5ogkhhLh27Zpo1KiReP3110VSUpIQQggbGxtx9uxZ2TIJIYSVlZVITEwUQghRoUIFvff36tWrwsHBQY5okt8dee1yfd6U+r32ou4zubPlad++vRg/frwQIvc75OrVqyInJ0e8+eabonv37rJm8/f3N/h7Xm67d+8WarVa1gzsYTTS4sWL0aFDB3h7eyM0NBSenp4Acg+pnj59GiEhIdi0aZNs+by9vbFw4UJ06dLF4PSTJ0+idu3aFk6VO34xrycFyP3rbdGiRYiMjESzZs2wZs0ai2fKU7t2bRw7dgw9evQwOF2lUsly1l716tVx8OBB1KhRQ6d95MiR0Gg06N27t8Uz5QkKCsKFCxdQpUoVALmH7Z2dnbXT4+PjUa5cObniwd/fH3v37kV0dDRq1qyJ7777zuC4H0sTQqBy5cpQqVRIS0vDqVOndN7fK1euwMvLS5ZspUqVwldffaXTU5zf2bNntb3KlqbU7zUl7zMlZ8uTl+/o0aNQq9UYPXo0zp49i6SkJBw4cEDWbNeuXZN1+wVp1qwZNBoNLl26hMTERL2TbJs2bVrkGVgwGsnPz097OZ2///4bCQkJAIB69eph6tSpaNOmDays5DuHKK/4KeiLVa7ip2rVqjh69CiCg4N12ufPnw8A6Ny5s8Uz5SnoMgV5QkJCZPnyiIiIwJ49e/D+++/rTRs9ejSEEFi8eLHFcwHAJ598And3d+1zFxcXnelHjx4tsAC3FCsrK0RHR6N169aIiIhQxDiyp8dNBgUF6Tz/+++/0a1bN0tG0qpduzZu376NChUqGJyenJws2+VOlPq9pvR9ptRseapXr45Lly5h/vz5cHZ2RlpaGl5//XUMGTJEO75dTrGxsYiNjTVYmC1btkyWTH///Tfeeust3LhxQ+/9U6lUFvme40kvxcS+ffuQnp6Odu3aGZyenp6Oo0ePolmzZhbNNW3aNOzbtw9btmwxOP3DDz/E4sWLX4hLEh04cAB16tSRbYxNQZSaC5A/W1paGuLj4xEcHKw3VlXubFIsmW3Dhg1IT0/H22+/bXD6w4cPsXHjRr1xXZag1O81Je8zJWd7EURHR2Py5MmoU6cOvL299Y5QbNiwQZZcYWFhqFy5MqKjow3myj+2saiwYHxJ/fvvv/Dx8ZG1V9QQpeYCcnvTTp48Keu1uAxRai6A2cyl5GxKpuTvD/qfgk7MUalUcHBwQPny5WX7Q87b2xtfffUV+vbtK8v2C1KiRAnExcXpHZ2wJP5UFZLg4GBYW1vLHcNoISEhuH79utwx9Cg1F6DcuxAoNRfAbOZScjYXFxfZzk5+FqV+fyh5n8mRLSwsDOHh4QgPD0dYWJj2eVhYGKpWrQpXV1f069cPT548sWguIPfqGA0bNrT4dp+lfv36uHLliqwZOIaxkEybNg0pKSlyxzCaUn8hKTUXEeVS8s+oUrMpNRcgT7YNGzZgzJgxGDVqFOrVqwcAOHLkCGbMmIFJkyYhOzsbY8eOxfjx4/HNN99YNNs777yDNWvWYMKECRbdriH5e2I/+ugjjBgxAgkJCQgNDYWtra3OvE+fJFkUWDAWkrxrOBEREVHBvvjiC8yZM0fnRhihoaEoV64cJkyYgCNHjqBEiRIYMWKERQrGqKgo7f81Gg2WLFmCHTt2oEaNGnqF2cyZM4s8T56wsDC9E7vy39kob5qlTnphwUhEREQWc/r0aYNncVeoUAGnT58GkFss5d1juqidOHFC53lYWBgA4MyZMzrtlr5El9Iu8cOCsZCcP38eHTt2VOw4FXp+SrienyFKzQUwm7mUnI3oeVWtWhXTp0/HkiVLtFcvyMrKwvTp01G1alUAudd4zbvecVHbtWuXRbZjqoIujSQXFoyFRK1W48aNG3LHMJpSfyEpNReg3HFISs0FMJu5lJxNyT+jSs2m1FyAPNkWLFiAzp07o1y5ctqxd6dPn0ZOTo72BhhXr17Fhx9+aPFsSlXQbTLzziwPCgpCQEBAkWZgwWik/GMcDLl3756FkhQOpf5CkiPXpEmTMHDgwGf+Nffo0SMLJcql1FwAs5lLydmMpdTvDkC52ZSaC5AnW8OGDXHt2jWsXr0aly5dAgC8+eabeOutt7R3jpLrsjbdunUzWETnL8zeeust7d2uLKVr164GL1Sffxxj48aN8fvvv+vcXKEw8bI6RpozZw727NmDEydOGHxcuHBB7ojIysqCjY2N3rgLQ86dO2ex7m6l5srzxx9/oGLFimjZsiXWrFmDzMxMi26/IErNBTCbuZSczVh//fUXfH195Y5hkBzfH8ZQ8j6TK5uzszOaNm2KNm3aoHnz5vD29sauXbsK7EmzFFdXV+zcuRPHjx+HSqWCSqXCiRMnsHPnTmRnZ2PdunWoWbOmxW9huH37dtStWxfbt29HSkoKUlJSsH37dtSvXx+bNm3C3r178eDBA4wcObLoQhThfaqLlcqVK4sffvihwOknTpyQ/YbuQggREBAgTp48KXcMPUrNlef48ePio48+Eh4eHsLNzU28//774siRI3LHUmwuIZjNXErMdvbsWfHBBx+IsLAw4eXlJby8vERYWJj44IMPxNmzZ2XNJuXKlSvi1VdflWXbt2/fFj/88IPYvHmzyMzM1JmWlpYmoqOjZcklhBDbtm0TEydOFLGxsUIIIfbs2SPatWsnXn31VbFs2TLZcuWJj48XNWrUECqVSlhZWWn/zXvIacyYMeKDDz4QOTk52racnBwRGRkpxo0bJzQajXj33XdFo0aNLJqrWrVq4sCBA3rt+/fvFyEhIUIIIbZv3y78/PyKLAMLRiO99dZbYvjw4QVOP3nypFCpVBZMZNjSpUtFhw4dxIMHD+SOokOpuZ6mVqvF+vXrxWuvvSZsbW1FaGiomD17tkhOTmYuZiuW2bZs2SLs7OzEK6+8IiZNmiQWLlwoFi5cKCZNmiQaNmwo7O3tRUxMjEUzGevkyZOyFBhHjhwRbm5uwsXFRTg6OoqgoCBx5swZ7fSEhATZCp8ffvhB2NjYiFq1aomSJUuK5cuXCzc3N/HOO++IgQMHCjs7O/HLL7/Iki3Pa6+9Jrp06SLu3bsnSpYsKc6ePSv27dsn6tWrJ/bu3StrNg8PD3Hx4kW99osXL4rSpUsLIYQ4deqUcHV1tWguBwcHcfr0ab32U6dOCQcHByGEENevXxeOjo5FloEFo5Hu3Lkjrl+/LneMZwoLCxMlS5YU9vb2onLlyiI8PFznwVzSMjMzxdq1a0WbNm2EjY2NaNq0qQgKChLOzs5i7dq1zMVsxS5bjRo1xIQJEwqcPmnSJBEaGmqxPPnNmTNH8jF69GhZCrNWrVqJAQMGiJycHJGamio++OADUbp0aXH8+HEhhLwFY1hYmJgzZ44QQogdO3YIR0dHMXPmTO30b775xuK9Y08rXbq0iIuLE0II4eLiIi5cuCCEECI2NlaEhYXJGU24ubmJP/74Q6/9jz/+EG5ubkIIIS5duqT9v6U0atRItGvXTiQmJmrbEhMTRbt27USTJk2EELk9jJUrVy6yDDzpxUheXl4mzf/TTz+hc+fOKFGiRBElMkypFxBXaq48x44dw/Lly/HTTz/B3t4eERERWLBggfa+nfPmzcPQoUPRs2dP5mK2YpXt0qVL6NOnT4HTe/fujS+//NIiWZ42fPhweHt7ay+98jS1Wm3hRLmOHTuGBQsWwMrKCs7Ozli4cCHKly+Pli1bYuvWrShfvrwsuQDg8uXL6NSpEwCgZcuWyM7ORsuWLbXTO3bsiGnTpskVDwCQk5OjPbnFw8MDt2/fRpUqVVChQgVcvHhR1mx9+/bFoEGD8Mknn6Bu3boAgH/++QdTp05FREQEAGDPnj2oVq2aRXN9//336NKlC8qVKwc/Pz8AwK1btxAYGIg//vgDAJCWlobx48cXXYgiK0Vfcs7OziI+Pl7uGGSE6tWrCxsbG9GhQwexYcMGkZ2drTfPvXv3LD7kQKm5mK14ZatataqYMWNGgdNnzJghqlSpYrE8+fn7+4t169YVOF2usePu7u7aHrL8vv76a+Hm5iZ+++032XoY3dzctD12QghRsmRJnd9FV69eFU5OTnJE02rcuLHYsGGDEEKI3r17i3bt2on9+/eLiIgIUa1aNVmzZWdni88//1x4eXkJlUolVCqV8PLyEl988YX25/XGjRvi1q1bFs+Wk5Mj/vrrL20Pe0xMjM5Yy6LGHsYiImS+jMKxY8dw/vx5AEC1atUQHh4ua548SszVo0cPDBw4UPJMQQ8PD2g0GgumUm4ugNnMpcRskydPxltvvYXdu3ejVatW2osl3717F7GxsYiJicGaNWsslie/2rVr49ixY+jRo4fB6YYuM2IJ1atXx8GDB/Xu3zty5EhoNBr07t3b4pnyBAUF4cKFC9rLvvz333/a3jwAiI+PR7ly5eSKBwAYP3480tPTAeR+/l577TU0adIEpUuXxrp162TNZm1tjU8//RSffvopUlNTAQAuLi4688jVg2xlZYV27dqhXbt2smxfJeSubIopZ2dnxMXFITAw0KLbTUxMRK9evbB79264ubkBAJKTk/Hqq69i7dq1KFOmjEXzKD1XVlYWqlatik2bNiE4OFiWDIYoNRfAbOZScraDBw9i7ty5OHToEBISEgDkDsNp0KABhg0bhgYNGsiS69y5c8jIyECdOnUMTs/KysLt27ctfimdpUuXYs+ePfjhhx8MTv/yyy+xePFiWW7ttmHDBpQuXRpNmzY1OH369OlIT0/HlClTLJxMWlJSEtzd3RV9kXNLmzt3Lt599104ODhg7ty5kvMOHTq0yPOwYCwichWMPXv2xNWrV7Fq1SrtL6Vz586hX79+CAoKwk8//WTRPErPBQC+vr7YsWOH4n6JKzUXwGzmUnI2Yx04cAB16tSBvb293FH0KDWbUnMBys5mKbVq1UJsbCzc3d0RHh4uWbQeP37cYrkCAgJw9OhRlC5dWvIuLiqVyiK3JWbBWETkKhhdXV2xY8cO7WDdPEeOHEGbNm2QnJxs0TxKzwUAU6dOxaVLl7B06VLY2ChnlIZScwHMZi4lZzOWi4sLTp48afHvNmMoNZtScwHKzmYp0dHRGDVqFJycnBAdHS0576RJkyyUSnlezG8sKpBGo4Gtra1eu62trSxjtvIoNReQewZcbGwstm3bhtDQUL0z23/77TfmegqzmUfJ2Yyl5D4GpWZTai5A2dksJX8RqPSCUK1W49q1a6hYsaLF/+hkwWiCnJwcHDhwADVq1NCOwytIhQoVDBZIRa1FixYYNmwYfvrpJ/j4+ADIHfT88ccf61xagbn+x83NDd27d5c1gyFKzQUwm7mUnI2IciUnJ+PXX39FfHw8Ro0ahVKlSuH48ePw9PSU7RaPGRkZ+Oijj7By5UoAuZfDCgwMxEcffQRfX1+MHTu26ENY7HzsYsLe3l5cvXpV7hgFunnzpggLCxO2trYiMDBQBAYGCltbWxEeHi7LZQCUnouITPP0ZVqURKnZlJpLCGVnk0NcXJwoU6aMCAoKEjY2Ntp98+mnn4q+ffvKlmvo0KGidu3aYt++faJEiRLaXL///rvFLnZuVfQlafFSvXp1iwwuNZefnx+OHz+OzZs3Y/jw4Rg+fDi2bNmC48ePy3opBaXmAnJ7Pw2NoUxNTUWLFi0sH+j/KTUXwGzmUnI2IgKioqLQv39/XL58GQ4ODtr2Dh06YO/evbLl+v333zF//nw0btxY56ScatWqIT4+3iIZeEjaRJ9//jlGjhyJKVOmoHbt2npjkJ6+XpMcVCoVWrdujdatW8sdRYdSc+3evdvgHSOePHmCffv2yZAol1JzAcxmLiVnM5aSL3ui1GxKzQUoO5sc/vnnH3z77bd67b6+vtpLTsnh3r17KFu2rF57enq6xd5DFowm6tChAwCgc+fOOm+SEAIqlQo5OTkWz/Ss6zPlZ4lrNeVRaq48p06d0v7/3LlzOl8GOTk5iImJkWW8ilJzAcxmLiVnM5VQ8EkSSs2m1FyAsrPJwd7eXnvB7vwuXbok2/WCAaBOnTrYvHkzPvroIwD/K/SXLl1qseuk8rI6JtqzZ4/k9GbNmlkoyf9IXZ8pP0tdqymPUnPlsbKy0v7QGfoxcHR0xLx58zBw4EDm+n/MZh4lZ8szadIkDBw40OIXwTaGUrMpNReg7GxK9s477+DBgwf4+eefUapUKZw6dQrW1tbo2rUrmjZtitmzZ8uSa//+/Wjfvj3efvttrFixAu+99x7OnTuHgwcPYs+ePahdu3aRZ2DBSC+tGzduQAiBwMBAHDlyROevRzs7O5QtWxbW1tbMxWzFOluesLAwnDlzBs2aNcOgQYPQvXt3xVzMWanZlJoLUHY2JUtJScEbb7yBo0eP4tGjR/Dx8UFCQgJeeeUV/PXXX3rD0Czp6tWrmDZtGuLi4pCWloZatWphzJgxCA0Ntcj2WTCaYd++ffj2229x9epV/PLLL/D19cUPP/yAgIAANG7cWO54WnlvrdLGqCg1F9HL7sSJE1i+fDl++uknZGdno1evXhg4cKDeBfeZTfm5lJ5N6Q4cOKBTmLVq1UrWPBEREXj11VfRtGlTVKxYUZYMLBhNtH79evTt2xd9+vTBDz/8gHPnziEwMBDz58/Hli1bsGXLFrkjYtWqVfj6669x+fJlAEDlypUxatQo9O3bl7kKcPnyZezatQuJiYl6FxKfOHGiTKmUmwtgNnMpOVuerKws/Pnnn1i+fDm2bt2KqlWrYtCgQejfvz9cXV2Z7QXKpfRsShQbG4vY2FiDP6PLli2TJdM777yDvXv3Ij4+Hj4+PmjWrBmaN2+OZs2aoVKlSpYJYZGL9xQjYWFhYuXKlUII3etXHT9+XHh6esoZTQghxIwZM4STk5MYPXq0+OOPP8Qff/whRo0aJZycnMTMmTOZy4AlS5YIa2tr4enpKWrWrCnCwsK0j/DwcOZitpciW36ZmZli7dq1ok2bNsLGxkY0bdpUBAUFCWdnZ7F27Vpme4FyKT2b0nz22WfCyspK1KtXT3Tp0kV07dpV5yG3f//9V6xZs0a89957omrVqsLKykr4+vpaZNssGE3k6Ogorl27JoTQLRjj4+OFvb29jMly+fv7awva/FasWCH8/f1lSJRLqbmEEKJ8+fJi+vTpsmYwRKm5hGA2cyk5mxBCHD16VAwZMkSUKlVKeHt7izFjxojLly9rp8+dO1eULVuW2V6AXErPplReXl5i1apVcscoUHp6uti6dasYO3aseOWVV4SdnZ3FLtzNgtFEAQEBYvv27UII3YJx5cqVIjg4WM5oQojcO9Hk/0LIc+nSJVkLWqXmEkIIZ2dnRd7pQKm5hGA2cyk5W/Xq1YWNjY3o0KGD2LBhg8jOztab5969e0KlUjGbwnMpPZuSlSpVSly5ckXuGHrGjRsnGjRoIBwcHER4eLgYPny4+P3330VSUpLFMvBOLyYaPHgwhg0bhsOHD0OlUuH27dtYvXo1Ro4ciQ8++EDueAgKCsLPP/+s175u3TrLjXMwQKm5AODNN9/Etm3bZM1giFJzAcxmLiVn69GjB65fv47Nmzeja9euBs/a9vDw0BvT9TJnU2oupWdTsnfeeQdr1qyRO4ae6dOnIz4+HpMmTcLatWsxa9YsdOnSBe7u7hbLwAt3m2js2LHQaDRo2bIlMjIy0LRpU9jb22PkyJHaC2rKKTo6Gj179sTevXvRqFEjALlne8XGxhos2F72XEBuMTthwgT8/fffCA0Nha2trc50OS4qruRcALOZS6nZsrKysGLFCrzxxhuKu4C4UrMpNReg7GxKFBUVpf2/RqPBkiVLsGPHDtSoUUPvZ3TmzJmWjgcg94z3PXv2YPfu3ZgxYwbs7Oy0J740b94clStXLvIMPEvaTGq1GleuXEFaWhpCQkJQsmRJuSNpHTt2DLNmzcL58+cBAMHBwRgxYgTCw8OZywCpC4zLdVFxQLm5AGYzl5Kz+fr6YseOHQgODpYtQ0GUmk2puQBlZ1OaV1991aj5VCoVdu7cWcRpjBMXF4dZs2Zh9erV0Gg0FrnLHAtGIiLC1KlTcenSJSxduhQ2Nso6+KTUbErNBSg7G5lOCIETJ05g9+7d2L17N/bv34/U1FTUqFEDzZo1w6xZs4o8AwtGI7z++utGz/vbb78VYZJn27JlC6ytrdG2bVud9q1bt0Kj0aB9+/bMRUR6unXrhtjYWJQsWRKhoaF6d7SQ87tNqdmUmgtQdjYynbu7O9LS0lCzZk3toegmTZrAzc3NYhn4Z4cR8l/YVAiBDRs2wNXVFXXq1AGQe6g1OTnZpMKyqIwdOxbTp0/XaxdCYOzYsbIVZkrNBeCZ9++V60KtSs0FMJu5lJzNzc0N3bt3l237UpSaTam5AGVnI9P9+OOPaNKkCVxcXGTLwILRCMuXL9f+f8yYMejRowcWL16sPessJycHH374oaxvZJ7Lly8jJCREr71q1aq4cuWKDIlyKTUXADx8+FDneVZWFs6cOYPk5GS0aNFCplTKzQUwm7mUnC3/95zSKDWbUnMBys5GpuvYsaPcEVgwmmrZsmXYv3+/ziUKrK2tERUVhYYNG+Lrr7+WMV1ub+jVq1fh7++v037lyhVZb5qu1FwAsGHDBr02jUaDDz74QLZ7dgLKzQUwm7mUnI2ISArHMJrI3d0dK1asQJcuXXTa//jjD/Tv31+vB8HS3nvvPRw6dAgbNmzQ/gK6cuUKunfvjrp162Lp0qXMZaSLFy+iefPmuHPnjtxRdCg1F8Bs5lJKtl9//RU///wzbt68CbVarTPt+PHjMqXKpdRsSs0FKDsbvXh44W4TDRgwAIMGDcLMmTOxf/9+7N+/HzNmzMA777yDAQMGyB0PX331FUqUKIGqVasiICAAAQEBCA4ORunSpfHNN98wlwni4+ORnZ0tdww9Ss0FMJu5lJBt7ty5GDBgADw9PXHixAnUq1cPpUuXxtWrV2U/KU2p2ZSaS+nZ6MXEQ9Im+uabb+Dl5YUZM2ZoewO8vb0xatQojBgxQuZ0uYd+Dx48iO3btyMuLg6Ojo6oUaMGmjZtylwFyH/RViD3RJw7d+5g8+bN6Nevn0yplJsLYDZzKTnbwoULsWTJEvTu3RsrVqzA6NGjERgYiIkTJyIpKYnZXqBcSs9GLyYekn4OqampAKCIk12A3AH0jo6OOHnyJKpXry53HC2l5srz9EVbraysUKZMGbRo0QIDBw6U7RpmSs0FMJu5lJzNyckJ58+fR4UKFVC2bFls374dNWvWxOXLl/HKK6/gwYMHzPaC5FJ6NnoxsYfxOSilUMxja2uL8uXLW+SK76ZQaq48u3btkjuCQUrNBTCbuZSczcvLC0lJSahQoQLKly+Pv//+GzVr1sS1a9cgd7+CUrMpNZfSs9GLiWMYTXT37l307dsXPj4+sLGxgbW1tc5Dbp9++ik++eQTxR1yUGqu/O7du6cdl3rv3j2542gpNRfAbOZSYrYWLVpg48aNAHLHan/88cdo3bo1evbsiW7dujHbC5RL6dnoxcRD0iZq3749bt68icjISHh7e0OlUulMf/rsaUsLDw/HlStXkJWVhQoVKuhdskauM+OUmgsA0tPT8dFHH2HVqlXQaDQAci+VFBERgXnz5sHJyYm5mK3YZ9NoNNBoNNrD4mvXrsXBgwdRqVIlvPfee7Czs2O2FySX0rPRi4kFo4mcnZ2xb98+hIWFyR3FoOjoaMnpkyZNslASXUrNBeRe8mfHjh2YP38+GjVqBADYv38/hg4ditatW2PRokXMxWzFPhsRkRQWjCYKCQnB6tWrER4eLncUKiQeHh749ddf0bx5c532Xbt2oUePHrIdMlRqLoDZzKXkbACQnJyMI0eOIDExUdsDmiciIkKmVLmUmk2puQBlZ6MXD096MdHs2bMxduxYfPvtt3p3LaEXU0ZGBjw9PfXay5Yti4yMDBkS5VJqLoDZzKXkbH/++Sf69OmDtLQ0uLi46Ay3UalUshYYSs2m1FxKz0YvJvYwmsjd3R0ZGRnIzs6Gk5MTbG1tdabLcVJHqVKlcOnSJXh4eMDd3V1vXGV+lsyn1FxPa9myJUqXLo1Vq1bBwcEBAPD48WP069cPSUlJ2LFjB3MxW7HPVrlyZXTo0AFTp06VdSylIUrNptRcgLKz0YuJBaOJVq5cKTldjovvrly5Er169YK9vb2i8ik119NOnz6Ndu3aITMzEzVr1gQAxMXFwd7eHtu2bUO1atWYi9mKfbYSJUrg9OnTCAwMlC1DQZSaTam5AGVnoxcTC0Yi5B4qXL16NS5cuAAACA4ORp8+feDo6MhcBWA28yg12+uvv45evXqhR48esuYwRKnZlJoLUHY2ejFxDKMZ4uPjsXz5csTHx2POnDkoW7Ys/vrrL5QvX17WHoKnPXnyRO+G80q42LjSck2bNg2enp4YPHiwTvuyZctw7949jBkzhrmewmzmUXK2jh07YtSoUTh37hxCQ0P1htt07txZpmTKzabUXICys9ELSpBJdu/eLRwdHUWrVq2EnZ2diI+PF0IIMW3aNNG9e3eZ0wmRlpYmhgwZIsqUKSOsrKz0Hsylr0KFCuLAgQN67X///bfw9/eXIVEupeYSgtnMpeRsKpWqwIfcP6NKzabUXErPRi8m3unFRGPHjsXnn3+O7du361z4tEWLFvj7779lTJZr9OjR2LlzJxYtWgR7e3ssXboU0dHR8PHxwapVq5jLgISEBHh7e+u1lylTBnfu3JEhUS6l5gKYzVxKzpZ3oWdDD7lv66nUbErNpfRs9GJiwWii06dPG7ytUtmyZXH//n0ZEun6888/sXDhQnTv3h02NjZo0qQJxo8fj6lTp2L16tXMZYCfnx8OHDig137gwAH4+PjIkCiXUnMBzGYuJWcjIpLCMYwmcnNzw507dxAQEKDTfuLECfj6+sqU6n+SkpK0Z8W5uLhoL1fTuHFjfPDBB8xlwODBgzF8+HBkZWWhRYsWAIDY2FiMHj0aI0aMYC5mK7bZ5s6di3fffRcODg6YO3eu5LxDhw61UKpcSs2m1FyAsrNRMSD3MfEXzYgRI0Tjxo3FnTt3hLOzs7h8+bLYv3+/CAwMFJ999pnc8URoaKjYvXu3EEKIli1bihEjRgghhJgzZ47w9fVlLgM0Go0YPXq0cHBw0I6pdHJyEtHR0czFbMU6m7+/v7h//772/wU9AgICmE3huZSejV58vKyOidRqNYYMGYIVK1YgJycHNjY2yM7ORp8+fbBixQpYW1vLmm/WrFmwtrbG0KFDsWPHDnTq1AlCCGRlZWHmzJkYNmwYcxUgLS0N5/+vvfsLaer/4zj+PN9VZmqWZmj/0HJZXiwlwxRDugiELowujLIsyAoiIWu3hX8q6Y9KQf/EmmmkVNAfiDIyRmQWZgRCpWXUugiUIEMKtdnvQto3f9Z+2q/cEV+Pu50dt+d2Md+cnZ3P8+f4+/tjtVrx8/PzdRJg3i5Q2+8ycxvA938L3i627ytmbTNrF5i7TUYPDYy/6d27dzQ3N9PV1UV8fDxWq9XXST/19u1bmpqaiI6Oxmaz+TrHw6xdImPZmTNnKC0t5eXLlwBYrVZ27txJdna2j8vM22bWLjB3m4w+OodxmHbt2jVo28OHDzEMg4kTJxIdHU16ejohISE+qOtXV1dHXV3dTxecP3v2rI+qzNslIrB3715KSkrIyckhKSkJgIaGBnJzc3G5XBQUFKhtlHSZvU1GJx1hHKbly5fz5MkT3G43MTExALS2tmKxWFiwYAEtLS0YhsH9+/eJjY0d8b78/HwKCgpISEggIiJi0FcQV65cGfEmM3eJSL+wsDCOHTvG2rVrB2yvrq4mJyfHp1eBMGubWbvA3G0yOukI4zB9P3rocDg8q5N0dnaSnZ1NSkoKW7ZsYd26deTm5lJbWzvifadOnaKiooINGzaM+HN7Y9YuEenX29tLQkLCoO2LFy/m69evPij6l1nbzNoF5m6T0UnXYRymw4cPU1hYOGApu+DgYPLy8jh06BCTJk1i7969NDU1+aSvp6eH5ORknzy3N2btEpF+GzZs4OTJk4O2l5WVkZmZ6YOif5m1zaxdYO42GZ10hHGYOjs7aW9vH/R1c0dHB58+fQL6r9X432slj5Ts7GwuXLjAnj17fPL8v2LWLpGx7Mdzsg3DoLy8nNu3b7N06VIAHj16hMvlIisrS20m7zJ7m4x+OodxmDIzM2loaKC4uJglS5YA0NjYiN1uJzk5maqqKmpqajhy5AiPHz8ekaYfPyT6+vo4d+4cNpsNm802aMH5kpKSEWkyc5eI9Fu+fPmQ9jMMg7t37/7lmoHM2mbWLjB3m4x+GhiHqauri9zcXCorKz3ngYwbN46NGzdSWlpKQEAAT58+BSAuLm5Emsz6IWHWLhERERkeDYy/qauri9evXwMwd+5cAgMDfVwkIiIi8ndoYBQRERERr/QraRERERHxSgOjiIiIiHilgVFEREREvNLAKCIiIiJeaWAUEfmFb9++sXXrVkJCQjAMw3PJLBGRsUa/khYR+YWbN2+Snp6O0+lk7ty5TJs2jXHj/r8FsjZt2sTHjx+5evXqn4kUERkBWhpQROQX2traiIiIMOU66G63G8Mw+OcffVEkIn+fPmlERH5i06ZN5OTk4HK5MAyDyMhI+vr6KCoqIioqCn9/fxYtWsTly5c9f+N2u9m8ebPn/piYGI4ePeq5Py8vj3PnznHt2jUMw8AwDJxOJ06nE8Mw+Pjxo2ffp0+fYhgGb968AaCiooIpU6Zw/fp1YmNj8fPzw+Vy0d3djd1uZ+bMmQQEBJCYmIjT6Ryhd0lExgodYRQR+YmjR48yb948ysrKaGxsxGKxUFRUxPnz5zl16hRWq5V79+6xfv16wsLCSE1Npa+vj1mzZnHp0iVCQ0N58OABW7duJSIigoyMDOx2O8+fP+fTp084HA4AQkJCePDgwZCaPn/+zMGDBykvLyc0NJTp06ezY8cOnj17Rk1NDTNmzODKlSukpaXR3NyM1Wr9m2+RiIwhGhhFRH4iODiYoKAgLBYL4eHhdHd3c+DAAe7cuUNSUhLQvyzo/fv3OX36NKmpqYwfP578/HzPY0RFRdHQ0MDFixfJyMggMDAQf39/uru7CQ8PH3ZTb28vJ06cYNGiRQC4XC4cDgcul4sZM2YAYLfbuXXrFg6HgwMHDvyBd0JERAOjiMiQvHr1is+fP7NixYoB23t6eoiPj/fcPn78OGfPnsXlcvHlyxd6enqIi4v7Iw0TJkzAZrN5bjc3N+N2u5k/f/6A/bq7uwkNDf0jzykiAhoYRUSGpKurC4AbN24wc+bMAff5+fkBUFNTg91up7i4mKSkJIKCgjh8+DCPHj3y+tjff7jy40Urent7B+3n7++PYRgDmiwWC01NTVgslgH7BgYGDuPViYh4p4FRRGQIfvyhSWpq6k/3qa+vJzk5me3bt3u2tbW1DdhnwoQJuN3uAdvCwsIAeP/+PVOnTgUY0jUf4+PjcbvdtLe3s2zZsuG8HBGRYdHAKCIyBEFBQdjtdnJzc+nr6yMlJYXOzk7q6+uZPHkyGzduxGq1UllZSW1tLVFRUVRVVdHY2EhUVJTncSIjI6mtraWlpYXQ0FCCg4OJjo5m9uzZ5OXlsX//flpbWykuLv6fTfPnzyczM5OsrCyKi4uJj4+no6ODuro6bDYbK1eu/JtviYiMIbqsjojIEBUWFrJnzx6KiopYuHAhaWlp3LhxwzMQbtu2jdWrV7NmzRoSExP58OHDgKONAFu2bCEmJoaEhATCwsKor69n/PjxVFdX8+LFC2w2GwcPHmTfvn1DanI4HGRlZbF7925iYmJYtWoVjY2NzJkz54+/fhEZu7TSi4iIiIh4pSOMIiIiIuKVBkYRERER8UoDo4iIiIh4pYFRRERERLzSwCgiIiIiXmlgFBERERGvNDCKiIiIiFcaGEVERETEKw2MIiIiIuKVBkYRERER8UoDo4iIiIh49R9hBAZLAVxGagAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 750x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAL5CAYAAADMnGVQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxM1/sH8M9kJotIIiL2pVH7vkQRutBSalc/VUrRvWiRUEWsCWqtKuXbRVXTVFoNsZWqWorYQpRSRGmqtW+JIDN3Zn5/pDMycu+dJbPP5/169VW5987MudfIc597znmOQq/X60FERERERERELufn6gYQERERERERUQEm6URERERERERugkk6ERERERERkZtgkk5ERERERETkJpikExEREREREbkJJulEREREREREboJJOhEREREREZGbYJJORERERERE5CaYpBMRERERERG5CSbpRERERERERG7CpUn6rl270L17d1SqVAkKhQJr1641+5odO3agefPmCAwMRM2aNbFixQqHt5OIiIhsw1hPRERkHZcm6Xl5eWjSpAmWLFli0fHnzp1D165d0b59e2RmZmLUqFF47bXXsGXLFge3lIiIiGzBWE9ERGQdhV6v17u6EQCgUCiwZs0a9OrVS/KYcePGYePGjTh+/Lhx24svvohbt25h8+bNTmglERER2YqxnoiIyDyVqxtgjfT0dHTo0MFkW6dOnTBq1CjJ1+Tn5yM/P9/4s06nw40bN1CmTBkoFApHNZWIiMhier0eubm5qFSpEvz8fLtcjC2xHmC8JyIi92ZNrPeoJP3SpUsoX768ybby5csjJycH9+7dQ4kSJYq8ZtasWZg2bZqzmkhERGSzv//+G1WqVHF1M1zKllgPMN4TEZFnsCTWe1SSbovx48cjNjbW+PPt27dRrVo1nDt3DqGhoS5pk0ajwfbt29G+fXv4+/u7pA3ugtfCFK/HA7wWpng9HnD0tdj85wac3R6PUTdvG7cJej80zf9M8jVrh1bFI5Vr2fyZubm5qF69usvikjdwx3hvC2/+t85z80w8N8/krecm6ATcvHsTS39Ziq35W216D6Vej1CdDp3z7mLEjVx8re2I+cILZl/nzFjvUUl6hQoVcPnyZZNtly9fRlhYmOST9cDAQAQGBhbZHhERgbCwMIe00xyNRoPg4GCUKVPGq/7R2ILXwhSvxwO8FqZ4PR6w+7XQCsD9WwCA37ZNxEuHVxVsD3wwRPpToQv8EFzkpaPbRaJbwzA8UqEmVCrb22I4Dw7Lti3WA+4Z723hzf/WeW6eiefmmbzp3ASdgBx1Djac3YC5h+YWbPQDlCWUFr1eqdcjTKcDAHS7k4f3btwCAKzWPoHmeBtQAn4ybxXXviy6NAh1aqz3qCQ9JiYGmzZtMtm2detWxMTEuKhFRETkcQol5fgtBdgywbirscjhKUI7zBReKrJ9Qpe6eOPJGo5pow9jrCciItHE3AY9cu9gxrUbpu+t98Ny7XOisd1gwjOV0adVbZQqGQSV0vm1YlyapN+5cwdZWVnGn8+dO4fMzExERESgWrVqGD9+PP755x+sXLkSAPDWW29h8eLFeO+99/DKK6/gl19+wXfffYeNGze66hSIiMiTZCYDa9+2+PAUoR3GCW+I7nulbXV7tcqrMdYTEZEYQyL+sOIm5kq9HuMbv43uubkI3j7LZN9q7RMYo5G/D5jT8j5e6NjU5s+3B5cm6YcOHUL79u2NPxvmkg0ePBgrVqzAxYsXkZ2dbdxfvXp1bNy4EaNHj8ZHH32EKlWq4PPPP0enTp2c3nYiIvIwdkzQ5/Vt4pIn656IsZ6IyLeJJePFTcQLG9tiLLrV6AboBAQe+golf0kEzk8ocpxcXDeY16ch/u+xR+zSruJwaZLerl07yC3TvmLFCtHXHDlyxIGtKiiPLwgCtFqtQ95fo9FApVLh/v37DvsMT8FrYUru3wMR2cAwtF0n2C1Bn9OnMf4v2rcrsFvDV2O9rbw5LvLcHvD394dSadl8WiJPUzgpt2cyXthzQc9hTJcxiCgZAZUewIH/mUxfM2mPJcPbu9TFK22ru80DeI+ak+4MarUaFy9exN27dx32GXq9HhUqVMDff//t80WCeC1M6fV6lC5dGhqNxuOLfBC5nJU953MiwrEhpCTu3I7Gjcsvih/TpzFeeKyqvVpILuKMWG8rb46LPLcHFAoFqlSpgpCQECe0jsixnJGUAw96zEsoSuCnzT+hdFBpqH77TjbWWzK8fV7fJm738J1JeiE6nQ7nzp2DUqlEpUqVEBAQ4JAgotPpcOfOHYSEhJhdyN7b8Vo8oNfrkZ+fD51Oh+zsbNSuXdvnrwmRTbQCsO8TYOsk2cM+KxWGr0sVLIOS4+eH2Mfew+qormiZsE/0eCbo3sFZsd5W3hwXeW4F9Ho9rl69igsXLqBWrVrsUSePJegEJJ9MdlhSDjxIzMMCwqDyK0hdNRoNAECRmQRsHCXeNg/sPS+MSXoharUaOp0OVatWRXBw0aV27EWn00GtViMoKMjrgpS1eC1MBQYGomzZsrh+/brxuhCRBQzD2h+q1i4lT6HAktKloFUoEBcdh4H1B0Llp8Knu86KHs8E3Xs4K9bbypvjIs/tgbJly+L8+fPQaDRM0sntOW1O+UMKJ+YmdAJqXN4E1ZFVou9nUXE4N4/rTNJFeFvgIM/iTj06RG5PK8jOQxOT46fArDIR0CoUSGybiJ41e0LQ6vDprrOYuemPIsdP6FLXrQM52YaxnlyJsZ48gb17ysWScclEXEpmMvzXvo2GErstKg7nhsPbH8YknYiIPJLit1XA+hEWHTsvIhzrQkoCeDC0PaHeAKj8VFhz5AImrjmOu2rxYk9cao2IiHxNWlYa4vfEF+s9CiflVifjD7NgKltKnYUYd7Sc5H53Ht7+MCbpRETkcapd3wnVkS8sOnZiZATWhRYUZyo8tB0ABK0Ok9N+l0zQudQaERH5EkEnIOlEEuZnzLf6tXZNygszUwhW0PtheZ1PMfOo9BQmT+g9L4xJOtlNu3bt0LRpUyxcuNAt3oeIvJMiMwnNss0n6HMiwpEcFgrtf8NKDUPbC7t9T4Pc+4L467nUGpEoxnsi72Rr7/nYFmMx4L/RaXZhqDMDFCToMr3nxvnnv4nv96Te88KYpJPL7NixA+3bt8f58+cRFhZm3J6amsrlx4jIlCFgZyZDJROsDcuo5fj5GZPzh3vPC/vh8AXR9/G0J+5E7swQ769fv25SC4Dxnsg9WNp7bpc55eYcTQE2jQXyb5s99NtaCzD+WAXJ/e5eHE4Ok3RyOxEREa5uAhG5CwsLw82LCEdSoV5zg+ltpqN3rd6ir0k5mC1aKO7AhGdQLowrKxA5GuM9kesYKrZbUqVd7mG33WgF4O41YI180TegYHj79NCpWOmlCToAeFa/P4lq164dRowYgREjRqBUqVKIjIzEpEmToNfrAQA3b97Eyy+/jNKlSyM4OBjPPfcczpw5Y3z9ihUrEB4ejrVr16JWrVoICgpCp06d8PfffxuPGTJkCHr16mXyuaNGjUK7du0k2/X111+jRYsWCA0NRYUKFTBgwABcuXIFAHD+/Hm0b98eABAVFQWlUokhQ4YYz2fUqFHG97G0/Vu2bEG9evUQEhKCzp074+LFi7ZcTiJyF0dTgA+qmU3QJ0VG4KtSYVYl6KszLmDcD8dE90WUDLCtvUQO5unxvkyZMihdujSGDh1qPB/GeyLnS8tKQ7Ovm+GplKfMJuiJbRMxpOEQxyXoWgFIXwIklAHm1zF7+Oq6C1EzPwkrr9WUPGZe3yYenaADTNK9xldffQWVSoUDBw7go48+woIFC/D5558DKAi4hw4dwrp165Ceng69Xo8uXbpAo9EYX3/37l3MmDEDK1euxJ49e3Dr1i28+OKLxWqTRqNBQkICjh49irVr1+L8+fPGRLxq1ar44YcfAAAHDx7EP//8g48++kj0fSxt/7x58/D1119j165dyM7OxpgxY4rVfiJyIa1QMNxNkyd72KTICKz9ryhcYYltEyUTdEGrw5jvj4ruY6E4cneeHO9PnjyJP/74Q3IOOuM9kWMJOgErjq+waN55XHQcjgw6UqSWi90UTs4tXEY1pdHnGJMpX709a8ZzXjFdjcPdvUTVqlXx4YcfQqFQoE6dOjh27Bg+/PBDtGvXDuvWrcOePXvQpk0bAMA333yDqlWrYu3atejbty+AggC7ePFitGrVCkDBTUC9evVw4MABtGzZ0qY2vfLKK8Y/P/roo1i0aBEee+wx3LlzByEhIcZhbmXLlkWFChVE16w9c+aMxe1ftmwZatSoAQAYMWIEpk+fblO7icgN3L1mdj5a4arthWUMzECAUro3fPmec6LbWSiOPIEnx/ty5crBz8/PpA6NAeM9keNYu965WKFVu7FwGptR3CkIUGJ5xi3M3Hxa8jBPH97+MHYXeInWrVtDUWioZ0xMDM6cOYMTJ05ApVIZgzFQMNysTp06OHnypHGbSqXCY489Zvy5bt26CA8PNznGWhkZGejevTuqVauG0NBQPPXUUwCA7Oxsi9/j5MmTFrU/ODjYGLABoGLFisahdkTkYTKTJYe8zYkIx5PVKqNpVFXRBD2xbaJsgi41D31Cl7peFdzJezHeM94TWUqr1yLpjyQ0+7qZRQn62BZjHdN7rhWAvGvW9ZwHlgJ6f4rVpwXUnHFANkH3huHtD2NPOlnEz8/POOfNoPDws4fl5eWhU6dO6NSpE7755huULVsW2dnZ6NSpE9Rqtd3b93B1WIVCUaS9ROQBZNZCbV+1Mq6plJIvnd5muuyNhdw89FfaVreunUReivGeyDtsPLcRM27PgPqw/L/DuOg49KjZw/5V2gHre80BoNNMoHE/ICgcKYf/xbgfxKenAcC4TrXx+pM1vHKamvedkY/av3+/yc/79u1DrVq1UL9+fQiCYLL/+vXrOHXqFOrXr2/cJggCDh06ZPz51KlTuHXrFurVqwegYEj6w4VZMjMzJdvzxx9/4Pr16/jggw/wxBNPoG7dukWedAcEFPR2abVayfepV6+eRe0nIi8g5Esm6Dl+CtyUCcJyReIAzkMn78F4T0TmqLVqTEqfBDXkE3RDUbiIoAj7J+iZyVbNN0enmcCk60DMcAhBEfh0z1+SD9YBoH8NLV57PMpr47d3npUPys7ORmxsLE6dOoVvv/0WH3/8MUaOHIlatWqhZ8+eeP3117F7924cPXoUAwcOROXKldGz54MeJ39/f7zzzjvYv38/MjIyMGTIELRu3do4P+3pp5/GoUOHsHLlSpw5cwZTpkzB8ePHJdtTrVo1BAQE4OOPP8aff/6JdevWISEhweSYRx55BAqFAlu2bMHVq1dx586dIu9jafuJyIMZisckiheDyVMoMKtMRJHq7QZyReIMOA+dvIUnx/sNGzbg2rVrjPdEDiDoBNy4fwMrf1+J6KRo2WMdNqwdKIjpexZJPnQvolByDqUKqzMuoObEH0WnphnMfr4BWpfz7hE0TNK9xMsvv4x79+6hZcuWGD58OEaOHIk33ihYZ/DLL79EdHQ0unXrhpiYGOj1emzatMlkyFhwcDDGjRuHAQMGoG3btggJCUFKSopxf6dOnTBp0iS89957eOyxx5Cbm4uXX35Zsj1ly5bFihUr8P3336N+/fr44IMPMG/ePJNjKleujKlTp2LatGmoWLEiRowYIfpelrSfiDyUmWXWPisVhraPVMGGkJIm28eFjcO257dZdJPBeejkTTw13k+bNg0TJkxA7dq18c4774i+F+M9kXUKJ+aWLKlmSM5fbvCyY4a2G+acb51k/viHknNBq8Onu85KjnoDHlRvf75ZZTs23D0p9D42kScnJwelSpXC7du3i1QXvX//Ps6dO4fq1asjKCjIYW3Q6XTIyclBWFiYaEVza7Vr1w5NmzaVXNLEnBUrVmDUqFG4detWsdtiLXtfC0+n0+lw7do1XLt2DY8++qhDv4fuTqPRYNOmTejSpQtv0OCF10MrFFRwl1kTNU+hQNtHqhTpQZ/WehqUfygtuharMy5IBvysGc+5zTA5udhEtpG6ps6K9baSi4ueHO8B74751p6bu38PC/O6+FOIp56btdXaAfMrn9jMmnnnheabQ/ngIYFcrDYoXL3dU//erIn1LBxHRETOdTSlYA10mSXW8hQKJEYWHeI+vc10dIvqhk1/bDL7MZyHTkRE3sSW5DxYFYz41vH2S9C1AnD/VsGff0uxLDnvmAC0HmaSmBukHMyWnXsOFMRsX5uaxiSdiIicRysAG0YDmjzJQ+ZEhCM5LFQ0Qe9dq7dspenCOA+diIi8RVpWGuL3xFv1mueCnsO0XtNQIrCEfRohswKLpF5LgaYDRHeZS9AndKmLV9pW98mH6kzSvcCOHTuK9fohQ4ZgyJAhdmkLEZEkrQBsnyGboDePqgqNSIG4xLaJVhW44Tx08kaM90S+R9AJSDqRhPkZ8y06fmyLsehWoxtKKErgp80/2W/uubUJeqeZQMs3RXvPBa0Oy/ecky0O54u954UxSSciIsczE9xz/AoquD+coP/S9xeUDipt1U0G10MnIiJPZ83QdkNiXnitc0tHnVnWGOklUoswk5yv2HseiRtPSr7cl3vPC2OSTkREjmUmQW9ftTJuKv1Mhrcb5tCVDS5r1UdxHjoREXm69WfXI2FfAu4J92SPG9tiLAbUG+CYSu3WzjuXSc4B64vD+Tom6URE5BiGCu4yCfrEyAhcUylNthXnpoPz0ImIyFMJOgE379/EhN3ySXFcdBwG1h/omOTc0krtj8cWLJ8GFKnW/jBLisMxQTfFJJ2IiOzPgrlrEyMjsC40xGRbcZaI4Tx0IiLyVOvPrses/bOQq8mVPc7aGi0WsSY5B4CAEKD9RNnE3IDV223DJJ2IiOzLTIL+WakwLCldymR4e6h/KMa3Gl+sBJ3z0ImIyNNY2nvusKHtR1PMrrpiIiAE6LrAbIJuSXG4+K71MKRNFKeiiWCSTkRE9mOmuEyeQmGSoIsVu7GWXKE4zkMnIiJ3ZWnveXFGmckS8oE1b1h+vJl55wbm5p+zOJx5vDJklaioKCxcuFD2GLVajZo1a2Lv3r3OaZQbUSgUWLt2reT+EydOoEqVKsjLs/BpJZEnOZoCJJaT3J3jp0BiZAS0CgXSeqbhyKAjeLnBy4gIirA5QZcrFMd56ES2YayXx1hP9iDoBCTsS5BN0EP9QzHz8ZmOSdAzk2VjNoCCpHzs2YL/Jl0vmINuJkFPOZgtm6DP6dMYbzxZgwm6Gbw6ZHfLli1D9erV0aZNG1c3xWbnz5+HQqFAZmamXd+3fv36aN26NRYsWGDX9yVyOa1QMFxOxGelwvBktcp4sloVbAgpCQCoFlbNLkP25ArFcR46keMw1ktjrCc5gk7Ajfs3sCRziWz19l/6/oJdL+5C9xrd7d+Iwyvl68Z0mvkgKS8ZWfCfBcPbP911Vnb+OWOz5TjcXYZOp8fNu2oHvK8OuXc10Pjlw89P/jlJ6eAA+PkpZI9xJ3q9HosXL8b06dOL/T5arRYqlfd9RYcOHYrXX38d48eP98rzIx+17xPR+WwPD28HCore2CNB/z7jAgvFUbE5KtZbg7He+2IhYz0VJugE5KhzsOHsBrPrnhtqtFi7BKlFtEJBvN46SfqY+CuAKtCqt7VkeTUWh7MOf2vIuHlXjejEn13ahoz4DigTYv4fSrt27dCwYUMAwNdffw1/f3+8/fbbmD59OhT/3RzfvHkTI0eOxPr165Gfn4+nnnoKixYtQq1atYzv88MPP2Dy5MnIyspCxYoV8c477yAuLs7y9mZk4OzZs+jatatx2/nz51G9enV8++23WLRoEQ4fPoyaNWtiyZIleOKJJwAAO3bswDPPPINNmzYhPj4ex44dw08//YQnn3wSs2fPxqeffopLly6hdu3amDRpEv7v//7P+Lr27dtj8+bNeP/99/HHH38gJiYGq1atQkZGBmJjY/HPP/+gW7du+PzzzxEcHAwA2Lx5MxITE3H8+HEolUrExMTgo48+Qo0aNQAA1asXFJpq1qwZAOCpp57Cjh07AADLly/H/PnzkZWVhYiICPTp0weLFy82nu+1a9fQu3dvbNmyBZUrV8b8+fPRo0cP4/6OHTvixo0b2LlzJ5555hmLry2R2zq8UjLgG4a3G0xvM90uVWkPXFHgm/QTovtYKI6swVjv+Fj/1FNPAXgQ6zds2IDJkyd7VayfO3cu2rVrZ9zPWE8GaVlpiN8Tb9Gxv/T9BaWDStunOJxOQIAmB8i7Bvj7m1/v3FAQzsoE3Vz1ds4/tw2vlhf56quvoFKpcODAAXz00UdYsGABPv/8c+P+IUOG4NChQ1i3bh3S09Oh1+vRpUsXaDQaAAVB94UXXsCLL76IY8eOYerUqZg0aRJWrFhhcRt+/fVX1K5dG6GhoUX2jR07FnFxcThy5AhiYmLQvXt3XL9+3eSY999/Hx988AFOnjyJxo0bY9asWVi5ciWWLVuG33//HaNHj8bAgQOxc+dOk9dNnToVixcvxt69e/H333/jhRdewMKFC5GcnIyNGzfip59+wscff2w8Pi8vD7GxsTh06BC2bdsGPz8/9O7dGzqdDgBw4MABAMDPP/+MixcvIjU1FQCwdOlSDB8+HG+88QaOHTuGdevWoWbNmiZtmTZtGl544QX89ttv6NKlC1566SXcuHHDuD8gIABNmzbFr7/+avF1JXJLWgHYswhY947o7uZRVY3D24GCHvTetXoX+2MFrQ7fnFWK7mOhOPJ23hDrJ0yY4HWxftCgQbh586ZxP2M9AUDqmVSLE/TEtokoG1y2+Am6VgDSl8B/VgU8d3wE/BfWBebWkE/QOyYA4/4CmvSz+GMsHd7O+ee2YU+6F6latSo+/PBDKBQK1KlTB8eOHcOHH36I119/HWfOnMG6deuwZ88e4/yxb775BlWrVsXatWvRt29fLFiwAM888wwmTSroEatduzZOnDiBuXPnYsiQIRa14a+//kKlSpVE940YMQJ9+vQBUBAAN2/ejOXLl+PNN980HjN9+nR07NgRAJCfn4+ZM2fi559/RkxMDADg0Ucfxe7du/G///3P+GQeABITE9G2bVsAwKuvvorx48fj7NmzePTRRwEA//d//4ft27dj3LhxAGBsh8Hy5ctRtmxZnDhxAg0bNkTZsgVDjMqUKYMKFSqYfE5cXBxGjhxp3PbYY4+ZvNeQIUPQv39/AMDMmTOxaNEiHDhwAJ07dzYeU6lSJfz111/yF5PIXVmwnurEyAhoClVwt+eyMSvSs0W3s1Ac+QJPjPVffPEF3nvvPeMxU6dO9cpYn5GRgUceecR4DGO9b0s9k4ope6dYdKzd1j43swSqqB6LgeaDrHoJh7c7Hh9reJHWrVsbh7sBQExMDM6cOQOtVouTJ09CpVKhVatWxv1lypRBnTp1cPLkSQDAyZMnjcHPoG3btsb3sMS9e/cQFBQkus8QfAFApVKhRYsWxs82aNGihfHPWVlZuHv3Ljp27IiQkBDjfytXrsTZs2dNXte4cWPjn8uXL4/g4GBj0DZsu3LlivHnM2fOoH///nj00UcRFhaGqKgoAEB2tvjNPwBcuXIF//77r9lha4XbUrJkSYSFhZl8NgCUKFECd+/elX0fIreUmQwklJFN0CdFRmBdaAjiouOMFdztlaCnHMzG7C2ni2znPHTyFYz1Bdwx1l+7ds3kGMZ635WWlWY2QR/bYix29tuJI4OO2CdBN1cMTkyvpVYn6Oaqt0/oUhdZM55jgl5M7EmXUTo4ABnxHez+vjqdDrl37iA0JMSiwnGeJDIyEseOSQ97MadkyQdDY+/cuQMA2LhxIypXrmxyXGCg6XwZf39/458VCoXJz4ZthuFtANC9e3c88sgj+Oyzz1CpUiXodDo0bNgQarV08aASJUpYdA7mPhsAbty4YZwTR+QxDq+UHNpuMCkyAmtDQzC9zXS7DG0vTG7eG+ehk60cFeutbYMnYaxnrCdpaq1acoh7XHQcetTsgbCAMLs9vLaoGNzDLFzv/GHm5p+zerv9MEmX4eensKiQi7V0Oh38dfkICwk0m6RbY//+/SY/79u3D7Vq1YJSqUS9evUgCAL2799vHAJ3/fp1nDp1CvXr1wcA1KtXD3v27DF5jz179qB27dpQKsXnfz6sWbNmWLp0KfR6vcmTfkN7nnzySQCAIAjIyMjA8OHDJd+rfv36CAwMRHZ2tslwt+IynPdnn31mLFy3e/duk2MCAgpumAr3KoSGhiIqKgrbtm1D+/bti9WG48ePGwviELktrQDcv1Xw58xkszcAE//rQbfbsL1CVmdckLwx4Dx0Kg5HxXpH8cRYP2LECMn3YqwnbyHoBCSfTJas3u6Ih9eWDG/XdkiAstmABxuCwq1OzgWtDsv3nBNdUcWAw9vti0m6F8nOzkZsbCzefPNNHD58GB9//DHmz58PAKhVqxZ69uyJ119/Hf/73/8QGhqK999/H5UrV0bPngU303FxcXjssceQkJCAfv36IT09HYsXL8Ynn3xicRvat2+PO3fu4PfffzdWoDVYsmQJatWqhXr16uHDDz/EzZs3MXToUMn3Cg0NxZgxYzB69GjodDo8/vjjuH37Nvbs2YOwsDAMHjzYhqsElC5dGmXKlMGnn36KihUrIjs7G++//77JMeXKlUOJEiWwefNmVKlSBUFBQShVqhSmTp2Kt956C+XKlcNzzz2H3Nxc7NmzB++8I9+7WNj58+fxzz//oEMH1/bcEMmyYl7bnIhwJIeFQqtQIGNgBgKU9u0VFLQ6yaF1nIdOvsYTY/0rr7wi+V6M9eQNzFVwj4uOs2+CbkHvufaZqdh4/RE816o7lA+N/LCGufnnrN7uGLyaXuTll1/GvXv30LJlSwwfPhwjR47EG2+8Ydz/5ZdfIjo6Gt26dUNMTAz0ej02bdpkHLLVvHlzfPfdd1i1ahUaNmyIyZMnY/r06RYXkgEK5r717t0b33zzTZF9H3zwAT744AM0adIEu3fvxrp16xAZGSn7fgkJCZg0aRJmzZqFevXqoXPnzti4caNx2RRb+Pn5GZdtadiwIUaPHo25c02feqpUKixatAj/+9//UKlSJePNzeDBg7Fw4UJ88sknaNCgAbp164YzZ85Y9fnffvstnn32WZPiMkRuQSsULNWyZ5FFCfq8iHA0jaqKr0uFQatQILFtot0TdABYvuec6PaZvRpwWB35HMZ6yzDWk6MJOgE37t/AiuMrZBP0YFUwBtYfaL8PNtSGkRvd1mMxdK1HQK+wbHSMFHPzz1m93XEUer1e7+pGOFNOTg5KlSqF27dvIywszGTf/fv3ce7cOVSvXl2yIIo96HQ65OTkICwszG7D3du1a4emTZti4cKFdnm/4vjtt9/QsWNHnD17FiEhIca1U48cOYKmTZuaHOuIa+HO1Go1atWqheTk5CKFe4CC63Ht2jVcu3YNjz76qEO/h+5Oo9Fg06ZN6NKlS5G5f77IodfDgmrtDzPMPTdwyDA+SM9/6/mIFvNee85rvhtysYlsI3VNnRXrbSUXFz011ht4c8wvfG6CIMjGesD9v4eFeXM8tvXc1p9dj1n7ZyFXkyt7XLAqGPGt49G9RvfiNtXyuee9lgJNBxT7782d55976nfSmljP4e5kd40bN8bs2bNx7tw5NGrUyNXNcSvZ2dmYMGGCZNAmcjoblmsxzD03cMQcdEB+HvpTFX3q+TKR22Gsl8ZY793UWjUm7Db/ULvYy48WrgvzW4r5B+kdE4DWw6yeb/4wzj93D0zSySGsGTbnS2rWrImaNWu6uhlEBSyo1g4UDGtfF1JQjTnHzw/a/wpFxUXHYWD9gfarUFuI3Dz02c83gPKi/PqsROR4jPXiGOu9k7nCcAbFio2GxNySpLyw/3rPi4vzz90Hk3QvsWPHDlc3QVJUVBR8bFYFkXuzYrmWh3vNDRw1vB0oSNAXbC26FjpQMLyud9MK2MQknXwQYz2Ra5grDGdQrJFlNoxsc2bvOZdXcy4m6UREvuRoCrBhNKDJkzxkTkQ4NoSUNOk1L8zuVWoLWXPkAiauOY67am2RfRO61MULj1WFRqNxyGcTERE9LPVMKqbsnSJ7zC99f0HpoNK2jyyzcGSbCTv1nsvFXQMm6M7HJJ2IyFdoBdkE/WCjnng997BoYm5g9yq1hQhaneyNwittba/0TEREZK20rDTZBN1QGK5scFnbPsCKkW1GnWYCLd8sdu85AOQLWoxOkR+ZxvnnrsEknYjIV+z7RDJBnxQZgbV3jgAyCXqofyjGtxrvkDnoQMFSa1IJ+ry+TTgHjoiInEatVcsOcS9WYThrVlXpNBNo3K/gz0HhdknOAc4/d3dM0omIfEFmsuSTeql550DB0PYeNXsAAMICwhyWoKcczJacC8en+ERE5Exyc9CLXTTVkrnnHRMKhrLbMSkvzNzyaoy7rscknYjI22kFyRuC5lFVoZHoPXdkcbjC5G4WTiV2RqBK6fA2EBERAfJz0OOi4zCk4RDb39ySuec9FgPNB9n+GTIsKRDHuOsemKQTEXm7fZ+Ibp4YGSGZoDtq7fOHya2FPq9vE94oEBGRUwg6AUknkjA/Y77o/mLVZLF07rmdisE9TNDqsGLveSRuPCl5TMkAJRJ7N2TcdRNM0sliUVFRGDVqFEaNGuXqphCRpSSGuc+LCC8yxP21Rq9hUP1BDh3WXpjcWuhz+jTmUDsiF2CsJ1+0/s/1mLLPfIE4m2KjJcPb7VgM7mGpR/7BuNTfZY/h/HP3wySdiMhbyQxzTwoLLbJteNPhTknODZbvOSe6nUu9EBGRMwg6Abvv78bmfZslj7F5Drolved2WudcSvplBValyyfojLnuiUm6HJ0OuHfDIe+ruJsLKNWAn5knViUizB9DRPQwrQBsnyG6a2JkRJFl1hLbJjo1QZcqFGdYC53IaRwV663BWE/kdHLF4Qxsrs1iSe+5g+eef777PFb9KT90nQXi3BeTdDn3bgBza9j9bf0AlLL04LFngZKRZg9r164dGjZsCAD4+uuv4e/vj7fffhvTp0+HQqHAzZs3MXLkSKxfvx75+fl46qmnsGjRItSqVcv4Hj/88AMmT56MrKwsVKxYEe+88w7i4uKsP0Eici2ZmwOxYe7Omn9uIDcPnWuhk9M5KNZbhbGeyKksSdCtjo1aAbh/S3Y1FSMHzT0HzC+tBgDxXethSJsoDm93Yy7/m1myZAmioqIQFBSEVq1a4cCBA7LHL1y4EHXq1EGJEiVQtWpVjB49Gvfv33dSa93bV199BZVKhQMHDuCjjz7CggUL8PnnnwMAhgwZgkOHDmHdunVIT0+HXq9Hly5doNFoAAAZGRl44YUX8OKLL+LYsWOYOnUqJk2ahBUrVrjwjIjIaodXyj69LzzMPS46DkcGHXFqgi43D51roXs3xnv7YKwnsp2gE3D17lXZBN3i2KgVgLxrBf+lLwESyhQ88DM3vH3SdYcVh/t011mza59nzXgOrz3xKOOtm3NpT3pKSgpiY2OxbNkytGrVCgsXLkSnTp1w6tQplCtXrsjxycnJeP/997F8+XK0adMGp0+fxpAhQ6BQKLBgwQIXnIF7qVq1Kj788EMoFArUqVMHx44dw4cffoh27dph3bp12LNnD9q0aQMA+Oabb1C1alWsXbsWffv2xYIFC/DMM89g0qSCXyy1a9fGiRMnMHfuXAwZMsSFZ0VEFjOztEvhYe7OWl7tYXLz0Dnkznsx3tsPYz2RbdafXY9Z+2chV5MreYxFvedaATjwP2DLBOsa4OLec8499ywufYSyYMECvP766xg6dCjq16+PZcuWITg4GMuXLxc9fu/evWjbti0GDBiAqKgoPPvss+jfv7/Zp/G+onXr1lAUmmcaExODM2fO4MSJE1CpVGjVqpVxX5kyZVCnTh2cPFmwFMPJkyfRtm1bk/dr27Ytzpw5A61W65wTICLbWZCgG4a5J7ZNdEmCznnovovx3n4Y64msp9aqMWH3BMkEfWj9oZb1nh9NAT6oZl2C7sDec6AgtppL0Of1bcI462Fc1pOuVquRkZGB8ePHG7f5+fmhQ4cOSE9PF31NmzZtkJSUhAMHDqBly5b4888/sWnTJgwaJF10IT8/H/n5+cafc3JyAAAajcY4/MtAo9FAr9dDp9NBp9MBQeFA3JlinKU4vV6PO3fuICQkxCTQigoKLyhqY+H76goda/hz4f8//HmFXyP3esPrHj6muPR6vUPe11MVvh4ajQZKpe+uVWn49/nwv1NfJXc9FJlJUG0cJfq6eRHhSAoLhVahwKhmozCgzgCo/FROv65yS8AMalnFqvZ443fDm87lYe4W750V661SKNabi4ueGOsLt8OR7+9K1p6bTqfzmFjv6b9zzS2vFoAAvFbvNei1emi0Muco5MN/zRtWfbbQfTH0jV8EdHpAZ//r933GBUxYe0Jyf89HtEgY9DRKBAZ67N+fGE/9TlrTXpcl6deuXYNWq0X58uVNtpcvXx5//FG0pwUABgwYgGvXruHxxx+HXq+HIAh46623MGGC9NOsWbNmYdq0aUW2//TTTwgODjbZplKpUKFCBdy5cwdqtfq/rQHWnZilggORa0l8yr1j0dsJgoB9+/YZb0oAYNeuXahRowaqVasGQRDwyy+/GJ+w37hxA6dOnUJUVBRycnJQo0YN7Nq1y+T127dvR40aNZCXlwegIKDcv3/f5Bh7yc2VHnrki+7fv49du3ZBEARXN8Xltm7d6uomuJWHr0e16zvRLPsL0WMnRUZg7X+9588HP4/Ic5H46dxPDm/jw7R6YNw+8XDzUg0tftoivfSNHG/6bty9e9fVTXAYd4v3To31lhKJ9WJx0dNjvdy5eQtLz02tVuPevXseFes98XfuYfVhpN5NldwfhCB0C+6G7du2Sx6j0GtR/epWNPon2aLPPFZ5AC6UbgONqiT0F5TAhU1Wt9scrR7YeVGBtL+kH/C8VEOLluX02L5tm90/31142nfSmljvUdXdd+zYgZkzZ+KTTz5Bq1atkJWVhZEjRyIhIcE4v+ph48ePR2xsrPHnnJwcVK1aFc8++yzCwsJMjr1//z7+/vtvhISEICgoyGHnodfrkZubi9DQUPM96RZSqVS4cOECpk2bhjfeeAOHDx/GZ599hrlz56JZs2bo0aMHYmNjsXTpUoSGhmL8+PGoXLkyXnzxRfj7+2PcuHFo1aoVFi1ahBdeeAHp6en4/PPPsXjxYuN18vPzQ1BQUJHrVhyOuBaeTK/X4/r16wgKCsKTTz7p0O+hu9NoNNi6dSs6duwIf39/VzfH5YpcD50AvwPLoDwin6AX7j13let5amDfjiLbZ/ZqgL7Rla1+P2/8bjgyIfJEjoz3zor1tpKLi54a6y05N09n7bndv38fJUqU8IhY76m/cwWdgPhV0gXitvTeghC/EGzftl3y3BTHvoPyx7FQaPIk30fbIQG6hn0LfigRjrp+KtQtduulpWX+i8nrT+KuWnyKyrhOtTEkphr0Oq1H/r1ZwlO/k9bEepfdtUVGRkKpVOLy5csm2y9fvowKFSqIvmbSpEkYNGgQXnvtNQBAo0aNkJeXhzfeeAMTJ06En8gao4GBgQgMDCyy3d/fv8hfqlarhUKhgJ+fn+h72YthGJThs+zl5Zdfxv3799G6dWsolUqMHDkSb731FhQKBVasWIGRI0eiR48eUKvVePLJJ7Fp0ybjtWnRogW+++47TJ48GYmJiahYsSKmT5+OV155xeQz7N1mR10LT1X4eoh9R30Rr4Mpf6UC/oc+lZ0PZ0jQXVUc7mHrfssusm1Cl7oY0DqqWO/rTd8NbzkPMe4W750V621lLi56Yqy39Nw8mbXn5ufn53Gx3pPaCgDfHP9GdHuwKhjxreNRKayScfix6LlpBeDHsYBMgo74K1CqAuGsCQv5ghZjfjguub9wcTjZc/MSnnZu1rTVZUl6QEAAoqOjsW3bNvTq1QtAwS+4bdu2YcSIEaKvuXv3bpFffIZ5PIa5QL7M398fCxcuxNKlS4vsK126NFauXCn7+j59+qBPnz6S+8+fP1/cJhJRMVS5sQeqeW/L3jAYEvS46Di3SNClisX1ac5K7r6C8d6+GOuJzEs9k4r5GfOLbH+t0WsY3nS4+dFlWgHYPkM63gaEAF0XAKqiDwYdxVwFd1Zv9y4uHe4eGxuLwYMHo0WLFmjZsiUWLlyIvLw8DB06FEDB0+LKlStj1qxZAIDu3btjwYIFaNasmXH426RJk9C9e3e3L7pBRFQsQj6i//qf7CGGBD1YFYyB9Qc6qWHSUg5mY9wPx0T3lSrhOU++qfgY74nIWVLPpGLKXvFCcRYl6JnJwNq3pfd3mgm0fBNQOieNErQ6LN9zTvSBt8G8vk24jKmXcWmS3q9fP1y9ehWTJ0/GpUuX0LRpU2zevNlYXCY7O9vkSXp8fDwUCgXi4+Pxzz//oGzZsujevTtmzJjhqlMgInK8zGT4y90w4MESa4ZhfK6cgw4UPPGXStDn9W0CldK7hrqSPMZ7InIGuQQ9sW2ifGzUCsC+T4Ct4nUvAADxV5zWey5odVix9zwSN56UPe5UYmcEqvjw0tu4vHDciBEjJIe77dixw+RnlUqFKVOmYMoU6WUUfNXD14qIvISZ9c/nRIQj+b8l1uKi4zCw/kCXJ+iCVic5JG9On8Z82u+jGO+Lj7GeSJygE5B0Ikl0iDsATG8zXXYNdMWx78zPP++11GkJurmh7QBQMkCJxN4NmaB7KZcn6UREJMFMgt48qio0/1URjouOw5CGQ5zUMHkr9p4X3c75ckREZG9pWWmI3yNdxd1cEVWFXgulJQl60wHFaaZFLBnaDhQUX32lbXWOSvNiTNKJiNyRTIKep1AgMTLCmKADQI+aPZzVMlmCVic6NG9Cl7pM0ImIyK7khrcDZhJ0rQDkXUPdi6nSS6x1TABaD3PK/PM1Ry5g4prjkkurGXD+uW9gkk5E5G5kEvR5EeFI+m94e2FhAfZf09gWy/ecE93+StvqTm4JERF5s2Il6EdTgE1j4Z9/G7Wl3sBJvedAwQNucwl6fNd6GNImir3nPoJJOhGRO5FJ0A3V2x9mthiOk6zOuCA6RC++az3eVBARkV2Ym38OFMRFyTnoQj6w5g35D3FigTig4AG3VILOoe2+yfV3dUREZLaq7K7m/bD2ZnqR7eaK4TiLXLG4IW2inNsYIiLySubmn5stoGpueTXAqQXigILlSqXmoHNou+9ikk5E5GpHU4ANoyWL1uyO7o/hN/YU2R4XHSdbDMeZpIrFcbk1IiKyh2INbwcsT9CdOMRdrkgcl1bzbUzSiYhcycywu0mREVgrkqADwMD6Ax3VKqvIFYtjDwARERWHJcPbzSboQr5sgq559zj8S1V0SoE4wPwSa/P6NmGC7uPYveEl2rVrh1GjRrm6GUbu1h4it5SZDCSWk9wtNQcdcJ956ACLxRE5i7vFVndrD3mftKw0NPu6mdn552Z70CVirT6gJDIeeRMIreC0BD3lYLZsgj6nT2M+4Cb2pMvR6XW4lX/L/u+r0yE3PxfCfQF+fvLPScIDw+GncM6zFLVajYCAAKd8FpHPMzPsbmJkBNZJJOjuMg8dYLE48nyOivXWYKwnKsrm+edaAbh/q+DPmcmStV7weCyEJ97Dhc0/obF9mizLkjXQ5/RpzOVKCQCTdFm38m/hqZSnXNqGnf12IiIoQvaYIUOGYOfOndi5cyc++ugjAEBWVhZmzpyJX375BZcuXUK1atUwbNgwjBw50uR1t27dwmOPPYYlS5YgMDAQ586dw969ezFs2DD88ccfaNiwIeLj49G7d28cOXIETZs2BQAcP34cY8eOxa+//oqSJUvi2WefxYcffojIyEjR9pw7dw5RUVEOuUZEHkcryCbozaOqmqyBXti01tPcZh56vqBlsTjyeIz1jPXkfgSdIJugSw5v/29pNeTflv+AgBCg/URApy9mSy1jbng7wCJxZIpJuhf46KOPcPr0aTRs2BDTp08HAJQuXRpVqlTB999/jzJlymDv3r144403ULFiRbzwwgvG127btg1hYWHYunUrACAnJwfdu3dHly5dkJycjL/++qvIULZbt27h6aefxmuvvYYPP/wQ9+7dw7hx4/DCCy/gl19+EW1P2bJlnXMxiDyB4Qn/Q/IUCiRGRogm6LHNY1HqbCl0f7S7gxtnGbkbDhaLI7I/xnryJUknkiT3iS6vphWAu9fML60GFCToXRcUDG/XaYrZUvNSDmZj3A/HJPdziTUSwyTdC5QqVQoBAQEIDg5GhQoVjNunTZtm/HP16tWRnp6O7777ziRwlyxZEp9//rlx6NuyZcugUCjw2WefISgoCPXr18c///yD119/3fiaxYsXo1mzZpg5c6Zx2/Lly1G1alWcPn0atWvXFm0PEQHQCtDuXYSHy8F8VioMS0qXgvahBH1si7EYUG8A9Fo9Nv25yXntlCF3w8FicUSOwVhPviL1TKroHPTXGr2G4U2Hmw5v1wrAgf8BWyZY9uYdE4DWw5wy/5zD26k4mKR7sSVLlmD58uXIzs7GvXv3oFarjUPYDBo1amQyN+3UqVNo3LgxgoKCjNtatmxp8pqjR49i+/btCAkpOl/27NmzqF27tn1PhMhbHE2BsP4dqIT8Iru+LhUKrUKBsS3GoluNbgCAsIAw482IRuv4p/2WWJ1xQTJBLxmgZLE4IidjrCdvkpaVJrnMWpEE3ZIl1Qpz4vJqa45cwMQ1x3FXrZU8hsPbSQ6TdBnhgeHY2W+n3d9Xp9MhNzcXoaGhFhWOs8WqVaswZswYzJ8/HzExMQgNDcXcuXOxf/9+k+NKlixp9XvfuXMH3bt3x+zZs4vsq1ixok3tJfJ6WgGaDaPgL5KgA8D/NX4Nw5q/6zYV28UIWp3kEPeSAUok9m7I4XrkcRwV661tgy0Y68mbyM1DL7KiiaUJetwpwE8FBIU7rXq7oNXJJugc3k6WcN+7QTfgp/AzW8jFFjqdDiq1CmFBYWaTdEsFBARAq33wy2DPnj1o06YNhg0bZtx29uxZs+9Tp04dJCUlIT8/H4GBgQCAgwcPmhzTvHlz/PDDD4iKioJKJf4Verg9RL5OuHMJ/pq7ovumla+IiW6eoAPSS63xhoM8maNivSMw1pM3k5qHXmRFEzPFVwEAgaWALnMLllZzsuV7zkkm6BzeTpbiHZWXiIqKwv79+3H+/Hlcu3YNtWrVwqFDh7BlyxacPn0akyZNKhKAxQwYMAA6nQ5vvPEGTp48iS1btmDevHkAAMV/c2WHDx+OGzduoH///jh48CDOnj2LLVu2YOjQocZg/XB7dDqd406eyN1lJkP1YQPRXdPKV0TzZ+e6fYKecjBbdF7dhC518caTNZigEzkBYz15K6l56HHRcUWruO/7RPqNOs0Exp4F3vsTaNLPzq2UJ2h1+HTXWck56PP6NmGCThbjXZWXGDNmDJRKJerXr4+yZcuiU6dOeP7559GvXz+0atUK169fN3nSLiUsLAzr169HZmYmmjZtiokTJ2Ly5MkAYJy7VqlSJezZswdarRbPPvssGjVqhFGjRiE8PNw4MuDh9mRnZzvu5IncmDZjheQT/8+eHYuJbx5H9xruUbFditw8dM5BJ3IexnryRqlnUiXnoQ+sP9B0w+GV4uuePx4LTLoOxAwHSkY6bWi7weqMC6g58UfJBP1UYmfOPyeruHfXDVmsdu3aSE9PN9n25Zdf4ssvvzTZNmvWLOOfV6xYIfpebdq0wdGjD+adfvPNN/D390e1atWM22rVqoXU1FSr2kPkazI3x6Hpvs9F9+X4KTC05Ri370GXm4fOpdaInIuxnryNXIJuMg9dKxT0oIsl6EDBmudOTswByyq4z+vbBIGqh9d0IZLn3neH5BIrV67Eo48+isqVK+Po0aPGdVFLlCjh6qYReQxtxgrJBD1PocCZ1m8gWhUkut+dSM1Dn9OnMXsFiDwYYz25mlyCbpyHbskSa72WuiRBt6SCO2Ml2YpJOhVx6dIlTJ48GZcuXULFihXRt29fzJgxw9XNIvIch1dCuX6k6K55EeGo2Wk+etX5Pyc3ynpy89A5r47IszHWkyuZS9B71+oNHE0BNowGNHnSb9RjsdOWVSssX9BidIr4KDMDLrFGxcEknYp477338N5777m6GUSe6fBKYN07orsmRUagReeFplVq3RTnoRN5N8Z6chWLEnStYFmC3nyQg1opbXXGBclpYABXPCH7YJJORGQvmcmyCfqkt08hQBng5EZZj/PQiYjI3gSdgKQTSaJV3IFCCTpQMMRdLkHvtdQlPejmEnT2npO9MEkXodfrXd0E8mH8/nkomXVbJ0VGoFb7aR6RoAOch06+gb9ryZV87fu3/ux6JOxLwD3hnuh+kwRdyJeeg95pJtDyTZfMQc8XtLIJ+qnEziwQR3bDJL0Qf39/AMDdu3dZOIVcRq1WA3jwfSQPIbFu66TICKwNDcGRes5/4m8LzkMnb8dYT+7AEOuVSu9P6gSdgFn7Z1mWoB9NAda8If5G8VcAVaCDWilN0OqwYu95JG48Kbq/ZIASib0bMkEnu2KSXohSqUR4eDiuXLkCAAgODoZCobD75+h0OqjVaty/f9+41qiv4rV4QK/X486dO7h27RrKli3rE4Hba2Qmiy4LMy8iHGtDQ0yXkXFjKQezOQ+dvJ6zYr2tvDku8tweHHv16lUEBwdDpXL/2FBcOeoc5GpyRfeZzEG/e006Qe800yUJurkK7sPa1UBsx9qcBkZ25/2/GaxUoUIFADAGb0fQ6/W4d+8eSpQo4VY3Bq7Aa2FKr9fj5s2baNCggaubQpaSGeaeFBaKuOg4jy8Ux3no5G2cEett5c1xkef2gJ+fH6pVq+Z110HMuqx1otsT2yYWxMejKcCmsUD+bfE3CAgpGOLuZIJWJ5uglwxQMkEnh2GS/hCFQoGKFSuiXLly0Gg0DvkMjUaDXbt24cknn/T5Ic28FkWdOXPGJ4K2tzi24W00Etk+MTICWoUCA+sPdHqbrCVXKI7z0MkbOSPW28qb4yLP7YGAgACvG00gJvVMqmihuF/6/oKywWULHnTLJegA0HWB0+egC1odFmw9LZugJ/ZuyASdHIZJugSlUumw4cZKpRKCICAoKMjrgpS1eC1MudvNIkkThPs4kvYGHjuWVmTfvIhwrPOgYe5yheI4D528mSNjva28OS7y3HyHuUrupYNKFyToN87KJ+gumIduboh7fNd6GNImigk6OZT73z0SEbkRQScgffNoRB/8Go9JVOdNCgt9MIzPzbFQHBER2VNaVhri98RL7k9smwjVb99JThUDAASWArrMdXqCni9oMTqFFdzJ9ZikExFZKC0rDVN2T8Tevy4gWCJB/7XFSzjUZZFH9KDLzUNnoTgiIrJW6plUTNk7RXJ/Qusp6Hn5L9Fiq0bDDwARNZw+xN2SNdCZoJOzuP9dJBGRGzD0DAzOyZVM0A+3fgVPdP7QyS2zjdw8dBaKIyIia6Vlpckm6CsqPIvob1+Vf5PAUi5J0L/PuIAJa09I7p/Xtwnrs5BTMUknIjJDrVUjfk88eufewZgbt0SPORzzOpp3mufchhWD3Dx03ogQEZE1BJ0gO8R9ZfmOaJb+ufybGIa4OzlBT7+swKp06QSdQ9zJFZikExHJWH92PSb9Oh6Dc3IlE3Rhwr9oHlDSuQ0rBs5DJyIie0o6kSS6PS46DoPyAeX6kdIv7pgANB0ABIU7NUEXtDp8vvs8Vv0pnoAbKrgzQSdXYJJORCRBEO4j68fRyLx2VfqgXkuh8qAEnfPQiYjInqSWWYuLjsMQtR+w/h3pF/daWpCgO5m5Cu4TutTFK22rc+oXuQyTdCIiMZnJUK19G6Pljumx2CU3F7biPHQiIrIXc8usDcqHdILeMQFoPczpQ9sB8xXcufwouQMm6UREDzu8Elgn8+QfKEjQmw9yTnvshPPQiYjIHqSWWVPq9QjT6fBJ5BPSQ9xdGD/NVXBngk7ugkk6EVFhliToLhqeVxych05ERPYglaD3yL2DGdduFPyQvUr8xW6coLOCO7kTJulERAaZybIJ+rHoAWjU5WOXDM8rjpSD2ZyHTkRExSZWxV2p12OgTHFVIxcm6PmCVjZBPz6lA0JKBDqxRUTyPOtOk4jIUbQCsPZt0V3zIsJRs9N89Krzf05uVPHJFYrjPHQiIrLGw1Xcu93Jw6RrNxCs18u/0E170EsGKNG7mhqBKsZCci/8RhIRATi+cbjo9kmREajx3EKPTNDlCsVxHjoREVlKq9di5cmVJkXilHq9ZQl6r6UuS9BTDmZLxsFh7Wrg0IT2eKysmfYTuQB70onI52X8OArRh4vOn5sXEY4a7aagd63eLmhV8ckViuM8dCIissTGcxsx4/YMqI+ojduUej2G37wtnaC7aO3zwuSmepUMUCK2Y23odeJLsBG5GpN0IvJdWgHHNw4XTdABIDWiPHbVH+jkRtkHC8UREVFxCToBMw/OhBoPEnSzQ9xdXFxV0OqwfM850RgIFCToib0bQqX0g4ZJOrkpJulE5Jsyk4G1b6OhxO5p5StifMwkqPw879ek3Dx0FoojIiJLJZ9Mxj3hHoCC3vPSWh1mXb0u/YL4K4DKdQXYzFVwn9ClLl5pW531WMjted7dJxFRcZlZZm13dH9M7LrYIxN0uXnoLBRHRESWUmvVmHtoLpR6PQbk5OI9c9Xbey11WYJurvcc4FQv8iyedwdKRFQcZpZZ2x3dH493X+bEBtmX3Dx0FoojIiJLpGWlYcruiRhkSXIOuHSI+5ojFzBxzXHcVUsPXWeCTp6GSToR+QxBuA+VxDJrADAxMgLTui52Yovsa3XGBc5DJyIimwk6AUknknBmxzRkXrth2YtcOMQ9X9BidIr08HagYBQZH1KTp2GSTkQ+Yd3pVFzeOBKvi+ybFxGOpLBQTHt8hkcOcQfkh7lzHjoREZlj6D0fmJOLGZb0ngeWArrMdVmCzvnn5M08826UiMgKB38agw7pn4tWop0XEY6vSoVhepvp6FmzpwtaZx8r9p4X3c556EREJMfQe35q53TstWTd804zgcb93HZ5NYC95+T5mKQTkVdbdzpVMkEHgKSwUExvM91j10IHCnrREzeeLLJ9Qpe6vEkhIiJJaVlpiN8TD3+9HoflqrYD0HZIgDJmmMsScwNzCfqpxM4IVCmd2CIi+2P3ChF5LbVWjdObR0sm6BMjIzDt8RkenaAD0sXiOMydiIikpJ5JRfyeePTIvYPD5/+WPE77zFSsa/oldK3edusEvWSAEh/2a8IEnbwCe9KJyCutP7se+358V3Je3Z2u8zAteqjHzkE3SDmYLVosLr5rPQ5zJyIiUalnUjFl7xT0zr2D6XIF4notha5BX+g3bXJe40SYW2KN88/J23j23SkRkQi1Vo1Jv46XrkwbfwUhLip0Y09yPQpD2kQ5tzFEROQRUs+kYvqeyRick4sxcgXiDFXbNRqntU2MuQJxXF6NvJHLHzctWbIEUVFRCAoKQqtWrXDgwAHZ42/duoXhw4ejYsWKCAwMRO3atbHJxU/3iMh9pGWlITopGgNzckX3a3sudlklWntanXFBMkFnsThyR4z3RK6XeiYVGVvikHn+b+kEPSAE6P2pW8TKlIPZTNDJJ7m0Jz0lJQWxsbFYtmwZWrVqhYULF6JTp044deoUypUrV+R4tVqNjh07oly5cli9ejUqV66Mv/76C+Hh4c5vPBG5FUN12vkZ89E7947ozcfvzfujQbNBzm+cnckttzanT2MWiyO3w3hP5HppWWnI3BKHGXLD2zsmAK1dXxzO3PB2gAk6eTeb/gVu374d7du3L/aHL1iwAK+//jqGDh0KAFi2bBk2btyI5cuX4/333y9y/PLly3Hjxg3s3bsX/v7+AICoqKhit4OIPJuhOi0A2fl1DboudmazHEaqUBxvWMjeGO+JvIMg3MeZTe9iutzw9h6Lgeauf5Btbng7wCXWyPvZlKR37twZVapUwdChQzF48GBUrWr9TaFarUZGRgbGjx9v3Obn54cOHTogPT1d9DXr1q1DTEwMhg8fjrS0NJQtWxYDBgzAuHHjoFSKV3LMz89Hfn6+8eecnBwAgEajgcZFc2wMn+uqz3cnvBameD0esPRarD27FtP3TwcA9JBJ0IXui6HX6QGdZ15bw3VYdeAvzNx0qsj+cZ1qo3fTCj7x3fHGfyfuei6M987njd9vA56bayh+WwXV+hEYI3OM0H0x9I1eFJ1/7sxz+z7jAiasPSG5f1yn2hgSUw0qpZ9d2uPOf2/FxXNzP9a0V6HXS6xNJOPatWv4+uuv8dVXX+H333/H008/jVdffRW9evVCQECARe/x77//onLlyti7dy9iYmKM29977z3s3LkT+/fvL/KaunXr4vz583jppZcwbNgwZGVlYdiwYXj33XcxZcoU0c+ZOnUqpk2bVmR7cnIygoODLTxjInJHh9WHkXo3FQCg1OuRKbGEzJFqryK7zFPObJpDHLiiwDdnxROUBa0FKBVObhDZzd27dzFgwADcvn0bYWFhrm6OEeM9kWdS6LXwF/JQ9cZuNPx3leRxxyu9iD/LdYJe4dply7R6YOdFBdL+km5H/xpatC5nddpC5DasifU2JemFHT58GF9++SW+/fZbAMCAAQPw6quvokmTJrKvsyVo165dG/fv38e5c+eMT9IXLFiAuXPn4uLFi6KfI/ZkvWrVqrh27ZrLboQ0Gg22bt2Kjh07Gofx+SpeC1O8Hg+YuxZqrRqtU1obfx58O0d0HrrQ9SPom77kyKY6xb38fDRO3Cm6b/bzDfB8s8pObpHreOO/k5ycHERGRrpdkl4Y471zeOP324Dn5hyGnnNz1F0WQNHsZbPHOfrc0jL/xeT1J3FXrZU8xlFxzp3+3uyN5+Z+rIn1xa4K0bx5c1SoUAFlypTBBx98gOXLl+OTTz5BTEwMli1bhgYNGoi+LjIyEkqlEpcvXzbZfvnyZVSoUEH0NRUrVoS/v7/JULd69erh0qVLUKvVok/1AwMDERhYtDqlv7+/y/9S3aEN7oLXwhSvxwNi12L92fWYsHuC8eceEoXi0DEBqseGOLaBTvL57vOi2315Hro3/TvxhPNgvHcuT223JXhuDqIVgH2fAFsnmT30cMzraN7yVave3hHnJmh1sgm6s9Y/53fSM3nauVnTVpu/8RqNBqtXr0aXLl3wyCOPYMuWLVi8eDEuX76MrKwsPPLII+jbt6/k6wMCAhAdHY1t27YZt+l0Omzbts3kSXthbdu2RVZWFnQ6nXHb6dOnUbFiRYuH3RGRZxN0AhL2JRh/9tfrpSvVth7mpFY5VsrBbMzecrrI9gld6vpsgk7Ow3hP5AGOpgAfVDOboM+LCMfa/l+gead5TmqYNEGrw4KtpyUT9Dl9GuONJ2twSVHySTZ969955x1UrFgRb775JmrXro0jR44gPT0dr732GkqWLImoqCjMmzcPf/whvWwCAMTGxuKzzz7DV199hZMnT+Ltt99GXl6esfrryy+/bFJo5u2338aNGzcwcuRInD59Ghs3bsTMmTMxfPhwW06DiDxQ8slk3BPuAQC63cnDYYl56Oi11OVLyNhDysFsyfXQX2lb3cmtIV/DeE/kAbQCsGE0oMmTPWxiZAQin56GXnX+z0kNk7Y64wJqTvwRn+w4K7p/Xt8mfAhNPs2mO9gTJ07g448/xvPPPy86tAwoGN62fft22ffp168frl69ismTJ+PSpUto2rQpNm/ejPLlywMAsrOz4ef34DlC1apVsWXLFowePRqNGzdG5cqVMXLkSIwbN86W0yAiDyPoBMw9NBdAQaG4SVI96B0TgKYDnNgyx5BL0Of1bcLeBXI4xnsiD7DvE8kEfV5EONaFlESOnx8C/UtiWv2BTm5cUXKxDQBOJXZGoMq1heyIXM2mJH3KlClo06YNVCrTlwuCgL179+LJJ5+ESqXCU0+Zr6Y8YsQIjBghXtxix44dRbbFxMRg3759tjSbiDxcjrpgSSWlXo/hN28jWKzuZUCIVwxzl7uJmdOnMdeHJadgvCdyY2bmoE+MjMC60BAAQLAqGPGt46Hyc+0IM3MJ+ry+TZigE8HGJL19+/a4ePEiypUrZ7L99u3baN++PbRa6eqMRETF0e1OHiZduyGeoANA1wUeP8xd7iZmZq8GHAJITsN4T+SmMpOBtW9L7m4eVRUaRcG6nK81eg3Dmw73iASdD6CJCtj0r1Wv10OhKLog7/Xr11GyZMliN4qISMz602vkE/T4K4BKfEiup1idcUHyJqZ/DS36RvvOUmvkeoz3RG7o8Epg3TuSuydGRhgTdABun6A7q4I7kSex6l/s888/DwBQKBQYMmSIyfw0rVaL3377DW3atLFvC4mIAKSeScXlHdOlE/ReSz0+Qc8XtBjz/VHRfTN7NUDJy+L7iOyN8Z7ITZlJ0CcVGuIOAIltE12aoAtaHZbvOYeZm8SLS/ryMqJEcqz6V1uqVCkABU/WQ0NDUaJECeO+gIAAtG7dGq+//rp9W0hEPi8tKw3T90xGptha6EBBgu7hheJWZ1yQTNDn9GmM3k0rYNMmJunkHIz3RG7GgjXQJ4ok6D1r9nRG60StOXIBE9ccl11ijQk6kTirkvQvv/wSABAVFYUxY8ZwqBsROZygExC/Jx6RWp34AV4yxF0qQTesha7RaJzcKvJljPdEbsTM/PN5EeFICguFttAQ94yBGQhQBjijdaLyBS1Gp0g/WGaCTiTP5uruRETOcDP/JrrdycOsq9eL7uw00+MTdEGrk0zQSwYouRY6uRTjPZGLmUnQJ0VGYG2h3nOgoAfdlQm63INngAk6kSUsTtKbN2+Obdu2oXTp0mjWrJloIRmDw4cP26VxROTbDqsPY0rqROyVWg+9cT/nNsgBlu85J7q9ZIASib0bspAOOR3jPZGb0ApWJ+jT20x36RB3VnAnsg+Lk/SePXsaC8f06tXLUe0hIgIArD27Fql3UzE4J1e8WFxgKSAo3OntsqeUg9mixXSGtauB2I61maCTSzDeE7mJA/+T3PXw/HOgIEHvXau3o1slyVyCfiqxM9dAJ7KQxUl64SFvHP5GRI6UlpWGGfumYXBOLsZIFYvrMtej10OXW2qNCTq5EuM9kRvQCsCWCUU2f1YqDEtKlzKZfw64NkE3V8HdMDKMCTqR5Tz3DpeIvJKgE7Bvy2js9eL10OXmoc/r24QJOhGRr9v3iehmsQTdlVXczVVw5xroRLaxOEkvXbq07Ly0wm7ckJg/SkRkRs79Gxh/XSZB94L10KXmoc/p05hz9cjlGO+JXEQrAPdvFRSLE1lqbU5EeJEE3ZVV3FnBnchxLE7SFy5c6MBmEBEV2HLyO/TXSSToPRZ7/HroUvPQDUutEbka4z2RC5ip4g4AyWGhJj+PbTHWZQk6K7gTOZbFSfrgwYMd2Q4iIqSeScU/e+aK7+y11OMTdLl56FxqjdwF4z2Rkx1eCax7R/aQiZERRXrRB9RzTUxkBXcix7M4Sc/JyUFYWJjxz3IMxxERWSotKw2ZW+IwXaRQnDD6d6hKeXbA5zx08hSM90ROlJlsNkGfJFLJPbFtIlR+zi0tJWh1+DL9rGSBOIAV3Insxao56RcvXkS5cuUQHh4uOl9Nr9dDoVBAqxUvHkFEJEYQ7uPMpndFE3QAUIVUcG6DHIDz0MlTMN4TOYmQb3aIu9hSa64oFHfgigIjp/4suZ8V3Insy+Ik/ZdffkFERAQAYPv27Q5rEBH5mMxkqNa+jTESu4Xui6Hy4KXWAM5DJ8/CeE/kBEdTgDVviO/rmIAfS5XG+EOziwxx/6XvLygbXNYJDXzg+4wL+OasdPLNCu5E9mfxne9TTz0l+mciIpuZmYd3pNqraNj4RSc2yP7k5u5xHjq5I8Z7IgfTCsCmseL7OiZAiBmG975uBoiMYikdVNrBjTOVcjAbE9aekNzPAnFEjmFz99TNmzfxxRdf4OTJkwCA+vXrY+jQocan70REsszMw8t5diayr1ZBQyc2yd7kCsVxHjp5CsZ7IjvSCsCNs0D+7aL7AkKA1sOQdCJJ9KXOnofOAnFErmPTHeKuXbsQFRWFRYsW4ebNm7h58yYWLVqE6tWrY9euXfZuIxF5G60gOw9vYmQE/KNfcWKD7E+uUBznoZOnYLwnsqOjKcCcR4ElLcX3d12A1D/XYX7G/CK74qLjnDoPXS5Bn9ClLrJmPMc4RuRANj2OGz58OPr164elS5dCqSyYo6LVajFs2DAMHz4cx45JP3UjIsK+T0Q3z4sIR1JYKKY9PsPpVWvtTa5QHIcGkqdgvCeyE8MQd7EedBSsYpL098+YvzdRdP/A+gMd2boH7dDqsHzPOckK7oxhRM5h011wVlYWVq9ebQzYAKBUKhEbG4uVK1farXFE5IUyk4Gtk4psnhcRjq9KhRmr1mo0Ghc0zj5YKI68BeM9kZ3cvSaZoGv8g/Hk+t64o70vut9Zw9xXZ1yQHAEGADN7NWAMI3ISm4a7N2/e3Dg3rbCTJ0+iSZMmxW4UEXkpmWHuSWGh+KXvL05fVsbe5Oahs1AceRrGe6Ji0gpA+hJgfh3R3frAMMwsU1oyQZ/eZrpT4mLKwWzZBL1/DS36Rld2eDuIqIDFj+V+++0345/fffddjBw5EllZWWjdujUAYN++fViyZAk++OAD+7eSiLzCbxuHo7HI9omREdAqFE6vWmtvcvPQWSiOPAXjPZGdHE0BNowGNHni+4cfwLUSYVj9w7Oiu6e3mY7etXo7sIHmh7cDBT3oJS9LJ/BEZH8WJ+lNmzaFQqGAXq83bnvvvfeKHDdgwAD069fPPq0jIq+x5tT36H14VZHt8yLCsS40xOlVax1Bbh46C+yQp2C8J7IDIV96HXQACCyFDbdOYvymotO/ABinfjmSueHtQMED5p6Ny2PTJibpRM5k8R3xuXPiN59EROakZaXh7JYxovuSwkKdcjPiaJyHTt6C8Z6omDKTZVcwQUAItM99gOkHZoru/qXvLygbXNZBjStgbnm1CV3q4pW21aFS+nl0jRgiT2Vxkv7II484sh1E5KUEnYCMzaMw/catIvsONO6FQ72+8PgedM5DJ2/CeE9kO8Vvq4D1I6QP6DQTaPkmvvkjGfeEe0V2h/qHOnzql7kEnRXciVyvWHfGJ06cQHZ2NtRqtcn2Hj16FKtRROQ99m8cjunXbojua9nzC8DDE3TOQydfwHhPZJ5Cr4VKLkGPvwKoAiHoBMw9NFf0kPGtxjv0wbW5BH1e3yacnkXkBmz6LfDnn3+id+/eOHbsmMm8NYVCAaBgDVUioowfR6FtRtF56ACAXksBpWcn6ADnoZN3Y7wnspy/IFEgLiAE6LrAmKAvyVwieljGwAwEKAMc0jZzBeIKD28nItez6V/iyJEjUb16dVy5cgXBwcH4/fffsWvXLrRo0QI7duywcxOJyBNl/DgK0fu/FN2n7b4IaDrAyS2yP85DJ2/HeE9kIZ2AGle3FN3+eCww7i+gST+kZaWh2dfN8Pmxz4scNrbFWIcl6KszLqDmxB8lE/Q5fRrjjSdrMEEnciM2dWOlp6fjl19+QWRkJPz8/ODn54fHH38cs2bNwrvvvosjR47Yu51E5CEEnYD9G4dL9qAfaf0qmkUPdnKr7E9uyCDnoZO3YLwnssDRFKg2jEZtsaXWYoYDShVSz6Riyt4pkm8xoJ5jHlxz/jmRZ7LpkZlWq0VoaCgAIDIyEv/++y+AgmIzp06dsl/riMhjCDoBK39fiemf1JJM0A+3fgXNOi9wcsvsT+6mh/PQyZsw3hOZ8d9SawqptdCDws0m6I5YglTQ6vDprrNM0Ik8lE2/ERo2bIijR4+ievXqaNWqFebMmYOAgAB8+umnePTRR+3dRiJyY4JOQPLJZCw4OAcDc3JFq7gDBQl6884fOrdxDiCXoHMeOnkbxnsiGWaWWtP2XIyvTyZhfsZ8yWMcsQSppeufM14RuS+bkvT4+Hjk5RU8MZw+fTq6deuGJ554AmXKlEFKSopdG0hE7istKw3xe+LRI/cOMiUquAO+k6CzR4K8DeM9kYTDK4F170juPtLmDbx54mPRZdYAIC46DgPrD7R7D7o1658Tkfuy6TdDp06djH+uWbMm/vjjD9y4cQOlS5c2VnwlIu+WlpWGKbsnYnBOLsZI9J4DBXPQm3vBEHe5tdCZoJO3YrwneohWAPZ9AmydJHmIevwFvLyqjeT+6W2mo3et3nZvGuefE3mPYj+++/vvvwEAVavyHz2Rr1Br1di3ZTT2XruB4P+WZBKj7b7IK4rEya2Fzpse8hWM9+TzzAxvF/yCkNnqZQx1QYIu9yAZ4PB2Ik9j01gXQRAwadIklCpVClFRUYiKikKpUqUQHx8PjUZj7zYSkRtJy0pDy6+bY5KZBB29lkLpBQk6IL8WOhN08maM90T/MTf//JmpWN9oMYZd2yl5TGLbRIck6PmCVvJB8oQudZE14zkm6EQexqae9HfeeQepqamYM2cOYmJiABQs0zJ16lRcv34dS5cutWsjicg9pJ5JxfQ9kzH85m3pBL1jAtB6GKC07zw7V+Fa6OTLGO+JUDDEXSZBR4/F0DV6EXtTJ0jOQc8YmOGQddDlisTxQTKR57LpLjo5ORmrVq3Cc889Z9zWuHFjVK1aFf3792fQJvJCqWdScfCnMfJD3HstBZo6Zq1XV5AbPsi10MkXMN4ToWAOupT/4t76U6nYfH+z6CEzH5/pkARdbg46HyQTeTabkvTAwEBERUUV2V69enUEBNj/lxARuY6gE5B0IgkLD83DrusyCXr8FUAV6NzGOZDcPHSuhU6+gvGefN7hleJF4h6PBdpPBJQqCDoBU/aJr4PuqB50uQS9ZICSD5KJPJxNd5kjRoxAQkIC8vPzjdvy8/MxY8YMjBgxwm6NIyLXEXQCVv6+Es2+bob5GfNRWqtDmE6mB92LEnRAfh465/aRr2C8J58mt8xaoQR9SeYS0UMS2ybaPUEXtDp8uuusbIKe2LshHyQTeTiLe9Kff/55k59//vlnVKlSBU2aNAEAHD16FGq1Gs8884x9W0hETmdY/9ygR+4dzJBaB93LhrgDnIdOvo3xngjyCXqvpYBShfVn1yNhX4LoPPS46Dj0rNnTrk1ac+QCJq45jrtqreh+roFO5D0sTtJLlSpl8nOfPn1MfuaSLETewaoEPe4UEFrBSS1zDrkhhBw+SL6A8Z58mrl10HssBpoOgKATJBN0ABhYf6Bdm5UvaDE6RXwKFsAicUTexuIk/csvv3RkO4jIDai1apMEXanXSyfogaWA4Egntcw55ArFcR46+QrGe/JZZpZZQ4/FQPNBAIDkk8mSCXpi20So/Oy3wolcBXeACTqRNyrWb5CrV6/i1KlTAIA6deqgbNmydmkUETmXoBOQfDIZcw/NNdk+MCdX/AUBIUCXuV6zzBogXyiO89DJ1zHek9eTG94OmCTogk4oEi8NprWeZtdh7nKju4CCB8iMT0Tex6Y77Ly8PLzzzjtYuXIldDodAECpVOLll1/Gxx9/jODgYLs2kogcR2pOXe/cOxhz41bRFxSqaOtN5ArFsYeCfBXjPfkEKxJ0AEg6kSR62NRSU9H90e52a5a5BP1UYmcEqpR2+zwich82jd2MjY3Fzp07sX79ety6dQu3bt1CWloadu7cibi4OHu3kYgcRGpOXe/cO5guNczdCxN0FoojEsd4T15LKwB514A9i+QT9F5LTRL01DOpmJ8xv8hhsc1joVLYLzaaW2Ltw35NmKATeTGbfpv88MMPWL16Ndq1a2fc1qVLF5QoUQIvvPACli5daq/2EZEDJZ1Isi5B/6+irTdhoTgiaYz35JWOpgCbxgL5t6WP6ZgAtB5mEvNSz6Riyl7x9dBfrP0ifvrzJ7s0Ty4usYI7kW+w6W777t27KF++fJHt5cqVw927d4vdKCJyPLHegB5yCfp/FW29idyNEAvFETHekxfSCsCG0YAmT/qYh4a3A/IJur0KxQlaHZbvOSc6sgvg9CsiX2LTHWhMTAymTJmC+/fvG7fdu3cP06ZNQ0xMjN0aR0SOkZaVVuRmw1+ukrvIDYunk0vQWSiOqADjPXkVrQBsn2HXBH16m+l2KRS3OuMCak78kQk6EQGwsSd94cKF6Ny5M6pUqYImTZoAAI4ePYqgoCBs2bLFrg0kIvsSdILJMmsA0O1OHmZdvS7+Ah9M0HkjRFSA8Z68xtEU8z3ovZYWGTFmLkHvXat3sZtmrkAc4xKR77EpSW/UqBHOnDmDb775Bn/8UfDEr3///njppZdQokQJuzaQiOzr4aq0Sr0ek6R60DsmMEEn8mGM9+QVzA1xjzsFBEcWqbkiNurMgAk6ETmS1Um6RqNB3bp1sWHDBrz++uuOaBMROUhaVlqReegDcnIRrNcXPTggpKBojhdhgk5kOcZ78grmhrj3WgqEViiyWa1VFxl1ZuCsBJ1roBP5LqvnpPv7+5vMTbOHJUuWICoqCkFBQWjVqhUOHDhg0etWrVoFhUKBXr162bU9RN5IbJi7Uq/He2JroQNA1wVeVcmdCTqRdewd7xnryekyk4GEMsDuBeL7RYa3AwUPtKOTokVfYq8EfXXGBdkK7lkznmOCTuTDbCocN3z4cMyePRuCIBS7ASkpKYiNjcWUKVNw+PBhNGnSBJ06dcKVK1dkX3f+/HmMGTMGTzzxRLHbQOQLxIa5D78psfxM/BWgST8ntMo55G6GmKATSbNXvGesJ6c7vBJY+7b0/vgrkgm6VA96XHScXRL0fEGLMd8fFd03p09jvPFkDa4uQuTjbOomO3jwILZt24affvoJjRo1QsmSJU32p6amWvxeCxYswOuvv46hQ4cCAJYtW4aNGzdi+fLleP/990Vfo9Vq8dJLL2HatGn49ddfcevWLVtOg8gnCDoBSSeSjMPclXo9BuTkSvegd5oJqAKd10AHE7Q62ZshJuhE0uwV7xnryWm0ArDvE2DrJOljei0VjXNyQ9yDVcEYWH9gsZu3OuMCYxIRmWVTkh4eHo4+ffoU+8PVajUyMjIwfvx44zY/Pz906NAB6enpkq+bPn06ypUrh1dffRW//vqr7Gfk5+cjPz/f+HNOTg6Agrl2Go2mmGdgG8Pnuurz3QmvhSl7X4+N5zZi5sGZuCfcM5+cG9rQ/BXADf4+7HEtBK0OH/1yVnTfzF4N0LtpBY/57vHfygPeeC3c9VzsEe+dEesB94z3tvDG77eBo89Ncew7KH8cC4VMBXeh+2LoG/QtEufW/7keU/aJF4kLVgVj/GPjodfqodGKt92Sc/s+4wImrD0hum9cp9puG5P4nfRMPDf3Y017rUrSdTod5s6di9OnT0OtVuPpp5/G1KlTba7weu3aNWi1WpQvX95ke/ny5Y1VZB+2e/dufPHFF8jMzLToM2bNmoVp06YV2f7TTz8hODjY6jbb09atW136+e6E18JUca+HVq/FXf1dzM6ZDQDokXtHeg30Qg5Xex1/b/6pWJ9tb7Zei4NXFfjuTz+odYoi+3o+okXJy0exaZN4b4Y747+VB7zpWty9e9fVTTBhz3jvjFgPuHe8t4U3fb8f5ohz89Np0P2odLHT45VexJ/lOkF/QQlc2GSy77D6MFLvio8KeTLwSTwT9AwUJxXYdHKT6DGFSZ1b+mUFVv2pFN0X6KdH+dsnsGmTeALvLvid9Ew8N/dhTay3KkmfMWMGpk6dig4dOqBEiRJYtGgRrl69iuXLl1vdSFvk5uZi0KBB+OyzzxAZGWnRa8aPH4/Y2Fjjzzk5OahatSqeffZZhIWFOaqpsjQaDbZu3YqOHTvC39/fJW1wF7wWpuxxPTae24i5h+bijuYOAKB37h1MtyBBF7ovRqPGL6KRTZ9qf8W5FoJWh/Ezt0Ot04ru/2BoJ4+b78d/Kw9447Uw9Pq6C1fGe1tiPeCe8d4W3vj9NnDUuSl+WwXV+hGS+4WuH6FO05dQR2yfTkD8Kukh7vN6z4PKz/ztstS5CVodVqRnY1X6adHXlQxQYlr3eujetJLZz3AVfic9E8/N/VgT661K0leuXIlPPvkEb775JgDg559/RteuXfH555/Dz8/6G97IyEgolUpcvnzZZPvly5dRoULR5TDOnj2L8+fPo3v37sZtOp2u4ERUKpw6dQo1atQweU1gYCACA4vOO/L393f5X6o7tMFd8FqYsvV6CDoBcw7NsS5B7zQTaPkmVG5ayd2Wa/Fl+lncVYsn6PP6NkGJIM+dc89/Kw9407Vwt/OwZ7x3RqwH3Dve28JT220Ju57b4ZXA+nek9/daCpVIgTiDb3//VnR7sCoY8a3jUSLQutEjhc9Nbv45UFDF/ZW21T3moTG/k56J5+Y+rGmrVXfl2dnZ6NKli/HnDh06QKFQ4N9//0WVKtYvExEQEIDo6Ghs27bNuLSKTqfDtm3bMGJE0SeidevWxbFjphWa4+PjkZubi48++ghVq7LYBvkuQScgOycbuZpcAAVD3GUT9P+Sc29aZg0oWGpt5ibxIbRcc5bIMvaM94z15DCHVwLrZBL0+CuyhVDVWjXmHppbZPtrjV7D8KbDLepBl2JuDXQWiSMiOVb99hEEAUFBQSbb/P39izVpPzY2FoMHD0aLFi3QsmVLLFy4EHl5ecYKsC+//DIqV66MWbNmISgoCA0bNjR5fXh4OAAU2U7kSx5eMkap10vPQe+YALQe5nXJOSC/1NqpxM4IVInPByQiU/aO94z1ZHdyCXpACNB1gWyCLrfUGhN0InI1q34D6fV6DBkyxGQ42f379/HWW2+ZLMtizRJs/fr1w9WrVzF58mRcunQJTZs2xebNm40FZrKzs20aSk/kK8RuNAbm5Iof3GMx0HyQE1rlfHLrzs7r24QJOpEV7B3vGevJruQSdAseRMsl6GNbjC1Wgi5XwR3giC4isoxVv4UGDx5cZNvAgcVfM3LEiBGiQ94AYMeOHbKvXbFiRbE/n8hTia3p2jv3DsaILbPWMcFrE3Rz687yhojIOo6I94z1ZBdyCboFD6LNrYU+oJ70/HU5glaHX/5VIC1dPEH3tPnnRORaViXpX375paPaQURWEusJkC0U11p6aRpPJjescEKXuhxSSGQDxntyS8VM0OV60A2F4mzpRV9z5AImrjmOu2rxEVsc3k5E1vK+SalEPkBsDvrAnFzxHnQA6LXU5+aglwxQ4pW21Z3cIiIicohiJuipZ1IxZe8U0X3FKRQnaHX/JejiK4owQSciW3jfXTuRlxN0gkmC3u1OHiZdu4FgvV78BT0WAzLLz3gquTnoJQOUSOzdkMMKiYi8gR160KUS9GBVcLES9AVbTzNBJyK7Y5JO5GGSTiQZ/6zU680n6F44D11uDjrn/REReREHz0G3dYi7uTXQWSCOiIqDSTqRB0k9k4r5GfONPw/MyWWCXsiELnXxxpM1nNwiIiJyiMxkh81Bj4uOw8D6A21K0M0tscYlP4mouJikE3mIh+fTSVZxBwrmoHvhEHdBq5Md4s456EREXkIrAGvfFt9nhwR9SMMhVjdJ0OqwfM85zNz0h+Qxs59vwASdiIqNSTqRB3g4Qe8hV8U9/gqgChTf5+GW7zknup1z0ImIvIhWALbPEN9nQYL+cO2WwoJVwRhY3/rlBB9UcBeffw4AL9XQ4vlmla1+byKihzFJJ3JzDyfoSr0eM6QS9F5LvTZBTzmYLdp7MaxdDcR2rM0EnYjIGxxNATaMBjR5Rfd1TLBoGlfyyWTR7bbOQc8XtBidIj3/fEKXuhjUsgp+2rLZqvclIpLCJJ3IjYktGROm04kf7KVV3AH5+X9M0ImIvIRWkE7QAaD1MLNvodaqMffQ3CLbbV1mzVyBOEMFd41GY9X7EhHJ4Z0tkZuSWjKmxx3bexc80fcya6HP69uECToRkbfY94l0gt5rKaCUT7DXn12P6KRo0X22JOgpB7PNVnDnEmtE5AjsSSdyQ1Lz6SSLxXlhD7qg1eGXfxVISz8hun9On8Zc3oaIyFtkJgNbJ4nvs6AYqqATMGv/LNF9Y1uMtSlBZwV3InIVJulEbuhm/k2Tn5V6PQbm5EpXcw8Kd3ibnOnB8ELxGyDD8EIiIvICcpXcLSyGevP+TeRqcotsD1YFY0A96x5kyyXohkKlTNCJyJGYpBO5mcPqw4hf86AXvUfuHelCcYBFQwA9ibneCyboRERe5v4t8e0WFkOVW27NmkJx5pZYm9ClLl5pW53TrIjI4bznzp7Iwwk6AStPrkTq3VTjtt5yS60BXlcsjgk6EZGP0QpA+pKi2zsmWBTf5BL0X/r+grLBZS1qhqUF4oiInIFJOpEbELvJkF0LHbBorVhPYi5Bn9e3CeegExF5E7nl1ixI0OXWQw/1D0XpoNIWNYMPiInI3TBJJ3IxsQRddi10wKIiOp5E7gZpXKfaeP3JGhxeSETkTcwtt2ZBrZUcdY7o9mBVMMa3Gm/RMHcm6ETkjpikE7mQVC/AgJyixW8AFAz/az3MZ+ag96+hxWuPRzFBJyLyNsVYbk3QCchR5+DrE18X2WfNeugcwUVE7sp77vSJPFDSiaQi25R6Pd4Tq+LeMQFo+67jG+VEq2XWQJ/ZqwFKXpaeH0hERJ5JkZlk83JrcnPQAWBQ/UHFTtBZII6IXI1JOpGLpJ5JxfyM+SbblHo9ZueGib+g9TAntMp5BK1OskjPnD6N0btpBWzaxCSdiMibVLu+E6ojX4jvNLPcWuqZVEzZO0X2/cMCJGJoIXIJOoe3E5E7YJJO5AJpWWlFbjRkl1rrNNOrhrgLWh0WbD0tus9wg6TRaJzcKiIiciTFb6vQLFsiQTez3JolCXpi20SzvehM0InIE3jPXT+RhxCbh252qbWWbzq4Vc4jt8zNhC51eYNEROSNhHyo1o8Q32dmOVGxB9sPS2ybiJ41e8oewwSdiDwFk3QiJys8D12p12NgTi7GiM1BNzBTQMeTmFuH9pW21Z3YGiIicorMZGDt2+L7zCwnKrfMWlx0HHrU7IGwgDD2oBORV/GOO38iDyDoBCSdSDLOQ5cd3m7gRUut5Qta2QR9Xt8mLNJDRORt5BL0jglmE/TsnGzRfdPbTEfvWr3Nfryg1WH5nnOYuekP0f1M0InIHTFJJ3KCh6vRmhvern1mKpRt3vGZHnQuc0NE5IW0gnSCHhAiWxB1/dn1mLV/FnI1RZckjYuOsyhBNxd7mKATkbvyjgyAyI09XOymh5kE/Ui1V9Gw9QgofSBBH9auBmI71mYPOhGRt9EKwPYZorv0ASWh6LpA8kG0oBMkE3QA6FGzh9mPN7cGOhN0InJn3pEFELmphxN0pV4vO8Rd6L4Y2RfC0NAZjXMCuSHuJQOUTNCJiLzR0RRgw2hAk1dk1+ny3VH9lc/gH1hC8uU56hzJBD3UP9TsMmtM0InI0zFJJ3KAh+efGwzMEb/pQMcEoPUw6HV64MImJ7TQ8eR60EsGKJHYuyETdCIib6IVgLvXgDVvSB7yR8XnUd1Mkbd1WetEt4f6h2J8q/GyReLMJeicXkVEnoBJOpGdPTz/3KB37h3xKu4dE4C27xb8Wecda4PL3SRxiDsRkReSKxD3H6H7YugvKKX3SzzgBoC0nmmoFlZNNkFfnXFBMvZM6FIXr7StzthDRB6BSTqRHT08vN1AtlCcTOEcTySXoHOIOxGRFzq8Elj3jvwxvZZC36Cv5Gix9WfXI2FfAu4J90T3m0vQ5aZXcXg7EXkaJulEdiD19N/sOuhetAY6YD5B5xB3IiIvY0mCHn8FUAUCGvHRYoJOkE3QE9smmu1BZ4JORN7Ee7IDIheRGt5udh30Hou9Zg10QD5B5zBDIiIvZC5BDywFdJlbkKDLSDqRJJmgT28zHT1r9pR8rbnYwwSdiDwRk3SiYpCbfy63zBp6LAaaD3Jgy5xL7iaJvRhERF4oM1k6Qe+YUPAQOijc7Gix1DOponPQgYIedKkEXdDqsHzPOczc9Ifo/pIBSrzStrrsZxMRuSsm6UQ2EnRCkQTd7PB2gAk6ERF5Nq0gXSTOihiXlpUmWscFADIGZiBAGSC6T254O8DpVUTk+ZikE9ko6USSyc/d7uRh0rUbCNbrpV/Ua6nPDHFngk5E5IW0ArB9hvg+KxJ0sQfdBoltE0UTdHO95wCnVxGRd2CSTmSDtKw0k+F5Sr1ePkH/bx10bykSZ+5GiQk6EZEXOpoCbBgNaPKK7uuYYNUoseSTyaLbpeagm+s9Bxh7iMh7eEfGQOREYk//B+bkSifoXja83dyNEm+SiIi8kFaQTtABq5YTFXQC5h6aW2R7XHQcetfqXWS73Kgtg3l9m+D/oqtY3AYiInfGJJ3ISoWf/lu0xJoXDW9ngk5E5KP2fSKdoFu5nGjyKfFe9IH1BxbZZi5B5/B2IvJGTNKJrFD46b/ZJdYM68J6CUGrY4JOROSLDq8Etk4S32flw+jD6sNIPZJaZPvYFmOLrIVuLkFn7zkReSsm6URWMBSLM7vEWq+lXpegL9h6WnI/b5SIiLyU3FroVj6MVmvVSL1bNEEHgAH1TBN9c+ufs/eciLwZk3QiCwg6AUknkrDw0DwMtmSJNR8Z4j6sXQ3EdqzNGyUiIm+jFQqGuMv1oFuYoAs6Acknk0XnoQMF1dwL96Jz5RAi8nVM0onMWH92PRL2JaDjzavIlOs9B7xuDrq5oYZM0ImIvJBcFXfAqofRhhh6T7gnuj8uOs5YzZ0rhxARFWCSTiRD0AlI2JeAzjevyg9v97Il1gDL5gIyQSci8jLmqrhbsWKJWqvGhN0TJPcHq4KNxeLWHLmAiWuO465aK3osE3Qi8iW8wyaSkXwy2XyC3mMx0PZdn0vQOQediMgLHfifXRL0tKw0RCdFS+4PVgUjvnU8VH4qCFodE3QiokK8J6sgsjNBuI8r2yZhutz8cy8b3m5uqCGL9RAReTGtAGyR6Pm2It6lnknFlL1TJPfHNo/FoAaDjAn6gq2nmaATERXCJJ1IhDYzGX4bYzFGIz6HzhuHt3MNdCIiH6YVgO0zxPdZUcU9LStNNkGfWmoqetTtAZWfyuwQd47aIiJf5T0ZBpGdrDudig5pwxCs14sfYMVwP09hbng7E3QiIi+lFQqGuEv1oHeaaXGCrtaqEb8nXnRfsCoY4x8bD8VJBQAgX9BidIr0g+FTiZ0RqFJa9LlERN6GY1aJCllz6ntc3jhSMkG/89xsJuhEROQdMpOBhDLSCToAtHzTordaf3a95Bz0uOg47Om/B12rdwUApB75B3XiN0u+17y+TZigE5FPY0860X8ObYlF7/QvJPcnlK+M8Y+95sQWOR4LxBER+ajMZGDt2/LH9Fpq0bQuQSdg1v5ZovviouMwpOEQAIBGq0H6ZQVWpf8u+V6MO0RETNKJAK2AYxveRosj30ke8lTNehgTMxEqP+/4J8MCcUREPkwrWJagW1go7ub9m8jV5BbZXniJNQD4PuMCVv0p3UPOIe5ERAW8I+MgstV/PQmNZA6503UetkUP9ZoEnQXiiIh83P1b0vs6zSwY4m5hYdS0rDTJeeiFl1iTezBcMkCJxN4NmaATEf3HO7IOIltYONQvxIuWWOP8cyIigk4ouu3xWKD9RKtWLZFbau2Xvr+gbHBZsxXcOXKLiKgoJunke7QCcPeabIJ+rFk/NOr2idcssWauFwNggk5E5BOkHlDHDLdbgh7qH4rSQaXNVnBn3CEiEucWjy2XLFmCqKgoBAUFoVWrVjhw4IDksZ999hmeeOIJlC5dGqVLl0aHDh1kjycycTQFmPMoML+O5CEZMa+hUc9PvSZBX51xATUn/iiboM/r24Q3SkTkUIz1buDwSvMjyMwQdAJWHF8hmaAHq4IxvtV4rD1ySbaCOxN0IiJpLk/SU1JSEBsbiylTpuDw4cNo0qQJOnXqhCtXrogev2PHDvTv3x/bt29Heno6qlatimeffRb//POPk1tOnkYQ7kO3KQ7Ivy26/7NSYfjq+QWI7jTfyS1zDEGrw6e7zsrOP5/QpS6yZjzHSrpE5FCM9W4gMxlY9474vsBSQFC42bdYf3Y92nzbBvMzxOOkYam1uzeayMae2c83YIJORCTD5Un6ggUL8Prrr2Po0KGoX78+li1bhuDgYCxfvlz0+G+++QbDhg1D06ZNUbduXXz++efQ6XTYtm2bk1tOniQtKw0dv2oOv/yi1WcBIE+hwJdlK+KlhoOd3DLHsKT3fE6fxnjjyRqcB0hEDsdY72Jy1dwDQoAuc82OHhN0AhL2JeCecE90//Q20zGk4RD8kPGvbO2T+a0EPN+sssVNJyLyRS4dz6tWq5GRkYHx48cbt/n5+aFDhw5IT0+36D3u3r0LjUaDiIgI0f35+fnIz883/pyTkwMA0Gg00Gg0xWi97Qyf66rPdyfOuBbr/1yPjK1x2H7thuj+HD8F5petgPdaToBeq4dG67q/F3tcj+8zLmDC2hOyx8x+vgF6N63g1t9B/jsxxevxgDdeC286l4c5I9YD7hnvbeGI77ffvsUQq5uufWYqdC3fAvxUgJnPS/ojSTJBn9xqMrpFdUPyvnOS8adkgBKTutSG6vIxj/r7sJQ3/l4y4Ll5Jp6b+7GmvQq9Xq93YFtk/fvvv6hcuTL27t2LmJgY4/b33nsPO3fuxP79+82+x7Bhw7Blyxb8/vvvCAoKKrJ/6tSpmDZtWpHtycnJCA4OLt4JkNsT9AIOXxiDGRIJeo/KFVEvtCtaBbWFUuH5S7+kX1bIrkHb8xEtnqqoh1LhxEYRkVl3797FgAEDcPv2bYSFhbm6OXbljFgPMN5LqXr9VzTP/qzI9uOVXsTZ8l0seg+tXospt8XnoD8f/DyaBzSXjT+MPURE1sV6j66M9cEHH2DVqlXYsWOHZNAeP348YmNjjT/n5OQY57a56kZIo9Fg69at6NixI/z9/V3SBnfhqGsh6ASsOr0KH2XMR6ZMD/rQxxPQrWYvu31ucdl6PQStDivSs7Eq/bTkMbOfb+BRQwz578QUr8cD3ngtDL2+VJQlsR5wz3hvC7t+v3UC/Ge9LLqrzuCFqONn2W3gypMrgSNFt+/rtw8BygB8n3EBq9LFe9Bn9mqAvtEFsccb/+0a8Nw8E8/NM3nquVkT612apEdGRkKpVOLy5csm2y9fvowKFSrIvnbevHn44IMP8PPPP6Nx48aSxwUGBiIwMLDIdn9/f5f/pbpDG9yFva6FoBOQfDIZcw/NBQAMyhGfg64PKImSXeahd72+xf5MR7Dmenj7GrT8d2KK1+MBb7oW3nIeYpwR6wH3jve2sEu70z8V395rKfwDS5h9uaATkHQiCQuPLCyyb2yLsQj0LyG7vKdUBXdP/TuxBM/NM/HcPJOnnZs1bXXpXXtAQACio6NNCsEYCsMUHhL3sDlz5iAhIQGbN29GixYtnNFU8gBpWWlo9nUzzD00F0q9HpGCFu/duFXkOF3bUVCMy4ay6QDnN9LODGvQSiXoLA5HRK7GWO8iWgHYMqHo9o4JgAXxz1wl96B7T8kWKOUSa0REtnP5cPfY2FgMHjwYLVq0QMuWLbFw4ULk5eVh6NChAICXX34ZlStXxqxZswAAs2fPxuTJk5GcnIyoqChcunQJABASEoKQkBCXnQe5VlpWGuL3xAMAut3Jw/jrNxCmEy+34Pf0JK9YA311xgXZJW54g0RE7oKx3gUO/E98e+thZl8q6ATM2j9LtFCcXu+HZ8IS8N7q45KvZ/whIioel2cq/fr1w9WrVzF58mRcunQJTZs2xebNm1G+fHkAQHZ2Nvz8HvQCLl26FGq1Gv/3f/9n8j5TpkzB1KlTndl0chOCTjAm6P56PWZdvS59cKeZXpGgpxzMll3iZl7fJlz7nIjcBmO9k0n1olsYA3PUOcjVFJ0uprnVHPcvvoA0mdcyQSciKj63yFZGjBiBESNGiO7bsWOHyc/nz593fIPIoySdSAIA9Mi9I1nFHUDBWrAt33RSqxzHXIJ+KrEzAlWeX6meiLwLY70T7ftEfLuFMXBd1roi29S3WiD/4v+JHP0AHxATEdmHWyTpRLYwFLSZnzEfvXPvYLpcgh5YCugy1+N70eUS9JIBSiT2bsgEnYjIV2mFggR966Si+yzsRU/LSisyD91cgu7pBUqJiNyNZ2cs5LMMc9CVej0G5+RijEiBOKO4U0BwpEcn6IJWJ1tBlzdIREQ+LjMZWPu29H4LetELTx8zMJegs/eciMj+PDdrIZ+VeiYVU/ZOQbc7eZh07QaC9eIF4hAQAnRdAITKL/HjzgStDiv2nkfixpOSx3D+HxGRjzu8Elj3jvT+XkstelBtmD4GFBSI09xoi/wrXUWP5cNhIiLHYZJOHqPw8HazBeI6JhRUsPXg3nNz1dsBJuhERD7PXILeY7FFS66lnkk1DnM3FIiTwthDRORYnpvBkE8pPLx9UE6u6PrnRj0WA80HOa1t9qbVA5/vPo/ZW07LHsebJCIiHyY3/9yg11KLEvS0rDRM2TsFgPnh7Yw9RESOxySd3J5heLvZ6u2AxTck7ir1yD8Yt08FQD5B5xxAIiIfdjQF2DAa0OSJ77diNJlhHrq54e0AE3QiImdhkk5uy6rq7QAQfwVQBTqncXZmrjCcQXzXehjSJopzAImIfJVWADaNlU7QrRxNlnQiCZrbTXH/Ym9ALx1D+XCYiMh5mKST2xF0ApJPJmPBwTkI0+kw+E6efPV2Q4E4D03QLZl7zgI9REQEALh/C8i/Lb7PygQ9LSsN8w4uxP1/Z0gew/hDROR8TNLJbRiS87mH5qJH7h1kmus5BwrWfW35pkcWiLO095y9F0REZJSZLL7dyulegk7AuI2puH9ROkHn8HYiItfwvMyGvI5Wr0XSH0lYcHiBZeueAx5fvZ2950REZLXDK8ULxcWdsnq50dh1q2UruPMBMRGR63hmhkNeY/2f6zHl9hTgMCwrDAd4dPV2S3vPZz/fAP1aRjmnUURE5P7klloLjrT4be5r1HhnzRpsPRwqecypxM4IVCmtbSEREdkJk3RymTWnvsfCPVNQGkAPc/PODTy0erug1WHF3vNI3HhS9rhxnWqj/O0T6N6sspNaRkREbs3cUmu9llo8qmzipnX4ZpcSQIjo/pIBSiT2bsgEnYjIxZikk9MJOgHpm95F70PfoLclL+iYUJCYB4V73PB2S5NzoGBoYc/G5bFp0wkntIyIiNyeuaXWeiy2+MH1exvW4rvd/pL7e7bUYn7P5zjFiojIDXhWxkMeLy0rDRmbR5lfTs3AQ3vOAcvmnQOmc881Go0TWkZERG5PJ5hP0C2Y+iXoBMSuW411+6SHt7/4hIAPuva0taVERGRnTNLJadKy0nBg8yjL5p17cGE4S+edAyzMQ0RE4vwOLCtWgm5YMWXGz9uRf/H/JI976UktZnRhgk5E5E48LwMijyPoBNy8fxNTdk+0bFk1H+g9j+9aD0PaRHFYIRERFVHt+k4oj3whvtOCGJmWlYb4PfFQ32ohmaB3bH4HH/fujSD/gOI2l4iI7IxJOjnU+rPrMWv/LNxV52D4zduix2wp/wSe7v8Z/P39PXbe+e17Gvxw+ILZ3nMm50REJEeRmYRm2RIJevwVQBUo+VpBJyDpRBLmZ8yXTdALhrf3s0dziYjIATwrGyKPotaqMWH3BNml1TRPT8b9mzWBkpGAv3RBG3dly7xzIiIiUYdXQrVxlPi+XktlE3RD7zkA2QS9/xNazOL8cyIit8aMgRwiLSsN0UnR5tc+bzXMeY2yI0Grw6e7zlqUoM/r2wRvPFmDCToREUmTWwfdTBV3Q4Ku1/tBff0JyQR91vMNMKtrD3u0loiIHIg96WR3qWdSMWXvFPjr9fIJeq+lgJ9nfQWtWVKNvedERGQRcwm6TJE4tVaN+D3x0NxqjvsXX5A8bk6fxnjhsarFbSkRETmBZ2VI5NYKz4Uz24NuKHzjIUuOWZOcA6zaTkREFspMtjlBt6RAHMAEnYjI0zBJp2IzLPOy4OAchOl0GHwnD2Nu3BI/+PFYoP1EjyoOZ8288z7Nq6BUCX/2nhMRkXlaAVj7tuguoetHUMkk6KlnUjF5zzRobjyB/CtdJY9jgk5E5Hk8J1Mit2NIzucemoseuXfML68WEOJRCTrXOyciIofa94no5iPVXkXDpi9JviwtKw0TNqXh/sWZsm/P2ERE5Jk8I1sit1O4iqzZoe1AQYLedYHbJ+iG5dTWHPnHoqHtXFKNiIhscnglsHVSkc3aZ6Yi+8ajaCjxMkEn4L2Na5EvM/+cNVGIiDybe2dM5FYEnYAcdQ7WZa3D/Iz5AAClueJwANAxAWg9zG0TdGsTc4DJORER2UgrFPSgiyToAKBr+Raw+SeTbYb4CwDjNqzl/HMiIi/nnlkTuZ31Z9dj1v5ZyNXkmmwfmJMr8Yr/GArEuSlL55sbsHeCiIhslpksOQcdgOiqJ4Xjr7kCcRzeTkTkHZikk1lqrRoTdk8AUNBzHqbTAQB6SBWIezwWiBkOBIW7Ze+5oef8h8MXLJpvbsCbHyIispm5BN2wFnqhVU8EnYCEfQm4q8mXLRD3/nO18drjNfgAmYjIS7hfBkVuwTC0bsPZDZh7aC4AC+eeA25ZHM6WIe0GHNpORETFIlPFHYDkUmvJJ5ORc62e7Prn/Z/Q4q2natmjlURE5CbcK5Mit5CWlYYpuycae8xLQ6bX/GG9lrpdgm7tkHagIDHv3awyl1MjIqLik6jiDkB0WphWr8XVe1cx4+ftsgXi+j+hxayuPezVSiIichPulU2Ry6WeSUXGljjzy6mJMQzVcwO2DGnnOudERGRXckXiHo8VHXm2/s/1mHxrGjSft0X+Fen557Oeb4D+LaPs3GAiInIHTNIJQMHw9qQTSTizY5plQ9of5iYF4gStDiv2nrd6SDvnmxMRkV0dTQE2jAY0eeL7RRL0tKw0TNjM9c+JiHwdk3Qyrnnur9fjsKUJeseEB0m5CwvEGXrMAVg935xD2omIyCG0ArBprHSCLjI1zJL1z1kgjojINzBJ93GpZ1Ixfc9kDMrJxXuWzDkH3KLX3NYecw5pJyIih7t7Dci/Lb5PYmpY7LrVssurDXhSxwJxREQ+gkm6r9IK2HAiCVnbpyBTLjk3LKdm4OJl1WxNzgEODyQiIieQW2pN4iH3exvWYt2+UMm3nPN/DfFCi0fs1UIiInJzTNJ9iVYA7t8CfksBtkxANwDd5I4PCHH5cmrFGc4OcEg7ERE5kVyCHncKCK1QZPN7G9biu93+oi/h8HYiIt/EJN1XHE2BftMYKPJzLDs+IATousDpCXpxk3IDrm1OREROJbcWemApIDjSZJOg1WF02nqsPyCeoPdrq+HwdiIiH8Uk3RcI+cCaN6Cw9PhOM4GWbzo8QRe0OlzPU+OOBriep8aGY38XKynv3awyALDXnIiInO/A/8S3B4QAXeaaxNTVGRcw5vujkLoNi6n2JxI7v+WARhIRkSdgku7ltEe+hjJthGUHOzE5N51XrsLEQztsei/2mBMRkctpBWDLhKLbH1oLXdDq8Pnus/jgx9OSb9W3bT4e11VzVEuJiMgDMEn3Ykc2x6LZvi9kj5kTEY4G7aeja/2XHJac22sIe2FMzomIyG3s+0R8e6EE/btDf+G91cdl3+bFJwQkPNsdmzZtsncLiYjIgzBJ9zKCcB+5OX8ja3sCHjuWJnlc+6qVcVPph2mPz0DXmj3t347/EnN7JuUczk5ERG4nMxnYOqno9k4zAaUKgk5A3LofkLYvRPZt+j8pYFaXntBoNA5qKBEReQom6V7AmJjvnIHHjq5BaQCPSRybp1AgMTIC3/XfidJBpaHys99XwJ6JOZNyIiJye3LF4lq+idTTaRi/YQvyr3SVfIvAchsxo2tH/F+d3g5qJBEReRom6Z5MK+D3Te+iQcY3som5wbyIcKSVqYT3Wk9A2eCyxf54ew1j7/WIFu/3fwb+qoKvI5NyIiLyCFLF4notxcQtm/DNLhUA6QQ9qOJ3mN31efR0wIg2IiLyXEzSPdV/a7E2sPDw3dH98UrHmRgVEFas3nN795a/9Fhl/LRlM8qUDIC/v/gyNERERG5HqlhcxwQkq9vgm12/S740sNxGvN+xNQY1+MKuI9qIiMg7MDJ4Cq0A3L9V8Gep+W8SDse8jsc7zbPpY+1Z9E1sCDvn3hERkUcyxOSHJCu7YUKqdILeK+YO5nVfxOSciIgkMUK4O61QMJxO7Gm9jINNeqPmUxMRGlYVzVVBVr3WEXPLOYSdiIi8SmZykU0LqryPRWul4+ac/2uIF1o84shWERGRF2CS7k4K95YDwG8pViXncyLC8cqALQgPj8JjFibmhXvKAfsskcbEnIiIvJrIiLYUoR0WZTUWPTyw3EYcfWchgvwDnNE6IiLycEzSXUknAHm3C/5sZUJe2LyIcCSFhWLa4zMQGVlX8jhHJOQAK7ETEZEPeaiiu6D3w3Ltc5gpvCR6eFDF1ZjdtRcTdCIishiTdFfQCXj0ymb4z3q52G81MTIC60JDML3N9CLVYe05n/xh7C0nIiKftO8T4x/XaNtiouZV3IX46DVDgs7q7UREZA0m6c6WmQz/tW+jkY0vnxMRjg0hJQEAOX5+0CoUSGybiK7Vu+P6nXzjcY5KygH2lhMRkY8qNMw9X6/CaM1wyUODKq7GbyP+hwAle9CJiMg6TNKdRSsUPH23oip7YR+UjkByyXLQKhSAvmDbiEbD8XytPlh/9BJqfv6jHRtbgL3lRERE/yk0zH219gmM0bwteWhY5XWY0eV5JuhERGQTJumO9F8hOO3Rb6H8Kd7s4YLeD7dREovDS+GnksHG7dfvROP+xe5Fjp99BpiN7XZpauGecoC95URERCYO/A9AQYG4ccIbkof1isnBvO5LuMQaERHZjBHETgSdgBx1jvHngGM/IGTjGACAEg8ScDGLw0thje5x3Lrao2DDZce2lQk5ERGRFbQChM3xWK7tKlkgDgDmDlGjb93+TmwYERF5I7dI0pcsWYK5c+fi0qVLaNKkCT7++GO0bNlS8vjvv/8ekyZNwvnz51GrVi3Mnj0bXbp0cVp7dXodbuXfMv684ewGLDg4B6FaQKctgc55dzHs1m3kIxQAsEb7OBKFQdJv6MSknAk5ERG5gqfFegAQBA3+upSFnzb/jNn5SdIH+uVj4BMq9K3b23mNIyIir+XyJD0lJQWxsbFYtmwZWrVqhYULF6JTp044deoUypUrV+T4vXv3on///pg1axa6deuG5ORk9OrVC4cPH0bDhg2d0uYb966jZ9KDG4Vn8+5ixPVGxkT8i//+cwX2khMRkbvxxFgPAH9dysIzi/8E8KjkMYHlNuLIiAUIDhCv8E5ERGQtlyfpCxYswOuvv46hQ4cCAJYtW4aNGzdi+fLleP/994sc/9FHH6Fz584YO3YsACAhIQFbt27F4sWLsWzZMqe0+faNa/jnz6nGn790yqcWeDgJL4wJORERuSNPjPWWMCyxxgSdiIjsyaVJulqtRkZGBsaPH2/c5ufnhw4dOiA9PV30Nenp6YiNjTXZ1qlTJ6xdu1b0+Pz8fOTnP1ia7Pbt2wCAGzduQKPR2NTu2zduQ5d/16bXWiKuY010aVihyPawIFVBEp5/R7xd+aKb3ZpGo8Hdu3dx/fp1+Pv7u7o5Lsfr8QCvhSlejwe88Vrk5uYCAPR6vYtbYn/OiPWA8+N9YIVUxD/eFY+XfhzXr1+36f3FeOP324Dn5pl4bp6J5+Z+rIn1Lk3Sr127Bq1Wi/Lly5tsL1++PP744w/R11y6dEn0+EuXLokeP2vWLEybNq3I9urVq9vYascbtRAY5epGEBGR0+Xm5qJUqVKuboZdOSPWA66J94OwymHvTURE3smSWO/y4e6ONn78eJOn8TqdDjdu3ECZMmWgUChc0qacnBxUrVoVf//9N8LCwlzSBnfBa2GK1+MBXgtTvB4PeOO10Ov1yM3NRaVKlVzdFI/ljvHeFt74/TbguXkmnptn4rm5H2tivUuT9MjISCiVSly+bFre/PLly6hQoehwbwCoUKGCVccHBgYiMDDQZFt4eLjtjbajsLAwj/piORKvhSlejwd4LUzxejzgbdfC23rQDZwR6wH3jve28Lbvd2E8N8/Ec/NMPDf3Ymmsd2mVsYCAAERHR2Pbtm3GbTqdDtu2bUNMTIzoa2JiYkyOB4CtW7dKHk9ERESuw1hPRERkHZcPd4+NjcXgwYPRokULtGzZEgsXLkReXp6xAuzLL7+MypUrY9asWQCAkSNH4qmnnsL8+fPRtWtXrFq1CocOHcKnn37qytMgIiIiCYz1RERElnN5kt6vXz9cvXoVkydPxqVLl9C0aVNs3rzZWDAmOzsbfn4POvzbtGmD5ORkxMfHY8KECahVqxbWrl3r1HVTiyswMBBTpkwpMizPF/FamOL1eIDXwhSvxwO8Fp7HF2O9rbz5+81z80w8N8/Ec/NsCr03rvdCRERERERE5IFcOiediIiIiIiIiB5gkk5ERERERETkJpikExEREREREbkJJulEREREREREboJJuoPMmjULjz32GEJDQ1GuXDn06tULp06dMjnm/v37GD58OMqUKYOQkBD06dMHly9fdlGLHWfp0qVo3LgxwsLCEBYWhpiYGPz444/G/b5yHaR88MEHUCgUGDVqlHGbr1yTqVOnQqFQmPxXt25d435fuQ6F/fPPPxg4cCDKlCmDEiVKoFGjRjh06JBxv16vx+TJk1GxYkWUKFECHTp0wJkzZ1zYYseIiooq8t1QKBQYPnw4AN/8bpBn27VrF7p3745KlSpBoVBg7dq1JvunTp2KunXromTJkihdujQ6dOiA/fv3mxxz48YNvPTSSwgLC0N4eDheffVV3Llzx4lnUZS58yrsrbfegkKhwMKFC022u+N5AebPbciQIUV+R3Xu3NnkGE89NwA4efIkevTogVKlSqFkyZJ47LHHkJ2dbdzvrr+HzZ2bWGxRKBSYO3eu8RhP/Xu7c+cORowYgSpVqqBEiRKoX78+li1bZnKMp/69Xb58GUOGDEGlSpUQHByMzp07F7n/cddzswWTdAfZuXMnhg8fjn379mHr1q3QaDR49tlnkZeXZzxm9OjRWL9+Pb7//nvs3LkT//77L55//nkXttoxqlSpgg8++AAZGRk4dOgQnn76afTs2RO///47AN+5DmIOHjyI//3vf2jcuLHJdl+6Jg0aNMDFixeN/+3evdu4z5euAwDcvHkTbdu2hb+/P3788UecOHEC8+fPR+nSpY3HzJkzB4sWLcKyZcuwf/9+lCxZEp06dcL9+/dd2HL7O3jwoMn3YuvWrQCAvn37AvC97wZ5vry8PDRp0gRLliwR3V+7dm0sXrwYx44dw+7duxEVFYVnn30WV69eNR7z0ksv4ffff8fWrVuxYcMG7Nq1C2+88YazTkGUufMyWLNmDfbt24dKlSoV2eeO5wVYdm6dO3c2+V317bffmuz31HM7e/YsHn/8cdStWxc7duzAb7/9hkmTJiEoKMh4jLv+HjZ3boX/vi5evIjly5dDoVCgT58+xmM89e8tNjYWmzdvRlJSEk6ePIlRo0ZhxIgRWLdunfEYT/x70+v16NWrF/7880+kpaXhyJEjeOSRR9ChQwfvza305BRXrlzRA9Dv3LlTr9fr9bdu3dL7+/vrv//+e+MxJ0+e1APQp6enu6qZTlO6dGn9559/7tPXITc3V1+rVi391q1b9U899ZR+5MiRer3et74bU6ZM0Tdp0kR0ny9dB4Nx48bpH3/8ccn9Op1OX6FCBf3cuXON227duqUPDAzUf/vtt85oosuMHDlSX6NGDb1Op/PJ7wZ5FwD6NWvWyB5z+/ZtPQD9zz//rNfr9foTJ07oAegPHjxoPObHH3/UKxQK/T///OPI5lpM6rwuXLigr1y5sv748eP6Rx55RP/hhx8a93nCeen14uc2ePBgfc+ePSVf48nn1q9fP/3AgQMlX+Mpv4ct+bfWs2dP/dNPP2382ZP/3ho0aKCfPn26ybbmzZvrJ06cqNfrPffv7dSpU3oA+uPHjxu3abVafdmyZfWfffaZXq/3nHOzFHvSneT27dsAgIiICABARkYGNBoNOnToYDymbt26qFatGtLT013SRmfQarVYtWoV8vLyEBMT47PXAQCGDx+Orl27mpw74HvfjTNnzqBSpUp49NFH8dJLLxmH0vnadQCAdevWoUWLFujbty/KlSuHZs2a4bPPPjPuP3fuHC5dumRyTUqVKoVWrVp57TUBALVajaSkJLzyyitQKBQ++d0g36JWq/Hpp5+iVKlSaNKkCQAgPT0d4eHhaNGihfG4Dh06wM/Pr8iweHei0+kwaNAgjB07Fg0aNCiy31PPy2DHjh0oV64c6tSpg7fffhvXr1837vPUc9PpdNi4cSNq166NTp06oVy5cmjVqpXJ8GNv+T18+fJlbNy4Ea+++qpxm6f+vQFAmzZtsG7dOvzzzz/Q6/XYvn07Tp8+jWeffRaA5/695efnA4DJSA4/Pz8EBgYaR2B66rlJYZLuBDqdDqNGjULbtm3RsGFDAMClS5cQEBCA8PBwk2PLly+PS5cuuaCVjnXs2DGEhIQgMDAQb731FtasWYP69ev73HUwWLVqFQ4fPoxZs2YV2edL16RVq1ZYsWIFNm/ejKVLl+LcuXN44oknkJub61PXweDPP//E0qVLUatWLWzZsgVvv/023n33XXz11VcAYDzv8uXLm7zOm68JAKxduxa3bt3CkCFDAPjWvxHyLRs2bEBISAiCgoLw4YcfYuvWrYiMjARQ8L0vV66cyfEqlQoRERFu/b2fPXs2VCoV3n33XdH9nnpeQMFQ95UrV2Lbtm2YPXs2du7cieeeew5arRaA557blStXcOfOHXzwwQfo3LkzfvrpJ/Tu3RvPP/88du7cCcB7fg9/9dVXCA0NNRkS7al/bwDw8ccfo379+qhSpQoCAgLQuXNnLFmyBE8++SQAz/17MyTb48ePx82bN6FWqzF79mxcuHABFy9eBOC55yZF5eoG+ILhw4fj+PHjJnNtfU2dOnWQmZmJ27dvY/Xq1Rg8eLDxF72v+fvvvzFy5Ehs3brV5ImgL3ruueeMf27cuDFatWqFRx55BN999x1KlCjhwpa5hk6nQ4sWLTBz5kwAQLNmzXD8+HEsW7YMgwcPdnHrXOeLL77Ac889JzqXlcibtG/fHpmZmbh27Ro+++wzvPDCC9i/f3+RhMFTZGRk4KOPPsLhw4ehUChc3Ry7e/HFF41/btSoERo3bowaNWpgx44deOaZZ1zYsuLR6XQAgJ49e2L06NEAgKZNm2Lv3r1YtmwZnnrqKVc2z66WL1+Ol156yWvuxz7++GPs27cP69atwyOPPIJdu3Zh+PDhqFSpUpGRm57E398fqampePXVVxEREQGlUokOHTrgueeeg16vd3XzHII96Q42YsQIbNiwAdu3b0eVKlWM2ytUqAC1Wo1bt26ZHH/58mVUqFDBya10vICAANSsWRPR0dGYNWsWmjRpgo8++sjnrgNQcNNy5coVNG/eHCqVCiqVCjt37sSiRYugUqlQvnx5n7smBuHh4ahduzaysrJ88rtRsWJF1K9f32RbvXr1jFMADOf9cKVSb74mf/31F37++We89tprxm2++N0g31CyZEnUrFkTrVu3xhdffAGVSoUvvvgCQMH3/sqVKybHC4KAGzduuO33/tdff8WVK1dQrVo1Y7z766+/EBcXh6ioKACeeV5SHn30UURGRiIrKwuA555bZGQkVCqV2Xjk6b+Hf/31V5w6dcokvgCe+/d27949TJgwAQsWLED37t3RuHFjjBgxAv369cO8efMAePbfW3R0NDIzM3Hr1i1cvHgRmzdvxvXr1/Hoo4/i/9u7+/iay8eP4++ze8PcM4TJvdwTRoUiInf5IpKbUt9CkZtE7olKpCK+3eAriW4Yyo+kKPeMSdEy0VJucjuMbeecz++PfXcyO+fsbDvbOdtez8fDI7uuz+dzrmtnct6uOyl3980eQno2MQxDw4YN05o1a/Ttt9+qcuXKqeobN24sf39/bdmyxVYWHR2t2NhYhYeH53Rzc5zValVCQkK+/D488MADOnz4sKKiomy/mjRposcee8z2+/z2PUlx7do1HT9+XGXLls2XPxstW7ZMc1Tjr7/+qkqVKkmSKleurNDQ0FTfk7i4OO3ZsyfPfk+WLFmi0qVLq1OnTray/Pizgfwp5e9KSQoPD9fly5cVGRlpq//2229ltVrVrFkzTzXRqccff1w//vhjqr/vypUrpzFjxmjTpk2Scme/HDl16pQuXLigsmXLSsq9fQsICNDdd9/t9O+jvPD/4Q8//FCNGze27fuQIre+b0lJSUpKSpKPT+p45+vra5sdkRfetyJFiqhUqVI6duyY9u/fr65du0rKG31LxcMb1+VZzz77rFGkSBFj69atxunTp22/4uPjbdc888wzRsWKFY1vv/3W2L9/vxEeHm6Eh4d7sNXZ46WXXjK2bdtmnDhxwvjxxx+Nl156yTCZTMbXX39tGEb++T44c+vu7oaRf74no0aNMrZu3WqcOHHC2LFjh9G2bVujZMmSxrlz5wzDyD/fhxR79+41/Pz8jFdeecU4duyY8fHHHxvBwcHG8uXLbde8+uqrRtGiRY21a9caP/74o9G1a1ejcuXKxo0bNzzY8uxhsViMihUrGmPHjk1Tl99+NpD7Xb161Th48KBx8OBBQ5Ixd+5c4+DBg8bvv/9uXLt2zRg3bpyxa9cu4+TJk8b+/fuNQYMGGYGBgal2M+7QoYPRsGFDY8+ePcb27duNatWqGX369PFgr5z3y57bd3c3DO/sl2E479vVq1eN0aNHG7t27TJOnDhhfPPNN0ajRo2MatWqGTdv3rQ9Izf2zTAMY/Xq1Ya/v7/x3nvvGceOHTPeeecdw9fX1/jhhx9sz/DW/w+78jN55coVIzg42Fi4cKHdZ+TW961Vq1bGXXfdZXz33XfGb7/9ZixZssQICgoy3n33Xdszcuv79umnnxrfffedcfz4cSMiIsKoVKmS8cgjj6R6hrf2LTMI6dlEkt1fS5YssV1z48YNY8iQIUaxYsWM4OBgo3v37sbp06c91+hs8sQTTxiVKlUyAgICjFKlShkPPPCALaAbRv75Pjhze0jPL9+T3r17G2XLljUCAgKM8uXLG7179zZiYmJs9fnl+3Cr9evXG3Xq1DECAwONmjVrGu+9916qeqvVakycONEoU6aMERgYaDzwwANGdHS0h1qbvTZt2mRIstu//Pizgdztu+++s/u5YMCAAcaNGzeM7t27G+XKlTMCAgKMsmXLGl26dDH27t2b6hkXLlww+vTpYxQqVMgICQkxBg0aZFy9etVDPUrmrF/22Avp3tgvw3Det/j4eOPBBx80SpUqZfj7+xuVKlUynnrqKePMmTOpnpEb+5biww8/NKpWrWoEBQUZ9evXNyIiIlI9w1v/P+xK3/7zn/8YBQoUMC5fvmz3Gbn1fTt9+rQxcOBAo1y5ckZQUJBRo0YNY86cOYbVarU9I7e+b2+99ZZxxx13GP7+/kbFihWNCRMmGAkJCame4a19ywyTYeTR1fYAAAAAAOQyrEkHAAAAAMBLENIBAAAAAPAShHQAAAAAALwEIR0AAAAAAC9BSAcAAAAAwEsQ0gEAAAAA8BKEdAAAAAAAvAQhHQAAAAAAL0FIBwAAAPKI1q1ba8SIEZm+f8qUKWrQoEGOviaA1AjpAAAAACRJo0eP1pYtW9z+XJPJpIiICLc/F8iL/DzdAAAAAADeoVChQipUqJCnmwHka4ykA0hj48aNuueee1S0aFGVKFFCDz/8sI4fP26r37lzpxo0aKCgoCA1adJEERERMplMioqKsl3z008/6aGHHlKhQoVUpkwZPf744zp//rwHegMAQP5itVr14osvqnjx4goNDdWUKVNsdZcvX9bgwYNVqlQphYSE6P7779ehQ4ds9bdPdzebzXr++edtnwnGjh2rAQMGqFu3bi6/ZlhYmCSpe/fuMplMtq8B2EdIB5DG9evXNXLkSO3fv19btmyRj4+PunfvLqvVqri4OHXu3Fl169bVgQMHNH36dI0dOzbV/ZcvX9b999+vhg0bav/+/dq4caPOnj2rXr16eahHAADkH//9739VsGBB7dmzR6+//rqmTZumzZs3S5J69uypc+fO6f/+7/8UGRmpRo0a6YEHHtDFixftPuu1117Txx9/rCVLlmjHjh2Ki4uzO23d2Wvu27dPkrRkyRKdPn3a9jUA+0yGYRiebgQA73b+/HmVKlVKhw8f1vbt2zVhwgSdOnVKQUFBkqQPPvhATz31lA4ePKgGDRpoxowZ+uGHH7Rp0ybbM06dOqUKFSooOjpa1atX91RXAADI01q3bi2LxaIffvjBVta0aVPdf//9evjhh9WpUyedO3dOgYGBtvqqVavqxRdf1NNPP60pU6YoIiLCNjsuNDRUo0eP1ujRoyVJFotFd955pxo2bGgL685e89VXX5WUvCZ9zZo1aUbgAaTFmnQAaRw7dkyTJk3Snj17dP78eVmtVklSbGysoqOjVa9ePVtAl5L/Ir7VoUOH9N1339ld03b8+HFCOgAA2ahevXqpvi5btqzOnTunQ4cO6dq1aypRokSq+hs3bqRa1pbiypUrOnv2bKq/5319fdW4cWPbZ4P0XhNAxhHSAaTRuXNnVapUSe+//77KlSsnq9WqOnXqKDEx0aX7r127ps6dO+u1115LU1e2bFl3NxcAANzC398/1dcmk0lWq1XXrl1T2bJltXXr1jT3FC1aNFteE0DGEdIBpHLhwgVFR0fr/fff17333itJ2r59u62+Ro0aWr58uRISEmxT5W5fW9aoUSN98cUXCgsLk58f/5sBAMAbNGrUSGfOnJGfn59Lm7cVKVJEZcqU0b59+3TfffdJSp7ufuDAgQyfpe7v7y+LxZKJVgP5DxvHAUilWLFiKlGihN577z3FxMTo22+/1ciRI231ffv2ldVq1dNPP62jR49q06ZNeuONNyQl/6u5JA0dOlQXL15Unz59tG/fPh0/flybNm3SoEGD+AsaAAAPadu2rcLDw9WtWzd9/fXXOnnypHbu3KmXX35Z+/fvt3vPc889p1mzZmnt2rWKjo7W8OHDdenSJdvf+a4KCwvTli1bdObMGV26dMkd3QHyLEI6gFR8fHy0cuVKRUZGqk6dOnrhhRc0e/ZsW31ISIjWr1+vqKgoNWjQQC+//LImTZokSbZ16uXKldOOHTtksVj04IMPqm7duhoxYoSKFi0qHx/+twMAgCeYTCZt2LBB9913nwYNGqTq1avr0Ucf1e+//64yZcrYvWfs2LHq06eP+vfvr/DwcBUqVEjt27dPtTeNK+bMmaPNmzerQoUKatiwoTu6A+RZ7O4OIMs+/vhjDRo0SFeuXFGBAgU83RwAAJBNrFaratWqpV69emn69Omebg6QJ7FYFECGLVu2THfeeafKly+vQ4cOaezYserVqxcBHQCAPOb333/X119/rVatWikhIUHz58/XiRMn1LdvX083DcizCOkAMuzMmTOaNGmSzpw5o7Jly6pnz5565ZVXPN0sAADgZj4+Plq6dKlGjx4twzBUp04dffPNN6pVq5anmwbkWUx3BwAAAADAS7CDEwAAAAAAXoKQDgAAAACAlyCkAwAAAADgJQjpAAAAAAB4CUI6AAAAAABegpAOAAAAAICXIKQDAAAAAOAlCOkAAAAAAHgJQjoAAAAAAF6CkA4AAAAAgJcgpAMAAAAA4CUI6QAAAAAAeAlCOgAAAAAAXoKQDgAAAACAl/BoSP/+++/VuXNnlStXTiaTSREREenes3XrVjVq1EiBgYGqWrWqli5dmu3tBAAAAAAgJ3g0pF+/fl3169fXggULXLr+xIkT6tSpk9q0aaOoqCiNGDFCgwcP1qZNm7K5pQAAAAAAZD+TYRiGpxshSSaTSWvWrFG3bt0cXjN27Fh99dVX+umnn2xljz76qC5fvqyNGzfmQCsBAAAAAMg+fp5uQEbs2rVLbdu2TVXWvn17jRgxwuE9CQkJSkhIsH1ttVp18eJFlShRQiaTKbuaCgCAywzD0NWrV1WuXDn5+LBdDAAA+VmuCulnzpxRmTJlUpWVKVNGcXFxunHjhgoUKJDmnlmzZmnq1Kk51UQAADLtjz/+0B133OHpZgAAAA/KVSE9M8aNG6eRI0favr5y5YoqVqyoEydOqHDhwll6dlJSkr777ju1adNG/v7+WW2qV6FvuRN9y53om2eYrWZdS7wmWc36NiZCS44sliR1vB6viudra0LSYJefFTGogiqVr5bptly9elWVK1fO8t9LAAAg98tVIT00NFRnz55NVXb27FmFhITYHUWXpMDAQAUGBqYpL168uEJCQrLUnqSkJAUHB6tEiRJe9+Ezq+hb7kTfcif6lrPMVrM++fkjvb9vth6+dl0vXrysKpIGGT66ooL6wnKfJvk8Jp+0f3XYvNC6pB6qUVC7du1SeHi47qxQQ35+me9fyveGZVgAACBXhfTw8HBt2LAhVdnmzZsVHh7uoRYBAHILs9WsFUdXKPq7yXrl/EU9nlJu+Gippb1mmB93en+KN3rW178a36GkpCQdLXhcle/IWkAHAAC4lUdD+rVr1xQTE2P7+sSJE4qKilLx4sVVsWJFjRs3Tn/++aeWLVsmSXrmmWc0f/58vfjii3riiSf07bff6tNPP9VXX33lqS4AAHKBdb+u1hvbJ6jLtet65eJlSRkP5xM61dLAFmHy82VjNwAAkH08GtL379+vNm3a2L5OWTs+YMAALV26VKdPn1ZsbKytvnLlyvrqq6/0wgsv6K233tIdd9yhDz74QO3bt8/xtgMAvJzFLN28rB+3vKwuB1aqi5KD+QUV1hrLPS6H8/Eda+qJlpUJ5wAAIEd4NKS3bt1azo5pX7p0qd17Dh48mI2tSj4Kx2w2y2KxOL0uKSlJfn5+unnzZrrX5jb0zTN8fX3l5+fHulTAkf8F73T9uEraNF6SVO9/RZ9b7tXopGcz9HIpU9sBAABySq5ak54TEhMTdfr0acXHx6d7rWEYCg0N1R9//JHnQhV985zg4GCVLVtWAQEBnm4K4D0sZmnvf2zBOyPMho8WWx7STPNjLl0/oVMtdW9YXkUK+DN6DgAAchwh/RZWq1UnTpyQr6+vypUrp4CAAKchzmq16tq1aypUqJB8fPLWBzn6lvMMw1BiYqL+/vtvnThxQtWqVfOq9gE55vbR8ltGxTOCNecAACA3IqTfIjExUVarVRUqVFBwcHC611utViUmJiooKCjPhSn65hkFChSQv7+/fv/9d1sbgTzv1lCeyUB+u4xMbSecAwAAb0JIt8PbghvyF37+kK8cWiVtGCMlXHHL41yd2j6+Y031aHQHU9oBAIDXIaQDAHKexSzFn5fWPJ25+9vPlLlOD3326+daeOhdGYaPrl5uqct/d0n3VjaDAwAA3oyQDgDIGSnT2rMwpf36/ROU0GSAvjyxUbNXt5MkJV29WzdP90r3Xqa1AwCA3ICQDrdp3bq1GjRooHnz5nnFcwB4D9OPK6X1wzJ0j+XBGfo8yEcLohZIkuJ8fGQ5sUw6sUySZBg+SrrYUgnnOjl9DuecAwCA3ISQDo/ZunWr2rRpo0uXLqlo0aK28tWrV8vf399zDQPgVhUvbJPfwQ9du3hUtMySPjn5f3r9wNzkMl/fVJckh/MWSjj3cLqPY2o7AADIbQjp8DrFixf3dBMAuIkparkaxroQ0AOLSB1na/25fZq+e7pumG+kuSQj4Zyp7QAAILfi00se0Lp1aw0bNkzDhg1TkSJFVLJkSU2cOFGGYUiSLl26pP79+6tYsWIKDg7WQw89pGPHjtnuX7p0qYoWLaqIiAhVq1ZNQUFB6tChg06dOmW7ZuDAgerWrVuq1x0xYoRat27tsF0fffSRmjRposKFCys0NFR9+/bVuXPnJEknT55UmzZtJEnFihWTyWTSwIEDbf0ZMWKE7Tmutn/Tpk2qVauWChUqpA4dOuj06dOZ+XYCcAeLWdrxtvy+GuH8uvYzpTHHpRd/k7luD4cBPelKA12LnpxuQB/fsaZiXnlIg++9k4AOAAByJT7B5BH//e9/5efnp7179+qtt97S3Llz9cEHH0hKDtj79+/XunXrtGvXLhmGoY4dOyopKcl2f3x8vF555RUtW7ZMO3bs0JUrV/Tkk09mqU1JSUmaPn26Dh06pIiICJ08edIWxCtUqKAvvvhCkhQdHa3Tp0/rrbfesvscV9v/xhtv6KOPPtL333+v2NhYjR49OkvtB5BJUSuk6SWkzRPt17ebnhzMJ16QwofKXKCoLibFaUHUAvsj6FZf3fzrUckIdPqyb/Ssr6fvq0I4BwAAuRrT3fOIChUq6M0335TJZFKNGjV0+PBhvfnmm2rdurXWrVunHTt2qEWLFpKkjz/+WBUqVFBERIR69uwpKTlQz58/X82aNZMkLVmyRHfddZf27t2r5s2bZ6pNTzzxhO33d955p95++23dfffdunbtmgoVKmSb1l66dOlUa9JvdezYMZfbv2jRIlWpUkWSNGzYME2bNi1T7QbggpSd2m8XtcJxOJekLvOlRo/bvlx/fL1m7Zmlq0lX7V6edLlRuju3M7UdAADkJYT0PKJ58+YymUy2r8PDwzVnzhwdOXJEfn5+tvAtSSVKlFCNGjV09OhRW5mfn5/uvvtu29c1a9ZUkSJFdPTo0UyH9MjISE2ZMkWHDh3SpUuXZLVaJUmxsbGqXbu2S884evSoS+0PDg62BXRJKlu2rG1qPQA3i1ohRTyb8fv+F9DNVrPiEuNksVo0frv9o9hc2bmdcA4AAPIiQjpc4uPjY1vjnuLW6ea3u379utq3b6/27dvr448/VqlSpRQbG6v27dsrMTHR7e27fTd4k8mUpr0A3ODAMmndcxm+zdx5vtSgj1b8vEyz9892eq0ro+fRMzoo0M/X6TUAAAC5EcMPecSePXtSfb17925Vq1ZNtWvXltlsTlV/4cIFRUdHpxrNNpvN2r9/v+3r6OhoXblyRbVq1ZIklSpVKs1GbFFRUQ7b88svv+jChQt69dVXde+996pmzZppRrYDAgIkSRaLxeFzatWq5VL7AWQji1m6fl7a8XaGA7rlgSla12CJ1hUqqIYfNUw3oCdebuI0oBcM8NWbvesT0AEAQJ5FSM8jYmNjNXLkSEVHR+uTTz7RO++8o+HDh6tatWrq2rWrnnrqKW3fvl2HDh1Sv379VL58eXXt2tV2v7+/v5577jnt2bNHkZGReuKJJ3T33XeradOmkqT7779f+/fv17Jly3Ts2DFNnjxZP/30k8P2VKxYUQEBAXrnnXf022+/ad26dZo+fXqqaypVqiSTyaQvv/xSf//9t65du5bmOa62H0A2ObRKev1OaXYV52vN7em2UIlNn9EPCbs0efdkp5caho8SL9yrhNP/cnjN+I41dWjyg+rekHPPAQBA3kVIzyP69++vGzduqGnTpho6dKiGDx+up59+WlLyJnCNGzfWww8/rPDwcBmGoQ0bNqSaIh4cHKyxY8eqb9++atmypQoWLKgPP/znbOP27dtr4sSJevHFF3X33Xfr6tWr6t+/v8P2lCpVSkuXLtVnn32m2rVr69VXX9Ubb7yR6pry5ctr6tSpeumll1SmTBkNGzbM7rNcaT+AbGBOkNY8LSVccXxNyk7tt/+aeEFrCxVU05VNtfHmRqcvk3S5ka79MtPp+nN2bgcAAPmFychnC3fj4uJUpEgRXblyRSEhIanqbt68qRMnTqhy5coKCgpK91lWq1VxcXEKCQmRj4/nPji2bt1aDRo00Lx58zJ1/9KlSzVixAhdvnzZVuYtfcsO3t63jP4c3iopKUkbNmxQx44d89w/YtC3HHZoVXJAd+a2ndpvtfrYak3e6Xz0fEyTMTJfuVvT1v3m8JrxHWvqiZaVvTKcu/N9c/Z3EwAAyF+871MPAMBzLGbp6pn0A3q3hXYDutlq1tKfljoN6KMaj9K+vpG6eaGl04D+eo96jJ4DAIB8h93dAQDJXDlabVS0FFxS8k3914fZataKoyvS3RhuRssZSrrSWDUnbnZ63Rs96+tfjVl7DgAA8h9Ceh6wdevWLN0/cOBADRw40C1tAZBLuXK0Wvf3ZC5YUnGJcdItJzB+efzLdMP5iIYjNKDOAH0R+ZfGfnHI4XXePL0dAAAgJxDSASA/s5il3e+mv3P7hHNae3KjJnzUMMMv0b1Ad/Wv1f9/Af2ww+te71FPve6ukOHnAwAA5CWEdADITyxm6ebl5N//uEraNN759YFFZHnoVX30yyeaEzknwy83tflU6aivPth+Uq9t+tXhdUxvBwAASEZIB4D84tAqacMY50eqpWg3XWrQV+v+/F4v73K+S7s9Y5qMUa/qj2rZzljN3B0tyX5AZ3o7AABAaoR0AMgPUs48d8X/jlZbfWy1JmcwoI9pMkZ9a/VVxMEz6W4Ox/R2AACAtAjpAJDXubJre4puC2Wu10vLf1rqdHr7qMaj1KVql1RlIQEh8vPx06p9sU7XnksEdAAAAEcI6QCQF6WsPY9akf6mcJLUfqbMdz+pFdGfanY6m8PNaDlDXat2tVvnSkBn/TkAAIBjLAJEhoSFhWnevHlOr0lMTFTVqlW1c+fOnGmUFzGZTIqIiHBYf+TIEd1xxx26fv16zjUK+U/UCml6CWl2FecBfVS0NOa4NPGC1pa6Qw0/vtvpUWqjGo/SwccPZjqgT+hUSzGvPERABwAAcIKQDrdbtGiRKleurBYtWni6KZl28uRJmUwmRUVFufW5tWvXVvPmzTV37ly3PhewObAs/antAYWk7u9JhUNlLlBUS48u14QdE5zeMq3FNA2sM1B+PvYnYDkL6F0rWXR0SlsNvvdONogDAABIB9PdnbBaDV2KT3RSb9XV+CQl+STIxyd7PngWCw6Qj48pW56dHQzD0Pz58zVt2rQsP8discjPL+/9iA4aNEhPPfWUxo0blyf7Bw86sExa95zza9pNl5oPkXz9tP74ek3fPV03zDec3uJservkPKDP7HaXCp49RDgHAABwEQnBiUvxiWo84xuPtiFyQluVKBSY7nWtW7dWnTp1JEkfffSR/P399eyzz2ratGkymZJD/qVLlzR8+HCtX79eCQkJatWqld5++21Vq1bN9pwvvvhCkyZNUkxMjMqUKaPnn39eo0ePdr29kZE6fvy4OnXqZCs7efKkKleurE8++URvv/22Dhw4oKpVq2rBggVq1aqVJGnr1q1q06aNNmzYoAkTJujw4cP6+uuvdd999+m1117Te++9pzNnzqh69eqaOHGi/vWvf6W6b+PGjXrppZf0yy+/KDw8XCtXrlRkZKRGjhypP//8Uw8//LA++OADBQcHS5K++eYbzZs3Tz/99JN8fX0VHh6ut956S1WqVJEkVa5cWZLUsGHy2txWrVpp69atkqTFixdrzpw5iomJUfHixdWjRw/Nnz/f1t/z58+re/fu2rRpk8qXL685c+aoS5d/Nthq166dLl68qG3btumBBx5w+XsLOOVKQO+2UGrQV5JktprTDegpO7U7Gj03W6xavOOEZm74xW796z3qqXuDUG3YcMi1PgAAAIDp7nnJf//7X/n5+Wnv3r166623NHfuXH3wwQe2+oEDB2r//v1at26ddu3aJcMw1LFjRyUlJUlKDti9evXSo48+qkOHDumll17SpEmTtHTpUpfb8MMPP6h69eoqXLhwmroxY8Zo1KhROnjwoMLDw9W5c2dduHAh1TUvvfSSXn31VR09elT16tXTrFmztGzZMi1atEg///yzXnjhBfXr10/btm1Ldd+UKVM0f/587dy5U3/88Yd69eqlefPmacWKFfrqq6/09ddf65133rFdHx8frxEjRmj//v3asmWLfHx81L17d1mtVknS3r17JSWH+dOnT2v16tWSpIULF2ro0KF6+umndfjwYa1bt05Vq1ZN1ZapU6eqV69e+vHHH9WxY0c99thjunjxoq0+ICBADRo00A8//ODy9xWwy2KWrp+XdrztOKC3m25bd35rQF8QtcBhQE9Ze97/rv4OA/rnkadU9eX/cxrQ2b0dAAAg4xhJz0MqVKigN998UyaTSTVq1NDhw4f15ptv6qmnntKxY8e0bt067dixw7ZW/OOPP1aFChUUERGhnj17au7cuXrggQc0ceJEWa1WhYaG6sSJE5o9e7YGDhzoUht+//13lStXzm7dsGHD1KNHD0nJYXfjxo368MMP9eKLL9qumTZtmtq1aydJSkhI0MyZM/XNN98oPDxcknTnnXdq+/bt+s9//mMbhZekGTNmqGXLlpKkJ598UuPGjdPx48d15513SpL+9a9/6bvvvtPYsWMlSV26dFFISIhtmcLixYtVqlQpHTlyRHXq1FGpUqUkSSVKlFBoaGiq1xk1apSGDx9uK7v77rtT9XPgwIHq06ePJGnmzJl6++23tXfvXnXo0MF2Tbly5fT777+79D0F7Dq0StowRkq44via/513fqu1MWudrj9Pb2q7lP4GcQR0AACAzGMkPQ9p3ry5bWq7JIWHh+vYsWOyWCw6evSo/Pz81KxZM1t9iRIlVKNGDR09elSSdPToUVvQTdGiRQvbM1xx48YNBQUF2a1LCdqS5OfnpyZNmtheO0WTJk1sv4+JiVF8fLzatWunQoUK2X4tW7ZMx48fT3VfvXr1bL8vU6aMgoODbQE9pezcuXO2r48fP66+ffvqzjvvVEhIiMLCwiRJsbGxDvt27tw5/fXXX+lOUb+1LQULFlRISEiq15akAgUKKD4+3ulzgFRSRs2vn5eunpHWPJ2hgG62mrX0p6VOA3pkv0inAd1sseq9748T0AEAALIRI+lOFAsOUOSEtg7rrVarrl67psKFCmXrxnG5ScmSJXX4sPMzkp0pWLCg7ffXrl2TJH311VcqX758qusCA1Ov0/f397f93mQypfo6pSxlKrsk9enTR2FhYXr//fdVrlw5Wa1W1alTR4mJjjcKLFCggEt9SO+1JenixYu29e9AuqJWpL9j+61uC+jpjZ5LySPoAb6O/3/zeeQpjf7M+dpyzj8HAADIOkK6Ez4+JqebtlmtVvlbExRSKDDbQnpG7NmzJ9XXu3fvVrVq1eTr66tatWrJbDZrz549tunuFy5cUHR0tGrXri1JqlWrlnbs2JHqGTt37lT16tXl6+vrUhsaNmyohQsXyjCMVKP6Ke257777JElms1mRkZEaNmyYw2fVrl1bgYGBio2NTTW1PasuXLigY8eO6f3337c9d/v27amuCQhIDiu3ziAoXLiwwsLCtGXLFrVp0yZLbfjpp59sm98BDlnM0u53nZ91frtbNoeTpNXHVmvyzslOb8nK7u2SNL5jTT3RsjI7uAMAALgBIT0PiY2N1ciRI/Xvf/9bBw4c0DvvvKM5c+ZIkqpVq6auXbvqqaee0n/+8x8VLlxYL730ksqXL6+uXZM/nI8aNUp33323pk+frp49e+q7777TggUL9O6777rchjZt2ujatWv6+eefbbvNp1iwYIGqVaumWrVq6c0339SlS5f0xBNPOHxW4cKFNXr0aL3wwguyWq265557dOXKFe3YsUMhISEaMGBAJr5LUrFixVS8eHG9//77Kl++vGJjY/XSSy+luqZ06dIqUKCANm7cqDvuuENBQUEqUqSIpkyZomeeeUalS5fWQw89pKtXr2rHjh167rl0dtW+xcmTJ/Xnn3+qbVvHszQAHVolffmClHTdtetHRUvBJSXff/63nl5AH9V4lPrV7pfp3dslprcDAAC4G8MeeUj//v1148YNNW3aVEOHDtXw4cP19NNP2+qXLFmixo0b6+GHH1Z4eLgMw9CGDRts07MbNWqkTz/9VCtXrlS9evU0c+ZMTZ061eVN46Tkde7du3fXxx9/nKbu1Vdf1auvvqr69etr+/btWrdunUqWLOn0edOnT9fEiRM1a9Ys1apVSx06dNBXX31lOyItM3x8fPThhx/qwIEDqlOnjl544QXNnj071TV+fn56++239Z///EflypWz/UPGgAEDNG/ePL377ru666679PDDD+vYsWMZev1PPvlEDz74oCpVqpTpPiCPMyckrzl3JaAHFpG6vycVDs1QQJ/RcoYG1hnoMKCvOXhK9aZ+7TSgv9GzPgEdAADAzUyGYRiebkROiouLU5EiRXTlyhWFhISkqrt586ZOnDihypUrO9z87FZWq1VxcXGpdgn3lNatW6tBgwaaN2+eW56Xlb79+OOPateunY4fP65ChQrZzkk/ePCgGjRo4Jb2ZYUn37fExERVq1ZNK1asSLNJX4qM/hzeKikpSRs2bFDHjh3TrI3P7fJN346sTg7ojrSbnmo6u4KKpgrnkvOAnt7ouSQlmC2qMWGjw/qMTG/PN+9bFvvm7O8mAACQvzDdHW5Xr149vfbaazpx4oTq1q3r6eZ4ldjYWI0fP95hQEf+ZTIs/+za7sht681vZ7aatfzIcs2JnGO3flqLaeperbvTdqS3QRzT2wEAALIXIR3ZIiNT5POTqlWrqmrVqp5uBryJxSyfPQvVJWqiFOXkugnnJD/HG1muP75e03dP1w3zDbv1rgT09DaIY/d2AACA7EdIzyO2bt3q6SY4FBYWpny2qgJwzf+OVkv37ITu7zkN6GarOcsB/fPIU04DevSMDgr0c+2UBwAAAGQeIR0APOHAMmmdC6cCpDOCbraatSBqQZYCeoLZ4nCKe8EAX83oXoeADgAAkEMI6QCQ01wJ6IFFpI6znQb0tTFrNWHHBIf16Z1/Ljlfg8755wAAADmPkA4AOSm9gN5+plSvt91d22+VXkCP7BepAN8Ap01JL6A/fV8Vp/cDAADA/QjpAJATLGZp97vS5ol2q38q96hqDJgn/8AC6T4q0ZKY7gh6egE9vSnuT7SsnG47AAAA4H6EdADIbodWSV++ICVdt1tt7vSWjv9VTDWcnF2eIrunuKesQWeKOwAAgGcQ0gEgO1nMTgO6usyXUfdR6a8N6T7KWUAfXHewhjYYKr90gr6zY9aGtK6ike2qE9ABAAA8iE9icFlYWJjmzZvn6WYAucvud50GdDV63KXHmK1mhwE92C84ywG9YIAvAR0AAMALMJIOANnlwDKHa9DVbaHUoK/Lj1p+ZLnd8mC/YE1oPsFpQDdbrFq844RmbvjFbj1T3AEAALwHId0Zq1W6cdFpvSn+quSbKPlk04fbAsWz79kAso+zXdzTOfv8dquPrdacyDlpyl2Z4r7m4Cm9vOYnxSda7NZzzBoAAIB3IaQ7c+OiNNvxEUQ+kopkdxvGHJcKlkz3statW6tOnTqSpI8++kj+/v569tlnNW3aNJlMJl26dEnDhw/X+vXrlZCQoFatWuntt99WtWrVbM/44osvNGnSJMXExKhs2bIaPHiwxo8fn21dA/Ici1m6eVmKWuF8BN2FgG62mhWXGKd1MevsBnRJ6QZ0s8XqNKC/3qOeet1dId22AAAAIOd4fOhkwYIFCgsLU1BQkJo1a6a9e/c6vX7evHmqUaOGChQooAoVKuiFF17QzZs3c6i13u2///2v/Pz8tHfvXr311luaO3euPvjgA0nSwIEDtX//fq1bt067du2SYRjq2LGjkpKSJEmRkZHq1auXHn30UR0+fFiTJk3SzJkztXTpUg/2CMglLGZp1wJpeonkf9hzFNC7zHdpivvamLVq+FFDtVrVymFAn9FyRrpr0BfvOEFABwAAyGU8OpK+atUqjRw5UosWLVKzZs00b948tW/fXtHR0SpdunSa61esWKGXXnpJixcvVosWLfTrr79q4MCBMplMmjt3rgd64F0qVKigN998UyaTSTVq1NDhw4f15ptvqnXr1lq3bp127NihFi1aSJI+/vhjVahQQREREerZs6fmzp2rBx54QBMnJoeLqlWrKioqSnPmzNETTzzhyW4B3stilvb+R9rkwowTFzeJS++INUma1mJausesrdoX63AN+hs96+tfje9Ity0AAADIeR4dSZ87d66eeuopDRo0SLVr19aiRYsUHBysxYsX271+586datmypfr27auwsDA9+OCD6tOnT7qj7/lF8+bNZTKZbF+Hh4fr2LFjOnLkiPz8/NSsWTNbXYkSJVSjRg0dPXpUknT06FG1bNkyzfOOHTsmi8X+SByQr0WtSB45d2NAd7aDe4ppLaape7XuTq9xtot79IwOBHQAAAAv5rGR9MTEREVGRmrcuHG2Mh8fH7Vt21a7du2ye0+LFi20fPly7d27V02bNtVvv/2mDRs26PHHHX/4TUhIUEJCgu3ruLg4SVJSUpJtqneKpKQkGYYhq9Uqq9UqBRWVRh1z+GzDMHTt2jUVKlQoVTh2q6CiyRvYuSCl7SlSfn/rf29v56333P77W5+Tct/tr5EbpfTNW/titVplGIaSkpLk6+uboXtTfqZv/9nOC7ypb6YfV8pv/TCXrjV3/t856E7anZSUJIth0W+XfnP6rKnNp+rhsIedfg8+izyl8RFH7Na99shd8jGsSkrKuZ97b3rf3M2dfcuL3x8AAJA5Hgvp58+fl8ViUZkyZVKVlylTRr/8Yn+KZt++fXX+/Hndc889MgxDZrNZzzzzjNPNzWbNmqWpU6emKf/6668VHBycqszPz0+hoaG6du2aEhMT/1ca4LwjwYG6mp2fd69ec+kys9ms3bt32/4RQpK+//57ValSRRUrVpTZbNa3335rG02/ePGioqOjFRYWpri4OFWpUkXff/99qvt3796tKlWq6Pr15DOerVarbt68meqa3Ozq1aueboJdiYmJunHjhr7//nuZzeZMPWPz5s1ubpX38HTffKxJ6nzIeUA/XL6vThVroSS/gjJO+UqnNji9PioxSl/Gf6mbm9Lur3Ff4H1qGdhSQaYg+f7iqw2/OH7WrrMmrfzN/j/s9KliUdDpQ9pw+pDTtmQXT79v2ckdfYuPj3dDSwAAQF6Qq3Z337p1q2bOnKl3331XzZo1U0xMjIYPH67p06fb1lLfbty4cRo5cqTt67i4OFWoUEEPPvigQkJCUl178+ZN/fHHHypUqJCCgoLSbY9hGLp69aoKFy6cfSPpLvLz89OpU6c0depUPf300zpw4IDef/99zZ49Ww0bNlSXLl00cuRILVy4UIULF9a4ceNUvnx5Pfroo/L399fYsWPVrFkzvf322+rVq5d27dqlDz74QPPnz7d9n3x8fBQUFJTm+5bbeNP7Zs/NmzdVoEAB3XfffS79HN4qKSlJmzdvVrt27eTv759NLfQMj/fNapbPvvfl+42DTeEkWdpOl/Xup1TTx081XXik2WrWpYRLmrDG8RT3yZ0mq1hQMefPsVi1dFesVu761W79zG53qWfj8i60yP08/r5lI3f2La/84ycAAMg6j4X0kiVLytfXV2fPnk1VfvbsWYWGhtq9Z+LEiXr88cc1ePBgSVLdunV1/fp1Pf3003r55ZflY+c88cDAQAUGpj3uyN/fP82HKovFIpPJJB8fH7vPul3KVOmUezytf//+unnzppo3by5fX18NHz5czzzzjEwmk5YuXarhw4erS5cuSkxM1H333acNGzbYvjdNmjTRp59+qkmTJmnGjBkqW7asxo0bp4EDB6bqm7f0NSu87X27nY+Pj0wmk92fUVdl5V5v55G+Ra2QIp51XH/PSKnNy/L19ZOrCxRc2SCusH9hFS9Y3Oku7p9HntLozxyPjnvLLu78TKb/DAAAAMmDIT0gIECNGzfWli1b1K1bN0nJ4WnLli0aNsz+VNL4+Pg0oSplze6ta6jzK39/f82bN08LFy5MU1esWDEtW7bM6f09evRQjx49JCW/F7eP7Jw8edJtbQVyjQPLpHXPOa4PKCS1eVnydf1/p6uPrdbknZOdXlPYv7DGNRvnNKA72yBO8p6ADgAAANd5dLr7yJEjNWDAADVp0kRNmzbVvHnzdP36dQ0aNEhS8shw+fLlNWvWLElS586dNXfuXDVs2NA23X3ixInq3LlzhjfYAgCnLGZp97uOzzyXkgN6p7luD+jf9vxWxYKKEdABAADyIY+G9N69e+vvv//WpEmTdObMGTVo0EAbN260bSYXGxubauR8woQJMplMmjBhgv7880+VKlVKnTt31iuvvOKpLgDIi9Kb3i5J7WdKTf/t1oBeyL+Qxjcbr1LBpZw+J72AzjnoAAAAuZfHN44bNmyYw+ntW7duTfW1n5+fJk+erMmTnY9C5Ue3f68AZFJ609vbTZeaD8lQODdbzVp+ZLnmRM6xWz+i4QgVOF5A3Tt2V4HAAk6f5Sygj+9YU0+0rCw/X+/bawEAAACu8XhIBwCvEbXCeUDvMl9q9LjLjzNbzVpxdIVm75/t8JppLabp4bCHteHEBqfT2yXnAZ3p7QAAAHkDIR0AJMmc4HyKe7eFUoO+Lj/Old3bp7WYpu7VuispKSnd5xHQAQAA8gdCOgA4W4OeientGQnoriCgAwAA5B+EdAD5m7M16O2mSy2fz9DjzFZzugF9RssZ6lq1q0vP+zzyFAEdAAAgHyGkA8if0jtiLaBQ8gh6Bi0/stxh3ZgmY9S3Vt90156nMFusGv3ZIbt1BHQAAIC8iZAOIP9J74i1TJx/LiUfsWZvB/fBdQdraIOhLofzFIt3nLBbTkAHAADIuwjpAPKX9AJ6JtagS87PQM9oQDdbrFq844RmbvglTd34jjUJ6AAAAHkYh+nmEa1bt9aIESM83Qwbb2sPICn9Hdy7zE9eg+7GgD6j5YwMBfQ1B0+p3tSv7QZ0SXqiZeUMtQ0AAAC5CyPpTlgNqy4nXHZcb7XqasJVmW+a5eOTPf/eUTSwqHxMOfNvKYmJiQoICMiR1wJy3KFV0pqnHddn8Ii1FM4C+rQW01zeIE5KHkF/ec1Pik+02K1/o2d9+fnyb6sAAAB5GSHdicsJl9VqVSuPtmFb720qHlTc6TUDBw7Utm3btG3bNr311luSpJiYGM2cOVPffvutzpw5o4oVK2rIkCEaPnx4qvsuX76su+++WwsWLFBgYKBOnDihnTt3asiQIfrll19Up04dTZgwQd27d9fBgwfVoEEDSdJPP/2kMWPG6IcfflDBggX14IMP6s0331TJkiXttufEiRMKCwvLlu8RkC6LWfryBft194yU2ryc4dFzs9Ws5UeW212DLmXsiLUUS3fFOgzor/eop381viNDzwMAAEDuQ0jPA9566y39+uuvqlOnjqZNmyZJKlasmO644w599tlnKlGihHbu3Kmnn35aZcuWVa9evWz3btmyRSEhIdq8ebMkKS4uTp07d9ZDDz2kRYsW6cKFCxo5cmSq17t8+bLuv/9+DR48WG+++aZu3LihsWPHqlevXvr222/ttqdUqVI59N0A7Nj7HynpetrygEKZCujpnYOemYC+66xJK3f9arfujZ71CegAAAD5BCE9DyhSpIgCAgIUHBys0NBQW/nUqVNtv69cubJ27dqlTz/9NFVIL1iwoD744APbNPdFixbJZDLpvffeU2JiokJCQnT69Gk99dRTtnvmz5+vhg0baubMmbayxYsXq0KFCvr1119VvXp1u+0BcpzFLMWflzaNt1+fyR3cHU1vlzIX0D+LPKWVv/narYue0UGBfvbrAAAAkPcQ0vOwBQsWaPHixYqNjdWNGzeUmJhom66eom7duqnWoUdHR6tevXoKCgpSYmKiJKlp06ap7jl06JC+++47FSpUKM1rHj9+XNWrV3d/Z4CMsJiTR88dhXNJmnBO8gvM0GOzI6Cv2her8RFH7Na90bM+AR0AACCfIaQ7UTSwqLb13uaw3mq16urVqypcuHC2bhyXGStXrtTo0aM1Z84chYeHq3Dhwpo9e7b27NmT6rqCBQtm+NnXrl1T586d9dprr6WpK1u2bKbaC7hNekesSVL7mRkO6Gtj1joN6DNazsjQJnFSckAf+8Vhu3WsQQcAAMifCOlO+Jh8nG7aZrVa5Zfop5CgkGwL6a4KCAiQxfLPhlM7duxQixYtNGTIEFvZ8ePH031OjRo1tHz5ciUkJNjK9u3bl+qaRo0a6YsvvlBYWJj8/Oz/CN3eHiBHuBLQAwpJTf+docearWaHa9BHNR6lfrX7ZeiYNUn6PPKU04DOWegAAAD5E2f55BFhYWHas2ePTp48qfPnz6tatWrav3+/Nm3apF9//VUTJ05ME7bt6du3r6xWq/79738rOjpamzZt0htvvCFJMplMkqShQ4fq4sWL6tOnj/bt26fjx49r06ZNGjRokC2Y394eq9WafZ0HpOQp7ukF9MAimVqHvvzIcrvl01pM08A6AzMc0M0Wq0Z/dshuHQEdAAAgfyOk5xGjR4+Wr6+vateurVKlSql9+/Z65JFH1Lt3bzVr1kwXLlxINaruSEhIiNavX69Dhw7pvvvu08SJEzVp0iRJUlBQkCSpXLly2rFjhywWix588EHVrVtXI0aMUNGiRW0zCm5vT2xsbPZ1HrCYpe9ecVzffqY05rj04m9S/d4ZevTqY6vtHrM2qvGoDK8/l5ID+tzN9ndxn9ntLgI6AABAPsd09zyievXq2rVrV6qyJUuWaMmSJanKZs2aZfv90qVL7T6rRYsWOnjwoOLi4hQSEqJPPvlE/v7+qlixou2aatWqafXq1RlqD5AtDq1KPgPd3hFrmTwDPYWzjeL61e6X4eetOXhKL6/5ye5Z6F0rWdSzcfkMPxMAAAB5CyEdaSxbtkxhYWEqUqSIjh8/bjsDvUCBAp5uGpCaxew4oEuZDuhmq1nLjyy3O4IuJW8Sl5kp7o4CuiS1KmtkuJ0AAADIewjpSOPMmTOaNGmSzpw5o7Jly6pnz5565RUnU4kBT9n7H8cBvdvCTAX0tTFrHW4SJyWvQ8/oLu6StHjHCYcB/bVH7pLvaftr1AEAAJC/ENKRxosvvqjRo0fbprt7eud6wC6L2fE56N0WSg36ZviRrgT0zKxDX7UvVjM3/GK37o2e9dW1XhltIKQDAABAhHQAuVX8efvlE85l+Ax0s9WsSzcvZVtAd3TUWvSMDgr081VSUlKGnwsAAIC8iZBuh2GwNhSew8+fCxydh95+ZoYDenqj51LyGvTMTHF3dhb6Gz3rK9DPN8PPBAAAQN5GSL+Fv7+/JCk+Pp5N0uAx8fHxkv75eURqph9XSuuH2a+sl/Hj1Rzt3i5Jg+sO1tAGQzO8SZwkJZgtTs9C/1fjOzL8TAAAAOR9hPRb+Pr6qmjRojp37pwkKTg4WCaTyeH1VqtViYmJunnzZp5bt03fcp5hGIqPj9e5c+dUtGhR+foyyno7k2GRn6OAHlhECirq8rPSC+jBfsGZDuifR55yGtA5Cx0AAACOENJvExoaKkm2oO6MYRi6ceOGChQo4DTM50b0zXOKFi1q+znELaxm1Ty92n5dQCGp42yXd3NfG7PWaUAv7F9Y45qNc3tAH9+xJgEdAAAAThHSb2MymVS2bFmVLl063c2ckpKS9P333+u+++7Lc1OT6Ztn+Pv7M4Juz6FV8vvyBVW3d9zaPSMzdB662Wp2uAZ9VONR6lK1i0ICQjIV0M0Wq8OAXjDAV0+0rJzhZwIAACB/IaQ74Ovrm25Y8vX1ldlsVlBQkNeFvayib/AaFrO0YYxMjs5Dz0BAl6RLNy/ZLc/s7u23WrzjhN3yggG+mtG9jvx8vWd5BQAAALwTIR2Ad7t5WUq4Yr+u28IMjaCvOLpCs/fPTlM3qvGoLAd0R2ehD2ldRSPbVSegAwAAwCWEdADeLWqF/fJuC6UGfV16RHrHrHWp2iUzLbNxdhY6AR0AAAAZQUgH4L0OLJM2T0xbPipaKuza5nrp7eJe2L+wQgJCMttCpwH9jZ71CegAAADIEEI6AO90YJm07jn7dcEl073dbDVr+ZHlmhM5x+E1wX7Bmd7FXXIe0DkLHQAAAJlBSAfgfaJWOAzo5s7z5edkHbqztee3GtNkjPrW6pttAZ2j1gAAAJAZhHQA3sViliKetVt1sOKTqlPvUYe3rj++XtN3T9cN8w2H14xqPEr9avfLdDiXks9CJ6ADAAAgOxDSAXiXm5ftFps7vaXYv4qpjoPbzFZzugHdHcesJZgtDs9CJ6ADAAAgq9jRCID3sJilXQvSlrebLqPBY05vXX5kudOAPqPljCwH9DUHT6nGhI126wjoAAAAcAdG0gF4h0OrpC9fkJKup61zctRaehvEZXXtue11LFa9vOYnu3XjO9YkoAMAAMAtCOkAPM9iljaMsR/QJSmoqGQ10hSntwY9sl+kAnwD3NLExTtOKD7Rkqa8YICvnmhZ2S2vAQAAADDdHYDn3bwsJVyxX9dtoWRnN/f01qDPaDnDbQF91b5Yzdzwi/3X6V6Hs9ABAADgNoykA/Asi1mKv2C/rttCh1Pdna1Bn9ZimrpW7eqW5jnbyT16RgcF+vm65XUAAAAAiZAOwJOiVjg8bk2joqXCoXarVh9b7XAN+oyWM9wW0M0Wq8Od3N/oWZ+ADgAAALcjpAPIeRaztPtdafNEx9c42Oht/W/rNXn3ZLt17lyDLiWvQ7fn9R719K/Gd7jtdQAAAIAUhHQAOcvZ6HmKwCLJm8XdxmJYHAZ0d65BlxyvQ2cndwAAAGQndjsCkHMOLHMtoHecnWazOLPVrC03t9i9xZ1r0KXkgO5oHTo7uQMAACA7MZIOIGccWCate85xfbvpyZvEBRVNE9DXxqzVhB0T7N42qvEoda/W3W3NdBbQ3+hZn53cAQAAkK0I6QCylyvrzx3s4m62mrX8yHKHm8RJUr/a/dzRSknOd3JnHToAAAByAiEdQPZJb/15u+lS8yF2z0F3NnqeYkbLGfJzsMFcRjnbyf31HvVYhw4AAIAcQUgHkD3Sm97eZb7U6PE0xa6MnkvuPWpNcr6TOwEdAAAAOYWQDsD9MhnQXRk9H9FwhAbUGeC2EXSJndwBAADgPQjpANwraoXzgO5g/bkrAf2R4EfUv1Z/twZ0Z+vQ2ckdAAAAOY1tigG4j8XseA16u+nSxAsON4hzFtBHNR6lvY/uVaOARu5qqSQpwWxxuA6dndwBAADgCYykA3Cf3e/aL3cwvT3F8iPLHdalrD1PSkrKautS+TzylNON4tjJHQAAAJ7g8WGiBQsWKCwsTEFBQWrWrJn27t3r9PrLly9r6NChKlu2rAIDA1W9enVt2LAhh1oLwKEDy+wfs9ZuutOAvvrYarubxA2uO1gHHz/o1s3hUjgL6KxDBwAAgCd5dCR91apVGjlypBYtWqRmzZpp3rx5at++vaKjo1W6dOk01ycmJqpdu3YqXbq0Pv/8c5UvX16///67ihYtmvONB/APZxvFNR/i8LbVx1Zr8s7JduuGNhjq1rXnKZwdtVYwwJd16AAAAPCoTI2kf/fdd2558blz5+qpp57SoEGDVLt2bS1atEjBwcFavHix3esXL16sixcvKiIiQi1btlRYWJhatWql+vXru6U9ADLIYpZ2vO04oHdbaPcMdMl5QHfn+ee3c3TUWsEAX83oXod16AAAAPCoTH0K7tChg+644w4NGjRIAwYMUIUKGZ8ampiYqMjISI0bN85W5uPjo7Zt22rXrl1271m3bp3Cw8M1dOhQrV27VqVKlVLfvn01duxY+fr62r0nISFBCQkJtq/j4uIkSUlJSVle45pyv7vXynoD+pY75WTfTIc/le//jZEp6brdenOnt2Tc1VO6rS1mq1kroldo3sF5du+b1GySOlbqmKYP7ujbZ5Gn7B619sx9lTX8/iry8/XxyM8FP5O5kzv7lhe/PwAAIHNMhmEYGb3p/Pnz+uijj/Tf//5XP//8s+6//349+eST6tatmwICAlx6xl9//aXy5ctr586dCg8Pt5W/+OKL2rZtm/bs2ZPmnpo1a+rkyZN67LHHNGTIEMXExGjIkCF6/vnnNXmy/RG5KVOmaOrUqWnKV6xYoeDgYBd7DOBWJsOihw4Plb8l3m79wYpPKrZEqzTlUYlRWhe/TolKtHtf9wLd1TiwsVvbmmLXWZNW/mb/H/PmNjfL15QtLwu4JD4+Xn379tWVK1cUEhLi6eYAAAAPylRIv9WBAwe0ZMkSffLJJ5Kkvn376sknn0x3CnpmQnr16tV18+ZNnThxwjZyPnfuXM2ePVunT5+2+zr2RtIrVKig8+fPZ/mDUFJSkjZv3qx27drJ398/S8/yNvQtd8qxvl0/L/95Ne1WmTu9JaPBY2nLrWa1+ryVbphv2L1vUrNJ6lalm8OXzErfVh/8U2NX/2y37rVH7tIjDctn6Hnuxs9k7uTOvsXFxalkyZKEdAAAkPWN4xo1aqTQ0FCVKFFCr776qhYvXqx3331X4eHhWrRoke666y6795UsWVK+vr46e/ZsqvKzZ88qNDTU7j1ly5aVv79/qqnttWrV0pkzZ5SYmGh3FD8wMFCBgYFpyv39/d32gdGdz/I29C13yva+/fyZ/fJuC+Vn5xx0Sfr4p48dBvRpLaape7XuLr10RvtmtlgdBvTXe9Tzqp3c+ZnMndzRt7z6vQEAABmX6R2SkpKS9Pnnn6tjx46qVKmSNm3apPnz5+vs2bOKiYlRpUqV1LNnT4f3BwQEqHHjxtqyZYutzGq1asuWLalG1m/VsmVLxcTEyGq12sp+/fVXlS1b1uVp9gCyyNFRa6OiJQcB3dExa1LyJnGuBvTMcLRRnLcFdAAAAEDK5Ej6c889p08++USGYejxxx/X66+/rjp16tjqCxYsqDfeeEPlypVz+pyRI0dqwIABatKkiZo2bap58+bp+vXrGjRokCSpf//+Kl++vGbNmiVJevbZZzV//nwNHz5czz33nI4dO6aZM2fq+eefz0w3AGSExSztftd+QJek4JJ2i9fGrHW4i3tkv0gF+GbfP7Ct2hdrd6M4zkIHAACAt8pUSD9y5IjeeecdPfLII3ankkvJ09nTO6qtd+/e+vvvvzVp0iSdOXNGDRo00MaNG1WmTBlJUmxsrHx8/hnsr1ChgjZt2qQXXnhB9erVU/ny5TV8+HCNHTs2M90A4KpDq6QvX5Ac7OTu6Kg1s9WsCTsm2L1lRssZ2RrQP488pbFfHLZbx1noAAAA8FaZCumTJ09WixYt5OeX+naz2aydO3fqvvvuk5+fn1q1Sru78+2GDRumYcOG2a3bunVrmrLw8HDt3r07M80GkBkWs/OA3mW+w2nucYlxdsuntZimrlW7uquFaZgtVo3+7JDdujd61ucsdAAAAHitTH1SbdOmjS5evJim/MqVK2rTpk2WGwXAi+x+13lAb/S4w1vXxaxLUzaq8ahsXYMuOV+H/q/Gd2TrawMAAABZkamRdMMwZDKlPVT4woULKliwYJYbBcBLRK1wvAa920KHI+iS483iulTt4q7W2cU6dAAAAORmGQrpjzzyiCTJZDJp4MCBqdajWywW/fjjj2rRooV7WwjAMyxmKeJZ+3UTzkl+9vejkJxvFhcSkH1nQLMOHQAAALldhkJ6kSJFJCWPpBcuXFgFChSw1QUEBKh58+Z66qmn3NtCAJ5x87L98m4LnQb09DaL8/PJ1ASedLEOHQAAAHlBhj4tL1myRJIUFham0aNHM7UdyMt+XJW2rN10p1PcJWn5keV2y7N7szjWoQMAACAvyPTu7gDyMHOCtGl82nInAd1sNWv5keV216Fn92Zxn0eeYh06AAAA8gSXQ3qjRo20ZcsWFStWTA0bNrS7cVyKAwcOuKVxADwgaoXjtehBRe0Wr41Z63CKuyT1q93PDQ2zz9k0d9ahAwAAILdxOaR37drVtlFct27dsqs9ADzpwDJp3XP269rPlHxT/y/D2eh5iuxchy45nubOOnQAAADkRi5/cr51ijvT3YE8KGqF44AeUEhq+u9URemNnkvZvw7d2TR31qEDAAAgN2KYCYDz49YCCkmd5qYaRV99bHW6AX1GyxnZug49wWxhmjsAAADyHJdH0osVK+Z0HfqtLl68mOkGAfCA3e/aL283XWo+JE1Ad3QGupS8SVy/2v2ydYr755GnOG4NAAAAeZLLn6LnzZuXjc0A4BEWc3JA3zwxbV276VLL51MVpRfQZ7Scka3T2yVp9cE/NXb1z3brmOYOAACA3M7lkD5gwIDsbAeAnOZsF3cpeQT9f9LbIC4nRs8lyWLIYUAvGODLNHcAAADkei5/oo6Li1NISIjt986kXAfAS6UX0LsttE1xX398vabvnq4b5ht2L53WYlq2rj1PYbZYteEP+9PYCwb4akb3OkxzBwAAQK6XoTXpp0+fVunSpVW0aFG769MNw5DJZJLFYnFrIwG4kbNN4iSpy3ypQV9JUqIlUeO3j3d4aU4F9DUHT+nlNT8pPjFtCB/SuopGtqtOQAcAAECe4HJI//bbb1W8eHFJ0nfffZdtDQKQzRxtEiclj6D/L6Cnd8RaTo6gJwd0+//4R0AHAABAXuJySG/VqpXd3wPIRaJW2N8k7p6RUpuXJV+/dNefSzmzQVyKxTtOOAzo7OQOAACAvCbTuzxdunRJH374oY4ePSpJql27tgYNGmQbbQfgZZxNc2/zsswmacXPyzR7/2ynj4nsF6kA34BsaGBaq/bFauaGX+zWvdGzPju5AwAAIM/J1BDU999/r7CwML399tu6dOmSLl26pLfffluVK1fW999/7+42AnCHvf+xX95todaf/D+1+KSF04Ae7BesmffMzNGAPvaLw3bromd0IKADAAAgT8rUSPrQoUPVu3dvLVy4UL6+vpIki8WiIUOGaOjQoTp82P4HawAeYDFL8eelTXY2gGs3XeZ6vTRr5X0Od2+Xcu6ItRSfR55yGNBfe+QuBfr55kg7AAAAgJyWqU/cMTEx+vzzz20BXZJ8fX01cuRILVu2zG2NA5BFh1ZJG8ZICVfs1zcforjEOF1NuurwETm5/lxK3ihu9GeH7Nb1qWLRIw3L51hbAAAAgJyWqZDeqFEjHT16VDVq1EhVfvToUdWvX98tDQOQRRaz84DefqbMJumjIx/ZrR7TZIz61uqbY6PnKRbvOGG3fGa3u1TwrP3wDgAAAOQVLn/6/vHHH22/f/755zV8+HDFxMSoefPmkqTdu3drwYIFevXVV93fSgAZF3/eYUA3AgpqeaFgvf5RQ7v13/b8VqWCS2Vn6+xytFHc+I411bNxeW3YQEgHAABA3uZySG/QoIFMJpMMw7CVvfjii2mu69u3r3r37u2e1gHIFNOPK6X1w+zWJfoX0OQiQfrywFyH9xcLKpZdTXPI2Tr0J1pWlmG1fwwbAAAAkJe4HNJPnLA/BRWAd6lw4Qf5HXzfbl2X8mUV6+8ni8nk8P4ZLWfk+BR3Z+vQU85CTyKkAwAAIB9w+ZN4pUqVsrMdANzBalajWPsBPc7H5FJAz8lN4lI4Wof+eo96HLUGAACAfCVLw2VHjhxRbGysEhMTU5V36dIlS40CkDk+exfZLb9uMmlWieIOA7qnNomTnK9D73V3hRxvDwAAAOBJmfpE/ttvv6l79+46fPhwqnXqpv8FAIuFaalAjjuwTL5bpqQpfr9IiBYUK2I3oHsynEvpr0MHAAAA8hufzNw0fPhwVa5cWefOnVNwcLB+/vlnff/992rSpIm2bt3q5iYCSFfUCmndc3ar7AX0wXUH6+DjB9X/rv4eC+iurEMHAAAA8ptMfTrftWuXvv32W5UsWVI+Pj7y8fHRPffco1mzZun555/XwYMH3d1OAI5YzFLEs3arXi6Zdop7sF+whjYY6rFwnoJ16AAAAEBamRqqslgsKly4sCSpZMmS+uuvvyQlby4XHR3tvtYBSN/e/9gtnliyuNYVLpSqLNgvWBOaT/B4QGcdOgAAAGBfpj6p16lTR4cOHVLlypXVrFkzvf766woICNB7772nO++8091tBOCIxSxtGp+m+I3iRRVxW0D39PrzFKv2xbIOHQAAAHAgU5/WJ0yYoOvXr0uSpk2bpocfflj33nuvSpQooVWrVrm1gQCc2P2u3eLlIYVtvx9cd7BXTG+XnAd01qEDAAAAmQzp7du3t/2+atWq+uWXX3Tx4kUVK1bMtsM7gGwWtULaPDFN8evFi6Zah/547ce9IqA728mddegAAABAsix/cv/jjz8kSRUqsI4UyDFONotbccsouiSFBITkRIuccraT++s96rEOHQAAAPifTM0tNZvNmjhxoooUKaKwsDCFhYWpSJEimjBhgpKSktzdRgC3c7BZ3O27uc9oOcMrRtGd7eROQAcAAAD+kalP788995xWr16t119/XeHh4ZKSj2WbMmWKLly4oIULF7q1kQBuYU5wuFncrbu5z2g5Q12rds3JltnFTu4AAACA6zIV0lesWKGVK1fqoYcespXVq1dPFSpUUJ8+fQjpQHaJWuFwmnvKZnEdgjpoWrdpKhBYICdbZhc7uQMAAAAZk6mQHhgYqLCwsDTllStXVkBAQFbbBMCeA8ukdc/ZrUrZLG5q86ny/cXXK6a4s5M7AAAAkHGZ+pQ8bNgwTZ8+XQkJCbayhIQEvfLKKxo2bJjbGgfgf5wE9Osmk1aEFFZkv0h1vrNzDjfMPnZyBwAAADLH5eG2Rx55JNXX33zzje644w7Vr19fknTo0CElJibqgQcecG8LgfwunYA+o2RxTb93lgJ8A5Rk9fzGjezkDgAAAGSeyyG9SJEiqb7u0aNHqq85gg3IBk4C+hvFi2p5SGHtffyAAny9Z5kJO7kDAAAAmedySF+yZEl2tgPA7ZwE9Ikli+vrYqU1vfkErwnoZotVi3ecYCd3AAAAIAuytLvU33//rejoaElSjRo1VKpUKbc0CsjvLJFL5bt+uN26iSWLq0rrydpRu59XbBAnSWsOntLLa35SfKLFbj07uQMAAACuydTGcdevX9cTTzyhsmXL6r777tN9992ncuXK6cknn1R8fLy72wjkKwc3jnQa0Bu1n6uBdQZ6TUA3W6xOAzo7uQMAAACuy9Qn55EjR2rbtm1av369Ll++rMuXL2vt2rXatm2bRo0a5e42AvnGgU2j1XD3h3brUgJ692rdc7hVzi3eccJhQGcndwAAACBjMjUU98UXX+jzzz9X69atbWUdO3ZUgQIF1KtXLy1cuNBd7QPyDbP5phrtet9unbcG9FX7Yu2uQZeSR9AJ6AAAAEDGZCqkx8fHq0yZMmnKS5cuzXR3IJNu7nhLheyUTyxZXE06zFPXql1zvE3OODsLPXpGBwX6+eZwiwAAAIDcL1PT3cPDwzV58mTdvHnTVnbjxg1NnTpV4eHhbmsckF+s+3W1Cn03M035D7Uf1OQhx7wuoDs7C/2NnvUJ6AAAAEAmZWokfd68eerQoYPuuOMO1a9fX5J06NAhBQUFadOmTW5tIJCXma1mLT+yXOe/nWy3/q6HF3jNBnG3unIjyW45a9ABAACArMnUp/+6devq2LFj+vjjj/XLL8nrUfv06aPHHntMBQoUcGsDgbxqbcxaTdgxQd2vXtO0i5fT1L9VqoyGBhXP+Ya54IsDp9KUcRY6AAAAkHUZDulJSUmqWbOmvvzySz311FPZ0SYgz1t9bLUm75ycHNDPX7R7TZUHX/fKUXRHm8X1aMQIOgAAAJBVGV6T7u/vn2otujssWLBAYWFhCgoKUrNmzbR3716X7lu5cqVMJpO6devm1vYA2cmVgG7pOl8PV+uWsw1zgbPN4ooU8M/h1gAAAAB5T6Y2jhs6dKhee+01mc3mLDdg1apVGjlypCZPnqwDBw6ofv36at++vc6dO+f0vpMnT2r06NG69957s9wGIKe4EtDVZb58Gz6esw1zQYLZ4nSzOD/fTP3vBAAAAMAtMjWXdt++fdqyZYu+/vpr1a1bVwULFkxVv3r1apefNXfuXD311FMaNGiQJGnRokX66quvtHjxYr300kt277FYLHrsscc0depU/fDDD7p8+XJmugHkqJSA3iWdgK5G3hfQP4885TCgs1kcAAAA4D6ZCulFixZVjx49svziiYmJioyM1Lhx42xlPj4+atu2rXbt2uXwvmnTpql06dJ68skn9cMPPzh9jYSEBCUkJNi+jouLk5S8tj4pyf4O1a5KuT+rz/FG9M29Io5HaNqeafI1DL3iIKCbO70lo+6jUhbalR19+yzylMZHHLFbN7Z9dXVvEJoj30t+JnMn+paxZwEAAGQopFutVs2ePVu//vqrEhMTdf/992vKlCmZ3tH9/PnzslgsKlOmTKryMmXK2HaNv9327dv14YcfKioqyqXXmDVrlqZOnZqm/Ouvv1ZwcHCG22zP5s2b3fIcb0Tfsm5/wn5F3IiQJPWLu2r3moMVn1TsX8Wkvza45TXd1be950z6+Lj9M88DfQyVuXJEGzbYD/DZhZ/J3Im+ORcfH++GlgAAgLwgQyH9lVde0ZQpU9S2bVsVKFBAb7/9tv7++28tXrw4u9qXytWrV/X444/r/fffV8mSJV26Z9y4cRo5cqTt67i4OFWoUEEPPvigQkJCstSepKQkbd68We3atZO/f97aNIu+ZY3ZatbVxKtaf2K9Ig5GSJK6X72m0XaOWrM8MEV1mg9THTe8rjv7ZrZYNXzKN3brCgb4amrnWurcoFyWXiMj+JnMneiba1JmeQEAAGQopC9btkzvvvuu/v3vf0uSvvnmG3Xq1EkffPCBfHwyvmlUyZIl5evrq7Nnz6YqP3v2rEJDQ9Ncf/z4cZ08eVKdO3e2lVmt1uSO+PkpOjpaVapUSXVPYGCgAgMD0zzL39/fbR8Y3fksb0PfMsZsNWvF0RWavX92qnJnG8X5tnhOvr7uPWrNHX2Lu2WZyK3Gd6ypJ1pW9thGcfxM5k70Lf1nAAAASBnc3T02NlYdO3a0fd22bVuZTCb99ddfmXrxgIAANW7cWFu2bLGVWa1WbdmyReHh4Wmur1mzpg4fPqyoqCjbry5duqhNmzaKiopShQoVMtUOwB3WH1+vFp+0SBPQnW4U122h5OaA7i5fHDiVpmx8x5p6+r4q7OQOAAAAZJMMpQOz2aygoKBUZf7+/lna8GbkyJEaMGCAmjRpoqZNm2revHm6fv26bbf3/v37q3z58po1a5aCgoJUp07qScFFixaVpDTlQE4yW82atWeWbphvpCp3tlGcusyXGvTNgdZl3Kp9sZq5Ie2+ED0asYs7AAAAkJ0yFNINw9DAgQNTTR+/efOmnnnmmVTHsGXkCLbevXvr77//1qRJk3TmzBk1aNBAGzdutG0mFxsbm6mp9EBOikuM09WktJvCOdoozluPWpOSj1sb+8Vhu3VFCjAlFwAAAMhOGQrpAwYMSFPWr1+/LDdi2LBhGjZsmN26rVu3Or136dKlWX59ILPMVrPiEuP00ZGP0tQ52ihO7aZ7bUBPMFscnof+Rs/6THMHAAAAslmGQvqSJUuyqx1ArrM2Zq0m7Jhgt87ZRnFqPiQbW5V5n0eechjQX+9RT/9qzFR3AAAAILsxLAZkwupjqzMX0L10ozhnAX18x5rqdTebMgIAAAA5gZAOZNDamLWavHOy3TqnAd1LN4ozW6wOA3rBAF890bJyDrcIAAAAyL8I6UAGmK1mhyPoTo9a8+KN4hbvOGG3vGCAr2Z0r8M6dAAAACAHed+8W8CLxSXG2S0f3XCEBqweaf8mLw7ojo5aG9K6ika2q05ABwAAAHIYn8ABF5mtZru7uI9qPEoDqnS1f5MXB3RnR60R0AEAAADPYCQdSIfZataKoys0e/9su/VdqnaRIpenrfDio9acrUPnqDUAAADAcwjpgBPOjllLUeTnddLmiWkrvHCTOCk5oM/d/KvdOo5aAwAAADyLkA44sPrYaoe7uKdYVqadfNcPt18ZVNT9jcoijloDAAAAvBshHbiN2WrW8iPLNSdyjtPrlpVpp4a7P7Rf6YXnoTsL6JI4ag0AAADwAt6VIgAPSm/teYoxTcbosZtWxyPoXngeurM16BLr0AEAAABvQUhHvudqOB/VeJT61e4nv6gVkrOA7oWbxTk6C11KDuisQwcAAAC8AyEd+ZorG8NJ0rQW09S9WncpaoW07jn7F3lpQOcsdAAAACD3IKQj31r/23pN3u18YzhJmtFyhrpW7SqZE6SIZ+1f5KUBnbPQAQAAgNyFkI58yWJY0g3oY5qMUd9afeXn4ycdWiWtedr+hV4a0DkLHQAAAMh9COnIl3Yl7HJYlyqcS5LFLH35gv2L2033yoAuOV6HzlnoAAAAgPcipCPfiTgeoY03N6YpH1x3sIY2GPpPOJeSA/p3r0hJ19M+KKCQ1HxINrY08z6LPGV3HTpnoQMAAADejZCOfGVtzFpN2zPNbl2agB61wvEadEnqNNfrzkKXpF1nTVq564jdOs5CBwAAALyb9yUMIJskWhId7uQ+o+WMjAX0Ceckv0A3tzBrzBarPth+Uit/87Vbzzp0AAAAwPsR0pEvODtqbVqLacm7t6ewmJ0H9G4LvS6gfx55yuEmcRLr0AEAAIDcgmE15Hmrj612GNBHNR6VfP55ipQ16I50Wyg16OvmFmaNKwGddegAAABA7sBIOvIss9Ws5UeWa07kHLv1wX7B6le73z8Fh1Yl7+Jub5O4e0ZKbV72ujXozo5ZkwjoAAAAQG7jXYkDcBNn09slKUABGnf3uNTHrG0YYz+gS14Z0CXHx6xJyWvQmeIOAAAA5C7elzqALFp9bLUm75zssH5EwxEq9lsxdarc6Z/Cm5elhCv2b+i20CsD+qp9sXaPWWtb3qp3nnpQBYK8a908AAAAgPSxJh15htlq1tKfljoN6NNaTFP/Wv3la7K/A3oaXrgGXUoO6GO/OGy3rmMFK7u4AwAAALmU9w0PApmQ3vR2KfmYta5VuyopKSltZdSKtGWjoqXCoW5qofs4C+ivPXKXfE87XqMOAAAAwLsR0pGrpbc5nJS8g3u/2v1Sn4N+qwPLpM0T05Y7ut6DnAX013vUU/cGodpASAcAAAByLe9LIYCLXBk9n9ZiWuoj1m53YJm07jn7dUFFM9+4bJBeQO91dwX7swQAAAAA5BqEdOQ6royeS/9Mb3fE9ONKab2DgO5lm8W5EtABAAAA5H7ek0IAF6w/vl7Td0/XDfMNh9ekO71dksmwyG/9MPuVXeZ71WZxBHQAAAAg/yCkI9dItCRq/PbxTq9Jb/Q8hb/ZwXnoXeZLjR7PTPOyBQEdAAAAyF8I6cgV0lt/7sro+a0qXNyetrDddAI6AAAAAI8ipMOrubL+3NXR8xSmqOWq89fKtBVMcQcAAADgYYR0eC1Xdm+P7BepAN8A1x8atUJ+X42wX+clu7kT0AEAAID8i5AOr2K2mhWXGKd1Meucjp4H+wVrQvMJGQvo5gQp4ln7dV6ymzsBHQAAAMjfPJ9KgP9Zf3y9Zu2ZpatJV51el9H155KkqBWOA7qX7OZOQAcAAABASIdXMFvN6R6tJmV8/bkk6cAyaZ2D89C9ZLM4AjoAAAAAiZAOL2C2mrUgakGWzz63y0lANwIKytR8SMaelw0I6AAAAABSENLhUa5sDpep0XOLWdr9rrR5ot1qs0+Q1GG2/Dy8Dp2ADgAAAOBWhHR4zOpjqzV552SH9d/2/FbFgoplfPT80CrpyxekpOt2qy0PTNGGC5X0UN3OGXuumxHQAQAAANzOx9MNQP6UXkCf0XKGSgWXynhAt5idBnR1mS9r82EyTL4Ze66bEdABAAAA2ENIR45bG7M23YCe4entKXa/6zSgs0kcAAAAAG/GdHfkKLPV7HANeqY3h0txYJnDNejqtpBj1gAAAAB4PUI6ckzKLu72TGsxTd2rdc/8w6NWOD5mbcI5yS8w8892EwI6AAAAgPQQ0pEjnO3iPqrxqMwHdItZij8vRTxrv77bQgI6AAAAgFyDkI5sZbaatfzIcs2JnOPwmn61+2Xu4YdWSRvGSAlX7Nd3mc8UdwAAAAC5CiEd2cJsNWvF0RWavX+20+tmtJyRuTXo6e3i3m46m8QBAAAAyHUI6XA7Z1Pbb5WlXdz3/sdxQA8oJDUfkrnnutHnkacI6AAAAAAyhJAOt3IloGd5F3dzgrRpvP26wCJSx9mSr2d/tM0Wq0Z/dshuHQEdAAAAgCOEdLiNs+PVUmRp9FxKXoe+5mn7daOipeCSXhHQ527+1W4dAR0AAACAM4R0uIWz49UkaUyTMepbq2/mR8+lf9ah29N+plQ4NPPPdpPPI085HEEf37EmAR0AAACAU4R0ZJmzKe6D6w7W0AZDsxbOU+x+1/469IBCUtN/Z/35WeRskzhJeqJl5RxsDQAAAIDcyMfTDZCkBQsWKCwsTEFBQWrWrJn27t3r8Nr3339f9957r4oVK6ZixYqpbdu2Tq9H9lp9bLXTKe5uC+hRK6TNE+3XdZrr8Snu6QX0N3rWl5+vV/xxAwAAAODFPJ4aVq1apZEjR2ry5Mk6cOCA6tevr/bt2+vcuXN2r9+6dav69Omj7777Trt27VKFChX04IMP6s8//8zhlmP1sdWavHOyw/pMH692O4tZinjWft2Ec1L93ll/jSxwJaD/q/EdOdgiAAAAALmVx0P63Llz9dRTT2nQoEGqXbu2Fi1apODgYC1evNju9R9//LGGDBmiBg0aqGbNmvrggw9ktVq1ZcuWHG55/rY2Zm26AT1LG8Tdave79su7LZT8At3zGplgtlj13vfHHQb08R1rKuaVhwjoAAAAAFzm0TnCiYmJioyM1Lhx42xlPj4+atu2rXbt2uXSM+Lj45WUlKTixYvbrU9ISFBCQoLt67i4OElSUlKSkpKSstB62e7P6nO8kbO+OdvFfUTDEepbI3mDOHd8X0w/rpSfnWnulgemyHpXTykTr+GO9231wT81dvXPDutndrtLPRuXl2G1KMlqyfTrZFR+/ZnM7ehb7uTOvuXF7w8AAMgck2EYhqde/K+//lL58uW1c+dOhYeH28pffPFFbdu2TXv27En3GUOGDNGmTZv0888/KygoKE39lClTNHXq1DTlK1asUHBwcNY6kA9ZDIu23Nyi7xO+T1PXvUB3NQ5s7LbX8rEmqfOhJ+3WrWuwRIbJ122vlRG7zpq08jfHr92nikXNS3vsjxWAXCg+Pl59+/bVlStXFBIS4unmAAAAD8rVu7u/+uqrWrlypbZu3Wo3oEvSuHHjNHLkSNvXcXFxtnXsWf0glJSUpM2bN6tdu3by9/fP0rO8jb2+rf9tvSbvtj/FfUTDEepfq7/bXt/040r5rR9mt87ceb4eqtc508/Oyvv2WeQprdx1xGF9ygi6p+S3n8m8gr7lTu7sW8osLwAAAI+G9JIlS8rX11dnz55NVX727FmFhjo/8/qNN97Qq6++qm+++Ub16tVzeF1gYKACA9OuW/b393fbB0Z3PsvbpPRtbcxahwFdkgbUGeCeTeKk5J3cHQR0tZsuv8aPu+VlMvK+mS1WLd5xQjM3/OLwGm/aIC4//EzmRfQtd3JH3/Lq9wYAAGScR0N6QECAGjdurC1btqhbt26SZNsEbtgwByFN0uuvv65XXnlFmzZtUpMmTXKotfmXszXokht3cZec7+QeUEhqPsQ9r5MBn0ee0ujPDjmsH9+xpp5oWZkj1gAAAABkmcenu48cOVIDBgxQkyZN1LRpU82bN0/Xr1/XoEGDJEn9+/dX+fLlNWvWLEnSa6+9pkmTJmnFihUKCwvTmTNnJEmFChVSoUKFPNaPvGz5keUO69y6i7vkeCf3gEIeOQ89vePVXu9RT73urpCDLQIAAACQl3k8pPfu3Vt///23Jk2apDNnzqhBgwbauHGjypQpI0mKjY2Vj88/I5QLFy5UYmKi/vWvf6V6zuTJkzVlypScbHq+EHE8QnMi56QpH1x3sIY2GOq+EXQpeZq7nZ3cdc9Iqc3LBHQAAAAAeZ7HQ7okDRs2zOH09q1bt6b6+uTJk9nfIEiS9ifsV8SeCLt1bg/o5gTH09y9MKB70/pzAAAAAHmHV4R0eJ+I4xGKuBFht86ta9Cl5BF0RwG928IcDejpbRDH+nMAAAAA2YmQjjRWH1utaXum2a2b1mKae9egH1gmrXvOfl276VKDvu57rXSsOXhKL6/5SfGJFrv1TG8HAAAAkN0I6UhlbcxaTd5p/6i1aS2mqXu17u57sagVjgN6Du/knmC26IVVjndwJ6ADAAAAyAnM2YWNs6PW3B7Q0ztqLQd3cv888pRqTNjosJ6ADgAAACCnMJIOSckBfUHUArt1bg/okuOj1tpNTx5Bz6GAzgZxAAAAALwJIR1aG7PW4Qj6iIYj3B/QDyyzf9Rau+lSy+fd+1oOWAzpg+0n9dqmXx1eEz2jgwL9fHOkPQAAAAAgEdLzNbPVrOVHlts9Bz1F3xpu3rjN2UZxObQGffXBPzV2t58k+wG9YICvZnSvQ0AHAAAAkOMI6fnU+uPrNX33dN0w33B4zSPBj7j3qDVnAT2HjlpbtS9WY1f/7LCeI9YAAAAAeBIhPR8yW83pBvSpzafK9xc3jiQ7C+hd5mf7UWvpnX8usUEcAAAAAM8jpOdDy48sdxjQRzUepX61+8mwGNrwywb3vGB6Ab3R4+55HQc+jzyl0Z85Pl5NYoM4AAAAAN6BkJ5PmK1mxSXGaV3MOodr0Ge0nKGuVbtKkpIsSVl/UYs5eRd3e5vESdke0F0ZPWd6OwAAAABvQkjPB5zt3p4isl+kAnwD3PeiUSscn4MuZXtAd2X0fGa3u9S3eVi2tQEAAAAAMorhwzxu9bHV6Qb0GS1nuDegH1jm0YC+al9sugH9sSoW9WxcPtvaAAAAAACZQUjPw1YfW63JOyc7vWZai2m2Ke5uEbXC8fpzKVsDutli1XvfH9fYLw47vGZ8x5o6OqWtmpY2sqUNAAAAAJAVTHfPo1wJ6LeuQXcLi9n5CHq3hdm2i/uag6f08pqfFJ9ocXhNyuZwSUluWG8PAAAAANmAkJ7HmK1mLT+y3OHmcKMaj1KXql0UEhDi3jPQJSn+vP3ydtOl5kOy5Rx0s8Wqi9cT9cIqx9Pb2RwOAAAAQG5BSM9D0tsgblqLaeperbv7XtBilm5eTv79j6ukTePTXtNuutTyefe95i1c2RyOs88BAAAA5CaE9Dwiventbg/o6e3eniIbpre7crSaxNnnAAAAAHIfQnoekKMBPb2zz28VWEQKKuqe1/0fV0bPJSl6RgcF+vm69bUBAAAAILsR0nO5tTFrnQZ0t24O5+rouSQFFJI6znbbOnRXR88LB/lpWte7COgAAAAAciVCei5mtpodrkEf1XiU+tXu577N4TIS0NvPlJr+220B3ZXR8/Eda6pHoztUpIA/G8QBAAAAyLUI6bnYpZuX7Ja7ff25OcF5QG83/Z+150FFc3z0nLXnAAAAAPIKQnouY7aaFZcYpy+Pf6nZ+2enqR/VeJTbArrJsMhnz0LpGyfrz7Pp7HNXR885Wg0AAABAXkJIz0XSO2JNkrpU7eKW1zL9uFJdooY5vuCekVKbl91+9jmj5wAArZxGZgAAFyVJREFUAADyM0J6LpHeDu6SVNi/sEICQrL+YgeWyW/9c47rAwplS0Bn9BwAAABAfkdIzwVcCejBfsEa12xc1jeKO7BMWpdOQO80163rzq/cSNIXB04xeg4AAAAg3yOkezlXAvqYJmPUt1bfrAV0V84/98Cu7RKj5wAAAADyD0K6F3MW0Ec1HqUuVbsoJCAk66Pn6R2v1m661HyIW8J5RkbOJUbPAQAAAOQvhHQvtTZmrcOA7tYj1tKZ3m7u9Jb87h6Y5ZcxW6xauvOkZnx11KXrGT0HAAAAkB8R0r1QoiXR4S7uORnQD1Z8UnUaPJbll3F1WnsKRs8BAAAA5FeEdC+z/vh6jd8+3m5djo6gd56v2FMhqpOFl3D1ODUpeeS8R6M7VKSAP6PnAAAAAPItQroXSbQkOgzooxqPcl9Aj1rhOKD/b/25YTWkUxsy9fiMTm1n5BwAAAAAkhHSvcTamLUOp7gH+wWrX+1+7nkhi9nxJnFd5kuNHk/+vTUpw4/OSDif0KmWujcsz8g5AAAAANyCkO4F0jtmbULzCVnfwT3F7nftl98a0DMgZbf2NQf/dCmcsyEcAAAAADhGSPew9AJ6ZL9IBfgGuOfFDiyzfw56u+kZDugZndIuMa0dAAAAANJDSPcgZwE92C9YE5pPcG9Ad7QOvfkQlx+TmXA+oVMtDWwRxug5AAAAAKSDkO4hzgL6qMaj1K92P/dMcbeYk6e42xtBl6RuCyVf56+T0SntKQjnAAAAAJAxhHQPcBbQs3zMmsUs3byc/PsfV0mb7O8WLyl5HXqDvnarzBarriVJS3b+rpn/F52hJhDOAQAAACBzCOk5bG3M2uwL6IdWSRvGSAlX0r/WwUZxqaez+0lyLaCzWzsAAAAAZB0hPQeZrWaHx6xlKaBbzFL8eWnN065df1tAz+x0dolRcwAAAABwJ0J6DjFbzVoQtcBuXZYCetQKx+ee29NtoW2Ke2Y2gUtBOAcAAAAA9yOk54D1x9dr+u7pumG+kaZuVONRGQ/oKevOo1Y43hDudu1nSk3/LbN8dOVaQqZHzZnSDgAAAADZh5CezcxWs8OALkn9avdz7UEpwTy9zeBuNSpa8vGTgopKvn76PPKURn92yLV7/2f8QzXUo3EFgjkAAAAA5ABCejZbfmS5w4A+o+UM145Zy+iU9sAiUsfZUuFQ23rzLw78rpkbfnH5EeMfqqGSl35W5xaV5O/v7/prAwAAAAAyjZCeTcxWs5YfWa45kXPs1s9oOUNdq3Z1/pD0zji/XbvpMtfroytGQcnHV2t++C3D55qnTGc3rBZt2PCzy/cCAAAAALKOkJ4NnK1Bl6TIfpEK8A1w/ACLWdr7H5entZsNH1156F2tSWqmGa/szXB77W0Cl2S1ZPg5AAAAAICsIaS7WXpr0Ge0nGE/oGdgzbnZ8NEVFZTavKw1lns0Y3OsFCFJro+aj+9YUz0a3cFacwAAAADwIoR0N3O2Bn1ai2n/THFPCeVShoL5miqvaMaRksmFGyUpNsNtfKNnff2r8R0Zvg8AAAAAkL0I6W60+thq19agu7ARnG20XEoeLTc/nlxxJHNt4/g0AAAAAPB+hHQ3WRuzVpN3TrZbZ1uD7mAjuFsDuXRbKM+klFAuiWAOAAAAALkEId0NzFazJuyYYLduRssZCpCPtGuBzBsn/C+MF7bVuyOQp2C0HAAAAAByN0K6G1xKuCRfw1CI1WorMwwfDa33ou459ZcufBT2vzC+3K2vy2g5AAAAAOQtXpHqFixYoLCwMAUFBalZs2bau9f5MWKfffaZatasqaCgINWtW1cbNmzIoZYmsxpWXbx5UZduXtKOmzv0zn/v1ZYTl7Xm9zit+T1O/X+rpz+OvaaXviihxhsrqnHCf9w6Wh45oa1iXnlIg++9UyUKBapEoUACOgAAAADkAR4fSV+1apVGjhypRYsWqVmzZpo3b57at2+v6OholS5dOs31O3fuVJ8+fTRr1iw9/PDDWrFihbp166YDBw6oTp06OdLmizcuqOvyjpKkyufraHvc2/okm16L0XIAAAAAyD88HtLnzp2rp556SoMGDZIkLVq0SF999ZUWL16sl156Kc31b731ljp06KAxY8ZIkqZPn67Nmzdr/vz5WrRoUY60+crF8/rztymSpD/d+NxbA7lEKAcAAACA/MajIT0xMVGRkZEaN26crczHx0dt27bVrl277N6za9cujRw5MlVZ+/btFRERYff6hIQEJSQk2L6+cuWKJOnixYtKSkrKVLuvXLwia0J8pu6VpFHtqqpjndBUZSFBfsmBPOHaP6+TcPudOScpKUnx8fG6cOGC/P39PdeQbEDfcif6ljvRN9dcvXpVkmQYhjuaBgAAcjGPhvTz58/LYrGoTJkyqcrLlCmjX375xe49Z86csXv9mTNn7F4/a9YsTZ06NU155cqVM9nqrBsxTxrhsVcHAHirq1evqkiRIp5uBgAA8CCPT3fPbuPGjUs18m61WnXx4kWVKFFCJpMpS8+Oi4tThQoV9McffygkJCSrTfUq9C13om+5E33LndzZN8MwdPXqVZUrV85NrQMAALmVR0N6yZIl5evrq7Nnz6YqP3v2rEJDQ+3eExoamqHrAwMDFRgYmKqsaNGimW+0HSEhIXnuw2cK+pY70bfcib7lTu7qGyPoAABA8vARbAEBAWrcuLG2bNliK7NardqyZYvCw8Pt3hMeHp7qeknavHmzw+sBAAAAAMgtPD7dfeTIkRowYICaNGmipk2bat68ebp+/bptt/f+/furfPnymjVrliRp+PDhatWqlebMmaNOnTpp5cqV2r9/v9577z1PdgMAAAAAgCzzeEjv3bu3/v77b02aNElnzpxRgwYNtHHjRtvmcLGxsfLx+WfAv0WLFlqxYoUmTJig8ePHq1q1aoqIiMixM9JvFRgYqMmTJ6eZTp8X0Lfcib7lTvQtd8rLfQMAAJ5jMjjvBQAAAAAAr+DRNekAAAAAAOAfhHQAAAAAALwEIR0AAAAAAC9BSAcAAAAAwEsQ0l0wZcoUmUymVL9q1qxpq79586aGDh2qEiVKqFChQurRo4fOnj3rwRZnzJ9//ql+/fqpRIkSKlCggOrWrav9+/fb6g3D0KRJk1S2bFkVKFBAbdu21bFjxzzYYteEhYWled9MJpOGDh0qKfe+bxaLRRMnTlTlypVVoEABValSRdOnT9ete0Dm1vdMkq5evaoRI0aoUqVKKlCggFq0aKF9+/bZ6nNL377//nt17txZ5cqVk8lkUkRERKp6V/px8eJFPfbYYwoJCVHRokX15JNP6tq1aznYC/vS69vq1av14IMPqkSJEjKZTIqKikrzDG/98+esb0lJSRo7dqzq1q2rggULqly5curfv7/++uuvVM/w1vcNAADkDoR0F9111106ffq07df27dttdS+88ILWr1+vzz77TNu2bdNff/2lRx55xIOtdd2lS5fUsmVL+fv76//+7/905MgRzZkzR8WKFbNd8/rrr+vtt9/WokWLtGfPHhUsWFDt27fXzZs3Pdjy9O3bty/Ve7Z582ZJUs+ePSXl3vfttdde08KFCzV//nwdPXpUr732ml5//XW98847tmty63smSYMHD9bmzZv10Ucf6fDhw3rwwQfVtm1b/fnnn5JyT9+uX7+u+vXra8GCBXbrXenHY489pp9//lmbN2/Wl19+qe+//15PP/10TnXBofT6dv36dd1zzz167bXXHD7DW//8OetbfHy8Dhw4oIkTJ+rAgQNavXq1oqOj1aVLl1TXeev7BgAAcgkD6Zo8ebJRv359u3WXL182/P39jc8++8xWdvToUUOSsWvXrhxqYeaNHTvWuOeeexzWW61WIzQ01Jg9e7at7PLly0ZgYKDxySef5EQT3Wb48OFGlSpVDKvVmqvft06dOhlPPPFEqrJHHnnEeOyxxwzDyN3vWXx8vOHr62t8+eWXqcobNWpkvPzyy7m2b5KMNWvW2L52pR9HjhwxJBn79u2zXfN///d/hslkMv78888ca3t6bu/brU6cOGFIMg4ePJiqPLf8+XPWtxR79+41JBm///67YRi5530DAADei5F0Fx07dkzlypXTnXfeqccee0yxsbGSpMjISCUlJalt27a2a2vWrKmKFStq165dnmquy9atW6cmTZqoZ8+eKl26tBo2bKj333/fVn/ixAmdOXMmVf+KFCmiZs2a5Yr+pUhMTNTy5cv1xBNPyGQy5er3rUWLFtqyZYt+/fVXSdKhQ4e0fft2PfTQQ5Jy93tmNptlsVgUFBSUqrxAgQLavn17ru7brVzpx65du1S0aFE1adLEdk3btm3l4+OjPXv25Hib3Sk3//m73ZUrV2QymVS0aFFJeft9AwAAOYOQ7oJmzZpp6dKl2rhxoxYuXKgTJ07o3nvv1dWrV3XmzBkFBATYPqClKFOmjM6cOeOZBmfAb7/9poULF6patWratGmTnn32WT3//PP673//K0m2PpQpUybVfbmlfykiIiJ0+fJlDRw4UJJy9fv20ksv6dFHH1XNmjXl7++vhg0basSIEXrsscck5e73rHDhwgoPD9f06dP1119/yWKxaPny5dq1a5dOnz6dq/t2K1f6cebMGZUuXTpVvZ+fn4oXL56r+mpPbv7zd6ubN29q7Nix6tOnj0JCQiTl7fcNAADkDD9PNyA3SBmhlKR69eqpWbNmqlSpkj799FMVKFDAgy3LOqvVqiZNmmjmzJmSpIYNG+qnn37SokWLNGDAAA+3zn0+/PBDPfTQQypXrpynm5Jln376qT7++GOtWLFCd911l6KiojRixAiVK1cuT7xnH330kZ544gmVL19evr6+atSokfr06aPIyEhPNw2wSUpKUq9evWQYhhYuXOjp5gAAgDyEkfRMKFq0qKpXr66YmBiFhoYqMTFRly9fTnXN2bNnFRoa6pkGZkDZsmVVu3btVGW1atWyTedP6cPtuy7nlv5J0u+//65vvvlGgwcPtpXl5vdtzJgxttH0unXr6vHHH9cLL7ygWbNmScr971mVKlW0bds2Xbt2TX/88Yf27t2rpKQk3Xnnnbm+bylc6UdoaKjOnTuXqt5sNuvixYu5qq/25OY/f9I/Af3333/X5s2bbaPoUt5+3wAAQM4gpGfCtWvXdPz4cZUtW1aNGzeWv7+/tmzZYquPjo5WbGyswsPDPdhK17Rs2VLR0dGpyn799VdVqlRJklS5cmWFhoam6l9cXJz27NmTK/onSUuWLFHp0qXVqVMnW1luft/i4+Pl45P6j66vr6+sVqukvPGeSVLBggVVtmxZXbp0SZs2bVLXrl3zTN9c6Ud4eLguX76cagbBt99+K6vVqmbNmuV4m90pN//5Swnox44d0zfffKMSJUqkqs/L7xsAAMghnt65LjcYNWqUsXXrVuPEiRPGjh07jLZt2xolS5Y0zp07ZxiGYTzzzDNGxYoVjW+//dbYv3+/ER4eboSHh3u41a7Zu3ev4efnZ7zyyivGsWPHjI8//tgIDg42li9fbrvm1VdfNYoWLWqsXbvW+PHHH42uXbsalStXNm7cuOHBlrvGYrEYFStWNMaOHZumLre+bwMGDDDKly9vfPnll8aJEyeM1atXGyVLljRefPFF2zW5+T3buHGj8X//93/Gb7/9Znz99ddG/fr1jWbNmhmJiYmGYeSevl29etU4ePCgcfDgQUOSMXfuXOPgwYO2XcBd6UeHDh2Mhg0bGnv27DG2b99uVKtWzejTp4+numSTXt8uXLhgHDx40Pjqq68MScbKlSuNgwcPGqdPn7Y9w1v//DnrW2JiotGlSxfjjjvuMKKioozTp0/bfiUkJNie4a3vGwAAyB0I6S7o3bu3UbZsWSMgIMAoX7680bt3byMmJsZWf+PGDWPIkCFGsWLFjODgYKN79+6pPox6u/Xr1xt16tQxAgMDjZo1axrvvfdeqnqr1WpMnDjRKFOmjBEYGGg88MADRnR0tIdamzGbNm0yJNltb2593+Li4ozhw4cbFStWNIKCgow777zTePnll1OFhNz8nq1atcq48847jYCAACM0NNQYOnSocfnyZVt9bunbd999Z0hK82vAgAGGYbjWjwsXLhh9+vQxChUqZISEhBiDBg0yrl696oHepJZe35YsWWK3fvLkybZneOufP2d9SzlSzt6v7777zvYMb33fAABA7mAyDMPIgQF7AAAAAACQDtakAwAAAADgJQjpAAAAAAB4CUI6AAAAAABegpAOAAAAAICXIKQDAAAAAOAlCOkAAAAAAHgJQjoAAAAAAF6CkA4AAAAAgJcgpAPIsLCwMM2bN8/l60+ePCmTyaSoqKhsaxMAAACQFxDSAWTYvn379PTTT7v1mUuXLlXRokXd+kwAAAAgt/HzdAMA5D6lSpXydBMAAACAPImRdCAf+PLLL1W0aFFZLBZJUlRUlEwmk1566SXbNYMHD1a/fv0kSdu3b9e9996rAgUKqEKFCnr++ed1/fp127W3T3f/5ZdfdM899ygoKEi1a9fWN998I5PJpIiIiFTt+O2339SmTRsFBwerfv362rVrlyRp69atGjRokK5cuSKTySSTyaQpU6ZkzzcDAAAA8GKEdCAfuPfee3X16lUdPHhQkrRt2zaVLFlSW7dutV2zbds2tW7dWsePH1eHDh3Uo0cP/fjjj1q1apW2b9+uYcOG2X22xWJRt27dFBwcrD179ui9997Tyy+/bPfal19+WaNHj1ZUVJSqV6+uPn36yGw2q0WLFpo3b55CQkJ0+vRpnT59WqNHj3b79wEAAADwdoR0IB8oUqSIGjRoYAvlW7du1QsvvKCDBw/q2rVr+vPPPxUTE6NWrVpp1qxZeuyxxzRixAhVq1ZNLVq00Ntvv61ly5bp5s2baZ69efNmHT9+XMuWLVP9+vV1zz336JVXXrHbjtGjR6tTp06qXr26pk6dqt9//10xMTEKCAhQkSJFZDKZFBoaqtDQUBUqVCg7vyUAAACAVyKkA/lEq1attHXrVhmGoR9++EGPPPKIatWqpe3bt2vbtm0qV66cqlWrpkOHDmnp0qUqVKiQ7Vf79u1ltVp14sSJNM+Njo5WhQoVFBoaaitr2rSp3TbUq1fP9vuyZctKks6dO+fmngIAAAC5FxvHAflE69attXjxYh06dEj+/v6qWbOmWrdura1bt+rSpUtq1aqVJOnatWv697//reeffz7NMypWrJilNvj7+9t+bzKZJElWqzVLzwQAAADyEkI6kE+krEt/8803bYG8devWevXVV3Xp0iWNGjVKktSoUSMdOXJEVatWdem5NWrU0B9//KGzZ8+qTJkykpKPaMuogIAA28Z2AAAAQH7FdHcgnyhWrJjq1aunjz/+WK1bt5Yk3XfffTpw4IB+/fVXW3AfO3asdu7cqWHDhikqKkrHjh3T2rVrHW4c165dO1WpUkUDBgzQjz/+qB07dmjChAmS/hktd0VYWJiuXbumLVu26Pz584qPj89ahwEAAIBciJAO5COtWrWSxWKxhfTixYurdu3aCg0NVY0aNSQlrxvftm2bfv31V917771q2LChJk2apHLlytl9pq+vryIiInTt2jXdfffdGjx4sG1396CgIJfb1qJFCz3zzDPq3bu3SpUqpddffz1rnQUAAAByIZNhGIanGwEgb9mxY4fuuecexcTEqEqVKp5uDgAAAJBrENIBZNmaNWtUqFAhVatWTTExMRo+fLiKFSum7du3e7ppAAAAQK7CxnEAsuzq1asaO3asYmNjVbJkSbVt21Zz5szxdLMAAACAXIeRdAAAAAAAvAQbxwEAAAAA4CUI6QAAAAAAeAlCOgAAAAAAXoKQDgAAAACAlyCkAwAAAADgJQjpAAAAAAB4CUI6AAAAAABegpAOAAAAAICX+H9S1+n23V78NAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x900 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAWpCAYAAAAFtVMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeViU9f7/8dcM6yCCCy6oEFgucFxwRTSXStM8ebQ6aVopno6ek1Iammnf3Csty6W0PNVRs1I7Lcdjq3ksM5c0rcwSUSvD444bKggDM78/+DE1gTrAMHPDPB/XxSVzz33fn/fczvCa98y9mOx2u10AAAAAAMDrzN4uAAAAAAAAFKJJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAzC39sFeJrNZtORI0dUvXp1mUwmb5cDAIDsdrvOnz+vBg0ayGzm83N3IO8BAEZSmqz3uSb9yJEjioqK8nYZAAAUc+jQITVq1MjbZVQJ5D0AwIhcyXqfa9KrV68uqXDjhIWFebkalMRqteqTTz7RzTffrICAAG+XA1R6vKaMLysrS1FRUY6MQvmR967h7wOuhucIrobniGtKk/U+16QX7fIWFhZGaBuU1WpVSEiIwsLCeKEDbsBrqvJgt2z3Ie9dw98HXA3PEVwNz5HScSXrOfANAAAAAACDoEkHAAAAAMAgaNIBAAAAADAInzsmHYDvstvtys/PV0FBgbdL8Sir1Sp/f39dunTJ5x67Ufj5+cnf359jzgGggvlq1nsT7zN+FRAQID8/v3KvhyYdgE/Iy8vT0aNHlZ2d7e1SPM5ut6t+/fo6dOgQTaIXhYSEKDIyUoGBgd4uBQCqJF/Oem/ifcavTCaTGjVqpNDQ0HKthyYdQJVns9n0888/y8/PTw0aNFBgYKBPhYjNZtOFCxcUGhoqs5mjnDzNbrcrLy9PJ0+e1M8//6wmTZrw/wAAbubrWe9NvM8oZLfbdfLkSf3vf/9TkyZNyvWNOk06gCovLy9PNptNUVFRCgkJ8XY5Hmez2ZSXl6fg4GCfDk9vslgsCggI0C+//OL4vwAAuI+vZ7038T7jV3Xq1NHBgwdltVrL1aT79lYE4FN8PTjgXTz/AKDi8bcW3uSuvTd4FgMAAAAAYBA06QCAK+rRo4fGjh1rmPUAAAD3I++Ng2PSAQButWHDBt1www06c+aMatSo4Zj+7rvvKiAgwHuFAQAAtynK+1OnTjkdZkDelx9NOgDAI2rVquXtEgAAQAUj78uP3d0BwKB69OihlJQUpaSkKDw8XBEREZo8ebLsdrsk6cyZMxo6dKhq1qypkJAQ3XLLLdq/f79j+WXLlqlGjRpavXq12rVrp5CQEPXu3VuHDh1yzJOcnKwBAwY4jTt27Fj16NHjsnW99tprat++vapXr6769etryJAhOnHihCTp4MGDuuGGGyRJNWvWlMlkUnJysuPx/Hb3N1frX7t2reLi4hQaGqo+ffro6NGjZdmcAAAYkjvzvkmTJgoODvZo3teuXVs1a9bU8OHDHY+HvC8fmnQAMLBXX31V/v7+2r59uxYsWKC5c+fqlVdekVQYuDt27NCaNWu0detW2e129e3bV1ar1bF8dna2Zs2apRdffFFffPGFzp49q7vuuqtcNVmtVs2cOVO7du3S6tWrdfDgQUcjHhUVpXfeeUeSlJ6erqNHj2rBggUlrsfV+p955hm99tpr2rhxozIyMjR+/Phy1Q8AgNG4I++feOIJLV++XJs3b/Zo3qelpWnv3r2aP39+iesh70uP3d0BwMCioqI0b948mUwmNWvWTLt379a8efPUo0cPrVmzRps3b1bnzp0lSW+88YaioqK0evVq3XnnnZIKA/a5555TXFycwsLC9OqrryouLk7bt29Xx44dy1TTX/7yF8fvjRs31nPPPacOHTrowoULCg0NdezmVrduXadj0n9r//79Lte/ePFiXXvttZKklJQUzZgxo0x1AwBgVO7I+4ULFyoxMVGSPJ73ZrNZYWFhxdZB3pcN36QDgIF16tTJ6ZqbSUlJ2r9/v/bs2SN/f39HGEuFu5s1a9ZMaWlpjmn+/v7q0KGD43bz5s1Vo0YNp3lKa+fOnerXr5+io6NVvXp1de/eXZKUkZHh8jrS0tJcqj8kJMQR2JIUGRnp2NUOAICqgrwn73+LJh0AfJjZbHYc81bkt7uf/d7FixfVu3dvhYWF6Y033tBXX32lf//735KkvLw8t9f3+7PDmkymYvUCAIArI+8rF5p0ADCwbdu2Od3+8ssv1aRJE8XHxys/P9/p/lOnTik9PV3x8fGOafn5+dqxY4fjdnp6us6ePau4uDhJUp06dYqdmOXbb7+9bD179+7VqVOnNHv2bHXt2lXNmzcv9kl3YGCgJKmgoOCy64mLi3OpfgAAfAF5j9+iSQcAA8vIyFBqaqrS09O1cuVKPf/88xozZoyaNGmi/v37a8SIEdq0aZN27dqle+65Rw0bNlT//v0dywcEBGjMmDHasWOHdu7cqeTkZHXq1MlxfNqNN96oHTt2aPny5dq/f7+mTp2q77///rL1REdHKzAwUM8//7x++uknrVmzRjNnznSa55prrpHJZNL777+vkydP6sKFC8XW42r9AAD4Anfk/QMPPKBt27Z5Je8zMzPJezeiSQcAAxs6dKhycnLUsWNHjR49WmPGjNHIkSMlSUuXLlW7du106623KikpSXa7XR9++KHTLmMhISF6+OGHNWLECHXt2lWhoaF68803Hff37t1bkydP1oQJE9ShQwedP39eQ4cOvWw9derU0bJly/TWW28pPj5es2fP1jPPPOM0T8OGDTV9+nRNnDhR9erVU0pKSonrcqV+AAB8gTvy/pFHHtGQIUPUpUsXj+b9o48+qqZNm+qBBx4ocV3kfemZ7D62s39WVpbCw8N17ty5Es9ACO+zWq368MMP1bdvX168cItLly7p559/VmxsrIKDg71djst69OihhISEy17S5GqWLVumsWPH6vTp08rKylJYWJjMZj6b9ZYrPQ/JJvdjm7qGzMXVVJbnSGXNesl9eX/27Fm31uUqm83G+4z/z11Z79tbEQAAAAAAA6FJBwAAAADAIPy9XQAAoGQbNmwo1/LJyclKTk6WzWZzT0EAAMDt3JX3qDr4Jh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAILgEGwCflpGRoczMTI+NFxERoejoaI+N56qYmBiNHTtWY8eOvew8eXl5io+P1/Lly9W5c2fPFWcAJpNJ//73vzVgwIAS79+zZ49uvvlmpaenq1q1ap4tDgBwRWR9IbL+yoyU9TTpAHxWRkaGmjePU05OtsfGtFhCtHdvmiHD+2oWL16s2NjYSh3aBw8eVGxsrL755hslJCS4bb3x8fHq1KmT5s6dq8mTJ7ttvQCA8iHrS4esvzxPZj1NOgCflZmZqZycbCX+ZarCImMqfLysowe1bcl0ZWZmVrrgttvtWrhwoWbMmFHu9RQUFMjfv+rFz/DhwzVixAhNmjSpSj4+AKiMyHrXkfVX56ms55h0AD4vLDJGtaKbVfhPWd4c9OjRQykpKUpJSVF4eLgiIiI0efJk2e12xzxnzpzR0KFDVbNmTYWEhOiWW27R/v37ndazZs0atWzZUkFBQYqJidGzzz5bqjp27typH3/8UX/84x8d0w4ePCiTyaRVq1apc+fOCg4OVosWLfT555875tmwYYNMJpM++ugjtWvXTkFBQdq0aZNsNptmzZql2NhYWSwWtW7dWm+//Xax5dauXas2bdrIYrHoxhtv1IkTJ/TRRx8pLi5OYWFhGjJkiLKzf/125OOPP9b111+vGjVqqHbt2rr11lv1448/Ou6PjY2VJLVp00Ymk0k9evRw3LdkyRL94Q9/UFBQkCIjI5WSkuK0DTIzM3XbbbcpJCRETZo00Zo1a5zu79Wrl06fPu30+AEAxuALWf/OO+84cszTWV+zZk2y3o1o0gHA4F599VX5+/tr+/btWrBggebOnatXXnnFcX9ycrJ27NihNWvWaOvWrbLb7erbt6+sVqukwtAdPny4Bg0apN27d2vatGmaPHmyli1b5nINX3zxhZo2barq1asXu+/hhx/WuHHj9M033ygpKUn9+vXTqVOnnOaZOHGiZs+erbS0NLVq1UqzZs3S8uXLtXjxYv3www966KGHdM899xQLvWnTpmnhwoXasmWLDh06pIEDB2r+/PlasWKFPvjgA33yySd6/vnnHfNfvHhRqamp2rFjh9avXy+z2azbbrtNNptNkrR9+3ZJ0n//+18dPXpU7777riTpxRdf1OjRozVy5Ejt3r1ba9as0XXXXedUy/Tp0zVw4EB999136tu3r+6++26dPn3acX9gYKASEhL0xRdfuLxdAQCQ3JP1AwcO1F133eW1rH/00UfJejepevsgAEAVExUVpXnz5slkMqlZs2bavXu35s2bpxEjRmj//v1as2aNNm/e7Dh+7I033lBUVJRWr16tO++8U/PmzVP37t312GOPyWw2q2nTptqzZ4/mzJmj5ORkl2r45Zdf1KBBgxLvS0lJ0R133CGpMAA//vhj/fOf/9SECRMc88yYMUO9evWSJOXm5urJJ5/Uf//7XyUlJUmSGjdurE2bNukf//iHunfv7lju8ccfV5cuXSRJ9913nyZNmqQff/xRjRs3liT9+c9/1meffaZHHnlEkhx1FFmyZInq1KmjPXv2qEWLFqpTp44kqXbt2qpfv77TOOPGjdOYMWMc0zp06OC0ruTkZA0ePFiS9OSTT+q5557T9u3b1adPH8c8DRo00C+//HLljQkAwO+UN+vnzp2rm266yXGstDeyftq0aWS9m/BNOgAYXKdOnWQymRy3k5KStH//fhUUFCgtLU3+/v5KTEx03F+7dm01a9ZMaWlpkqS9e/c63S9JXbp0cazDFTk5OQoODi7xvqLwlSR/f3+1b9/eMXaR9u3bO34/cOCAsrOz1atXL4WGhjp+li9f7rS7miS1atXK8Xu9evUUEhLiCO2iaSdOnHDc3r9/vwYPHqzGjRsrLCxMMTExkgpPHHQ5J06c0JEjR3TTTTddYQs411KtWjWFhYU5jS1JFovFaZc8AABcUd6sT0tLczS6Rcj6X1W2rPd6k75o0SLFxMQoODhYiYmJjt0TLmf+/Plq1qyZLBaLoqKi9NBDD+nSpUseqhYAfFNERITOnDlT5uV/e6mSCxcuSJI++OADffvtt46fPXv2OB2rJkkBAQGO300mk9PtomlFu7dJUr9+/XT69Gm9/PLL2rZtm7Zt2yap8JIyl2OxWFx6DFcbW5JOnz7t+AQfzsh7ADA2st44We/VJv3NN99Uamqqpk6dqq+//lqtW7dW7969i31aUWTFihWaOHGipk6dqrS0NP3zn//Um2++qUcffdTDlQOA5xSFT5Evv/xSTZo0kZ+fn+Li4pSfn+80z6lTp5Senq74+HhJUvPmzYutY/PmzWratKn8/PxcqqFNmzbau3ev00lsfltPkfz8fO3cuVNxcXGXXVd8fLyCgoKUkZGh6667zuknKirKpXpKUvS4H3vsMd10002Ki4sr9mYjMDBQkpy+VahevbpiYmK0fv36Mo9d5Pvvv1ebNm3KvZ6qhrwHgCsrb9bHxcVp8+bNTusg6ytv1nv1mPS5c+dqxIgRGj58uKTC6/J98MEHWrJkiSZOnFhs/i1btqhLly4aMmSIJCkmJkaDBw8u9qQGgKokIyNDqamp+tvf/qavv/5azz//vOOMrU2aNFH//v01YsQI/eMf/1D16tU1ceJENWzYUP3795ckpaamKjExUY8//rjuuusubd26VQsXLtQLL7zgcg033HCDLly4oB9++EEtWrRwum/RokVq0qSJ4uLiNG/ePJ05c0Z/+ctfLruu6tWra/z48XrooYdks9l0/fXX69y5c9q8ebPCwsI0bNiwMmwlqWbNmqpdu7ZeeuklRUZGKiMjo1iW1K1bVxaLRR9//LEaNWqk4OBghYeHa9q0afr73/+uunXr6pZbbtH58+e1efNmPfDAAy6Pf/DgQR0+fFg9e/YsU/1VGXkPAFdW3qwfN26cOnTooJkzZ2rQoEFkfSXPeq816Xl5edq5c6cmTZrkmGY2m9WzZ09t3bq1xGU6d+6s119/Xdu3b1fHjh31008/6cMPP9S999572XFyc3OVm5vruJ2VlSVJslqtjrMhwliK/l/4/4G7WK1W2e122Ww2p12Win7POnJQKv6hsdtlHT3oGPf3u05dyb333qvs7Gx17NhRfn5+evDBB/XXv/7VsY5//vOfGjt2rG699Vbl5eWpa9euev/99+Xn5yebzaY2bdpo6dKleuqpp/T4448rMjJS06dP19ChQ53qKNpGJalZs6YGDBig119/XU8++aTjcUiFJ1aZPXu2vv32W1133XVavXq1atWq5fQ4f/+Yp0+froiICM2aNUs//fSTatSooTZt2mjSpEmXXe73/xbV/NtpK1as0NixY9WiRQs1a9ZM8+fP14033uhYj9ls1vz58/X4449rypQp6tq1qz799FPHNl6wYIHGjx+viIgI3XHHHcWeL7/fPr+dtmLFCvXq1UtRUVElbkebzSa73S6r1VrsW42q/PeOvDc2MhdXU1meI76e9QkJCVq1apWmTZummTNnejTri7L49+sm68ue9SZ7SfszeMCRI0fUsGFDbdmyxelEBBMmTNDnn39+2U/Ln3vuOY0fP152u135+fn6+9//rhdffPGy40ybNk3Tp08vNn3FihUKCQkp/wMBYHj+/v6qX7++oqKiHLtASdKhQ4fUMTFRl3JyPFZLsMWi7du2ubyr16233qqWLVtq1qxZFVzZ1X3//fe6/fbb9fXXXys0NFQZGRlq3bq1Nm7cqJYtW3q7PK/Ky8tTu3bt9PLLL6tTp06XnefQoUM6duyY8vPzne7Lzs7WkCFDdO7cOYWFhXmiZI8h7wF4AlnvHmT95Xky6yvVJdg2bNigJ598Ui+88IISExN14MABjRkzRjNnznRcbuD3Jk2apNTUVMftrKwsRUVF6eabb65yb4SqCqvVqnXr1qlXr17FTt4AlMWlS5d06NAhhYaGOp219A9/+IPS9uxRZmamx2qJiIhQdHS0y/P7+/srMDCwXH+v7Ha7zp8/r+rVqzudOba0OnfurNmzZ+vUqVNq0KCBQkNDJf169lNfduDAAT366KO6+eabLzvPpUuXZLFY1K1bt2Jnzy361heFyHvPIXNxNZXlOeLrWe8uZcl6d73PMDpPZr3XmvSIiAj5+fnp+PHjTtOPHz/udD2735o8ebLuvfde/fWvf5UktWzZUhcvXtTIkSP1f//3fzKbi58HLygoSEFBQcWmBwQEGPoPDfg/gvsUFBTIZDLJbDYX+zsRExPjuHSHURXVXlZFu2OVdz2SnI4/K1pXSdvV1zRt2lRNmza94jxms9lx1trf/22ryn/ryPvKge2EqzH6c8TXs96dSpv17nyfYWSezHqvNemBgYFq166d1q9frwEDBkgq/A9ev369UlJSSlwmOzu72H980b7+XtprHwAq1IYNG7xdwmXFxMTwtxdXRd4DwJWR9fg9r+7unpqaqmHDhql9+/bq2LGj5s+fr4sXLzrO/jp06FA1bNjQcXxGv379NHfuXLVp08ax+9vkyZPVr18/ly8tAAAAPIu8BwDAdV5t0gcNGqSTJ09qypQpOnbsmBISEvTxxx+rXr16kgovRfDbT9Ife+wxmUwmPfbYYzp8+LDq1Kmjfv366YknnvDWQwAAAFdB3gMA4DqvnzguJSXlsru7/X7XD39/f02dOlVTp071QGUAAMBdyHsAAFxTdY/sBwAAAACgkqFJBwAAAADAIGjSAQAAAAAwCK8fkw4A3pSRkaHMzEyPjRcREaHo6GiPjeeKmJgYjR07VmPHjvV2KQAAuB1ZT9ZXNjTpAHxWRkaG4po3U3bOJY+NGWIJVtredMOFNwAAVRFZj8qIJh2Az8rMzFR2ziW9PjJBcZGhFT5e2tELuuelb5WZmUlwAwDgAWQ9KiOadAA+Ly4yVG1jwr1dRol69OihFi1aSJJee+01BQQE6P7779eMGTNkMpl05swZjRkzRu+9955yc3PVvXt3Pffcc2rSpIljHe+8846mTJmin376SZGRkXrggQc0btw4bz0kAAA8zley/sCBA2R9FcCJ4wDA4F599VX5+/tr+/btWrBggebOnatXXnlFkpScnKwdO3ZozZo12rp1q+x2u/r27Sur1SpJ2rlzp+666y7dfvvt2rVrl6ZNm6bJkydr2bJlXnxEAADgt8qb9QMHDtRdd92l3bt3k/VVAN+kA4DBRUVFad68eTKZTGrWrJl2796tefPmqUePHlqzZo02b96szp07S5LeeOMNRUVFafXq1brzzjs1d+5c3XjjjXr44YcVFham5s2ba8+ePZozZ46Sk5O9+8AAAICk8mf9TTfdpMmTJ0uSmjZtStZXcnyTDgAG16lTJ5lMJsftpKQk7d+/X3v27JG/v78SExMd99WuXVvNmjVTWlqaJCktLU1dunRxWl+XLl20f/9+FRQUeOYBAACAKyLr8Vs06QAAAAAAGARNOgAY3LZt25xuf/nll2rSpIni4+OVn5/vdP+pU6eUnp6u+Ph4SVJcXJw2b97stPzmzZvVtGlT+fn5VXzxAADgqsh6/BZNOgAYXEZGhlJTU5Wenq6VK1fq+eef15gxY9SkSRP1799fI0aM0KZNm7Rr1y7dc889atiwofr37y9JGjdunD799FPNmTNH+/bt06uvvqqFCxdq/PjxXn5UAACgSHmzfv369Zo5cyZZX0Vw4jgAPi/t6AVDjzN06FDl5OSoY8eO8vPz05gxYzRy5EhJ0tKlSzVmzBjdeuutysvLU7du3fThhx8qICBAktS2bVutWrVKU6ZM0Zw5cxQZGakZM2ZwIhkAgE+p6ln/r3/9S1OmTNHMmTPJ+iqAJh2Az4qIiFCIJVj3vPStx8YMsQQrIiKiVMsEBARo/vz5evHFF4vdV7NmTS1fvvyKy99xxx3q1auXwsLCZDYX34Hq4MGDpaoHAIDKwpey/o477rjs/WR95UKTDsBnRUdHK21vujIzMz02ZkREhKKjoz02HgAAvoysR2VEkw7Ap0VHRxOkAABUYWQ9KhuadAAwsA0bNni7BAAAUIHIevweZ3cHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAguwQbAp2VkZCgzM9Nj40VERHCtVgAAPIisR2VDkw7AZ2VkZKh5XHPlZOd4bExLiEV70/a6HN49evRQQkKC5s+fX7GFucho9QAAcCVkfekZrR5fRJMOwGdlZmYqJztH3SZ0U3hUeIWPd+7QOW18eqMyMzM9+gl7Xl6ex8YCAMBIfCnrAwMDPTYeKhbHpAPweeFR4YpoElHhP6V9c5CcnKzPP/9cCxYskMlkkslk0o8//qj77rtPsbGxslgsatasmRYsWFBsuQEDBuiJJ55QgwYNFBcXJ0nasmWLEhISFBwcrPbt22v16tUymUz69ttvHct+//33uuWWWxQaGqp69erp3nvvdewiWFI9Bw8eLNe2BwDAE6p61jdr1kwSWV9V8E06ABjUggULtG/fPrVo0UIzZsyQJNWsWVONGjXSW2+9pdq1a2vLli0aOXKkIiMjNXDgQMey69evV1hYmNatWyebzaasrCz1799fffv21YoVK/TLL79o7NixTuOdPXtWN954o/76179q3rx5ysnJ0SOPPKKBAwfq008/LbGeOnXqeGx7AABQ1bgr6yUpKytL/fr1I+urAJp0ADCo8PBwBQYGKiQkRPXr13dMnz59uuP32NhYbd26Vf/617+cgrtatWp65ZVXFBgYKJvNpvnz58tkMunll19WcHCw4uPjdfjwYY0YMcKxzMKFC9WmTRs9+eSTjmlLlixRVFSU9u3bp6ZNm5ZYDwAAKBt3Zb0kLV68mKyvImjSAaCSWbRokZYsWaKMjAzl5OQoLy9PCQkJTvO0bNnS6di0AwcOqFWrVgoODnZM69ixo9Myu3bt0meffabQ0NBiY/74449q2rSpex8IAAAoUVmyPj09nayvImjSAaASWbVqlcaPH69nn31WSUlJql69uubMmaNt27Y5zVetWrVSr/vChQvq16+fnnrqqWL3RUZGlrlmAADgOrIeNOkAYGCBgYEqKChw3N68ebM6d+6sUaNGOab9+OOPV13Pddddp7feeku5ubkKCgqSJH311VdO87Rt21bvvPOOYmJi5O9fcjz8vh4AAFA+7sr6Zs2a6fXXXyfrqwDO7g4ABhYTE6Nt27bp4MGDyszMVJMmTbRjxw6tXbtW+/bt0+TJk4sFcEn+/Oc/y2azaeTIkUpLS9PatWv1zDPPSJJMJpMkafTo0Tp9+rQGDx6sr776Sj/++KPWrl2r4cOHO8L69/XYbLaKe/AAAPgAd2X9kCFDyPoqgm/SAfi8c4fOGXac8ePHa9iwYYqPj1dOTo727t2rb775RoMGDZLJZNLgwYM1atQoffTRR1dcT1hYmP7zn/9o9OjRSkhIUMuWLTVlyhQNGTLEcexagwYNtHnzZj3yyCO6+eablZubq2uuuUZ9+vSR2WwusZ6ff/5ZMTExpX5cAAB4kq9k/Xvvvaf777+frK/kTHa73e7tIjwpKytL4eHhOnfunMLCwrxdDkpgtVr14Ycfqm/fvgoICPB2OagCLl26pJ9//lmxsbFOJ1PJyMhQ87jmysnO8VgtlhCL9qbtVXR0tMfGLLoEW1hYmCOAJemNN97Q8OHDde7cOVksFo/V46su9zyUyKaKwDZ1DZmLq6kszxFfz/rL8UTWX+59hi9yV9bzTToAnxUdHa29aXuVmZnpsTEjIiK8FtrLly/Xddddp4YNG2rXrl2O66LSoAMAqipfzPrGjRuT9ZUcTToAnxYdHW2IT7o94fjx45o2bZqOHTumyMhI3XnnnXriiSe8XRYAABXKl7L+2LFjmjJlCllfydGkA4CPePjhh/XII494uwwAAFBBJkyYoAkTJni7DJSTbx80AAAAAACAgdCkAwAAAABgEDTpAHwG1/mEN/H8A4CKx99aeJO7LpzGMekAqrzAwECZzWYdOXJEderUUWBgoEwmk7fL8hibzaa8vDxdunTJ5y+N4g12u115eXk6efKkzGazAgMDvV0SAFQ5vp713sT7jEJ2u10nT56UyWQq9+UKadIBVHlms1mxsbE6evSojhw54u1yPM5utysnJ0cWi4U3LF4UEhKi6Ohon34DAwAVxdez3pt4n/Erk8mkRo0ayc/Pr1zroUkH4BMCAwMVHR2t/Px8FRQUeLscj7Jardq4caO6detW7k92UTZ+fn7y9/f3+TcvAFCRfDnrvYn3Gb8KCAgod4Mu0aQD8CFFux/5WoD4+fkpPz9fwcHBPvfYAQC+xVez3pt4n+F+7HMHAAAAAIBB0KQDAAAAAGAQNOkAAAAAABgETToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA06QAAAAAAGITXm/RFixYpJiZGwcHBSkxM1Pbt2684/9mzZzV69GhFRkYqKChITZs21YcffuihagEAQFmQ9wAAuMbfm4O/+eabSk1N1eLFi5WYmKj58+erd+/eSk9PV926dYvNn5eXp169eqlu3bp6++231bBhQ/3yyy+qUaOG54sHAAAuIe8BAHCdV5v0uXPnasSIERo+fLgkafHixfrggw+0ZMkSTZw4sdj8S5Ys0enTp7VlyxYFBARIkmJiYjxZMgAAKCXyHgAA13mtSc/Ly9POnTs1adIkxzSz2ayePXtq69atJS6zZs0aJSUlafTo0frPf/6jOnXqaMiQIXrkkUfk5+dX4jK5ubnKzc113M7KypIkWa1WWa1WNz4iuEvR/wv/P4B78Joyvqr8f0PeGxt/H3A1PEdwNTxHXFOa7eO1Jj0zM1MFBQWqV6+e0/R69epp7969JS7z008/6dNPP9Xdd9+tDz/8UAcOHNCoUaNktVo1derUEpeZNWuWpk+fXmz6J598opCQkPI/EFSYdevWebsEoErhNWVc2dnZ3i6hwpD3lQN/H3A1PEdwNTxHrqw0We/V3d1Ly2azqW7dunrppZfk5+endu3a6fDhw5ozZ85lQ3vSpElKTU113M7KylJUVJRuvvlmhYWFeap0lILVatW6devUq1cvx26OAMqO15TxFX3ri0Lkvefw9wFXw3MEV8NzxDWlyXqvNekRERHy8/PT8ePHnaYfP35c9evXL3GZyMhIBQQEOO3qFhcXp2PHjikvL0+BgYHFlgkKClJQUFCx6QEBATyJDI7/I8C9eE0ZV1X+fyHvKwe2E66G5wiuhufIlZVm23jtEmyBgYFq166d1q9f75hms9m0fv16JSUllbhMly5ddODAAdlsNse0ffv2KTIyssTABgAA3kXeAwBQOl69Tnpqaqpefvllvfrqq0pLS9P999+vixcvOs7+OnToUKcTzdx///06ffq0xowZo3379umDDz7Qk08+qdGjR3vrIQAAgKsg7wEAcJ1Xj0kfNGiQTp48qSlTpujYsWNKSEjQxx9/7Di5TEZGhszmXz9HiIqK0tq1a/XQQw+pVatWatiwocaMGaNHHnnEWw8BAABcBXkPAIDrvH7iuJSUFKWkpJR434YNG4pNS0pK0pdfflnBVQEAAHci7wEAcI1Xd3cHAAAAAAC/okkHAAAAAMAgytSkf/bZZ+6uAwAAGAx5DwCA55WpSe/Tp4+uvfZaPf744zp06JC7awIAAAZA3gMA4HllatIPHz6slJQUvf3222rcuLF69+6tf/3rX8rLy3N3fQAAwEvIewAAPK9MTXpERIQeeughffvtt9q2bZuaNm2qUaNGqUGDBnrwwQe1a9cud9cJAAA8jLwHAMDzyn3iuLZt22rSpElKSUnRhQsXtGTJErVr105du3bVDz/84I4aAQCAl5H3AAB4RpmbdKvVqrffflt9+/bVNddco7Vr12rhwoU6fvy4Dhw4oGuuuUZ33nmnO2sFAAAeRt4DAOBZ/mVZ6IEHHtDKlStlt9t177336umnn1aLFi0c91erVk3PPPOMGjRo4LZCAQCAZ5H3AAB4Xpma9D179uj555/X7bffrqCgoBLniYiI4NItAABUYuQ9AACeV6bd3adOnao777yzWGDn5+dr48aNkiR/f3917969/BUCAACvIO8BAPC8MjXpN9xwg06fPl1s+rlz53TDDTeUuygAAOB95D0AAJ5XpibdbrfLZDIVm37q1ClVq1at3EUBAADvI+8BAPC8Uh2Tfvvtt0uSTCaTkpOTnXZ/Kygo0HfffafOnTu7t0IAAOBR5D0AAN5TqiY9PDxcUuEn69WrV5fFYnHcFxgYqE6dOmnEiBHurRAAAHgUeQ8AgPeUqklfunSpJCkmJkbjx49nVzcAAKog8h4AAO8p0yXYpk6d6u46AACAwZD3AAB4nstNetu2bbV+/XrVrFlTbdq0KfFEMkW+/vprtxQHwDdlZGQoMzPT22VUqIiICEVHR3u7DKAY8h4AAO9yuUnv37+/48QxAwYMqKh6APi4jIwMNW8ep5ycbG+XUqEslhDt3ZtGow7DIe8BAPAul5v03+7yxu5vACpKZmamcnKylfiXqQqLjPF2ORUi6+hBbVsyXZmZmTTpMBzyHgAA7yrTMekAUNHCImNUK7qZt8sAAAAAPMrlJr1mzZpXPC7tt06fPl3mggAAgPeQ9wAAeJfLTfr8+fMrsAwAAGAE5D0AAN7lcpM+bNiwiqwDBubpM23bbDZJ0q5du2Q2mz0yZm5uruNESVUVZxMH4AryHgAA73K5Sc/KylJYWJjj9yspmg+VX0ZGhuKaN1N2ziWPjWmxWLRy5Up169ZNOTk5HhnTbJJsdo8M5TWWEIv2pu2lUQdwReQ9AADeVapj0o8ePaq6deuqRo0aJR6vZrfbZTKZVFBQ4NYi4T2ZmZnKzrmk10cmKC4y1CNj2syBOixp48QkmW15FT7e1z+d1IjX0tVmaBs16tCowsfzhnOHzmnj0xs5mziAqyLvAQDwLpeb9E8//VS1atWSJH322WcVVhCMKS4yVG1jwj0yllUBOiypdXSYAmSt8PEuZl+UJIXWD1VEk4gKHw8okpaW5pFxvHEIicRhJJUVeQ8AgHe53KR37969xN8BAKVjzS3cQ+See+7xyHjeOIRE4jCSyoq8BwDAu8p8nfQzZ87on//8p+OboPj4eA0fPtzx6TsAoGT5+fmSpJm3N1XflnUrfDxPH0IicRhJVULeAwDgWWVq0jdu3Kh+/fopPDxc7du3lyQ999xzmjFjht577z1169bNrUUCQFUUGxHikcNIPH0IicRhJFUFeQ8AgOeVqUkfPXq0Bg0apBdffFF+fn6SpIKCAo0aNUqjR4/W7t273VokAADwPPIeAADPK1OTfuDAAb399tuOwJYkPz8/paamavny5W4rrjLw9DXEPc1TJ7YCABgPeQ8AgOeVqUlv27at0tLS1KxZM6fpaWlpat26tVsKqwwyMjLUvHmccnKyvV1KBTPp6LlLkjxzdncAgDGQ9wAAeJ7LTfp3333n+P3BBx/UmDFjdODAAXXq1EmS9OWXX2rRokWaPXu2+6s0qMzMTOXkZCvxL1MVFhnj7XIqxMmf9+rbFU/pbHa+t0sBAHgAeQ8AgHe53KQnJCTIZDLJbv/1ejoTJkwoNt+QIUM0aNAg91RXSYRFxqhWdLOrz1gJ5Vys6nsJAAB+i7wHAMC7XG7Sf/7554qsAwAAGAB5DwCAd7ncpF9zzTUVWQcAADAA8h4AAO8q04njiuzZs0cZGRnKy8tzmv6nP/2pXEUBAADjIO8BAPCcMjXpP/30k2677Tbt3r3b6bg1k8kkqfAaqgAAoHIj7wEA8DxzWRYaM2aMYmNjdeLECYWEhOiHH37Qxo0b1b59e23YsMHNJQIAAG8g7wEA8LwyfZO+detWffrpp4qIiJDZbJbZbNb111+vWbNm6cEHH9Q333zj7joBAICHkfcAAHhemb5JLygoUPXq1SVJEREROnLkiKTCk82kp6e7rzoAAOA15D0AAJ5Xpm/SW7RooV27dik2NlaJiYl6+umnFRgYqJdeekmNGzd2d40AAMALyHsAADyvTE36Y489posXL0qSZsyYoVtvvVVdu3ZV7dq19eabb7q1QAAA4B3kPQAAnlemJr13796O36+77jrt3btXp0+fVs2aNR1nfAUAAJUbeQ8AgOeV6zrpknTo0CFJUlRUVLmLAQAAxkTeAwDgGWU6cVx+fr4mT56s8PBwxcTEKCYmRuHh4XrsscdktVrdXSMAAPAC8h4AAM8r0zfpDzzwgN599109/fTTSkpKklR4mZZp06bp1KlTevHFF91aJAAA8DzyHgCqtoyMDGVmZpZrHTabTZK0a9cumc1l+g7YITc3V0FBQeVah7tFREQoOjrao2OWqUlfsWKFVq1apVtuucUxrVWrVoqKitLgwYMJbQAAqgDyHgCqroyMDMU1b6bsnEvlWo/FYtHKlSvVrVs35eTklGtdZpNks5drFW5nCbFob9pejzbqZWrSg4KCFBMTU2x6bGysAgMDy1sTAAAwAPIeAKquzMxMZedc0usjExQXGVrm9djMgTosaePEJJlteWVez9c/ndSI19LVZmgbNerQqMzrcadzh85p49MblZmZafwmPSUlRTNnztTSpUsduyPk5ubqiSeeUEpKilsLBAAA3kHeA0DVFxcZqrYx4WVe3qoAHZbUOjpMASr7+UouZhde8jO0fqgimkSUeT1VgctN+u233+50+7///a8aNWqk1q1bSyo8BiEvL0833XSTeysEAAAeQ94DAOBdLjfp4eHOn67ccccdTre5JAsAAJUfeQ8AgHe53KQvXbq0wopYtGiR5syZo2PHjql169Z6/vnn1bFjx6sut2rVKg0ePFj9+/fX6tWrK6w+AAB8RUXlPVkPAIBrynWO/JMnT2rTpk3atGmTTp48WaZ1vPnmm0pNTdXUqVP19ddfq3Xr1urdu7dOnDhxxeUOHjyo8ePHq2vXrmUaFwAAuKa8eU/WAwDgujI16RcvXtRf/vIXRUZGqlu3burWrZsaNGig++67T9nZ2aVa19y5czVixAgNHz5c8fHxWrx4sUJCQrRkyZLLLlNQUKC7775b06dPV+PGjcvyEAAAwFW4K+/JegAAXFems7unpqbq888/13vvvacuXbpIkjZt2qQHH3xQ48aNc/m6qXl5edq5c6cmTZrkmGY2m9WzZ09t3br1ssvNmDFDdevW1X333acvvvjiimPk5uYqNzfXcTsrK0uSZLVaZbWW/eyDkmSz2WSxWBRglvxNtnKty6gC/UyyWCySf5CsCvDImEXjeGo8u1+gLBaLAv0C5W8v00vC8AJMAbJYLLLZbOV+3lc0Xlfu5+nXlMTrqrSM+rp0R957Iuulis37qqxo27CNcDk8R6quovdcNnNgud4juOt9hhHfO3gr6012u73Ul4uPiIjQ22+/rR49ejhN/+yzzzRw4ECXd4U7cuSIGjZsqC1btigpKckxfcKECfr888+1bdu2Ysts2rRJd911l7799ltFREQoOTlZZ8+evexxatOmTdP06dOLTV+xYoVCQkJcqhMAgIqUnZ2tIUOG6Ny5cwoLC/N2OQ7uyHtPZL1E3gMAjK00WV+mjyiys7NVr169YtPr1q1b6t3dS+P8+fO699579fLLLysiwrVr502aNEmpqamO21lZWYqKitLNN99c7jdCu3btUrdu3XTD+BdUM6pJudZlVEfTv9PWF8bp5eGtNLBDpEfGtCpA62rerV5n3ijXtRZdtTX9qPos+E6dx3ZW425Vc5fKUz+e0kcPf6SNGzc6LqNkVLyu3M/TrymJ11VpFX3razTeyPuyZL1UsXn/v//9T+3bd1BOTsW9xyktiyVEO3Z8pUaNGpVrPVarVevWrVOvXr0UEOC5vW3gGf/73/906tSpcq3DZrPp6NGjioyMlNlcrtNZKTc3V0FBQeVah7vVrl273K+jyqroPdfGiUlqHV32v5Puep9hxPcO3sr6MjXpSUlJmjp1qpYvX67g4GBJUk5OjqZPn+70KfnVREREyM/PT8ePH3eafvz4cdWvX7/Y/D/++KMOHjyofv36OabZbIW7w/r7+ys9PV3XXnut0zJBQUEl/jEICAgodxiZzWbl5OTIapPy7eX7o2VUeQV25eTkSPm5HntzXyRAVo+MaSrIU05OjvIK8pRvyq/w8bzBarcqJydHZrPZ8G/CeF1VHE+9piReV6Vl1NelO/LeE1kvVWzenzlzRqdPn1LiX6YqLDKmXOtyh6yjB7VtyXSdOXNGsbGxblmnO7YTjCUjI0Mt/hCv7JxL5VqPxWLRypUr1aNHj8LsKgezSbKVeh/eimUJsWhv2l5FR0d7uxSPK3rPZbblueX9QXnfZxjxvYO3sr5MTfr8+fPVp08fNWrUyPGJwq5duxQcHKy1a9e6vJ7AwEC1a9dO69ev14ABAyQVBvH69euVkpJSbP7mzZtr9+7dTtMee+wxnT9/XgsWLODarQAAuJE78r4qZX1YZIxqRTfz2vhAaWRmZio755JeH5mguMjQMq/HZg7UYUkbJybJbMsr83q+/umkRryWrjZD26hRB2N8c33u0DltfHqjMjMzfbJJh3GVqUlv2bKl9u/frzfeeEN79+6VJA0ePFh333134cmQSiE1NVXDhg1T+/bt1bFjR82fP18XL17U8OHDJUlDhw5Vw4YNNWvWLAUHB6tFixZOy9eoUUOSik0HAADl4668J+sB74mLDFXbmPAyL29VgA5Lah0dVq5vSS9mX5QkhdYPVUQT1w9lAXxRqZt0q9Wq5s2b6/3339eIESPKXcCgQYN08uRJTZkyRceOHVNCQoI+/vhjxzFwGRkZ5T7+BQAAlI47856sBwDAdaVu0gMCAnTpUvmObfm9lJSUEnd5k6QNGzZccdlly5a5tRYAAOD+vCfrAQBwTZk+th49erSeeuop5ecb44B+AADgfuQ9AACeV6Zj0r/66iutX79en3zyiVq2bKlq1ao53f/uu++6pTgAAOA95D0AAJ5Xpia9Ro0auuOOO9xdCwAAMBDyHgAAzytVk26z2TRnzhzt27dPeXl5uvHGGzVt2rRSn9EdAAAYF3kPAID3lOqY9CeeeEKPPvqoQkND1bBhQz333HMaPXp0RdUGAAC8gLwHAMB7StWkL1++XC+88ILWrl2r1atX67333tMbb7whm81WUfUBAAAPI+8BAPCeUjXpGRkZ6tu3r+N2z549ZTKZdOTIEbcXBgAAvIO8BwDAe0rVpOfn5ys4ONhpWkBAgKxWq1uLAgAA3kPeAwDgPaU6cZzdbldycrKCgoIc0y5duqS///3vTpdl4ZIsAABUXuQ9AADeU6omfdiwYcWm3XPPPW4rBgAAeB95DwCA95SqSV+6dGlF1QEAAAyCvAcAwHtKdUw6AAAAAACoODTpAAAAAAAYBE06AAAAAAAGQZMOAAAAAIBB0KQDAAAAAGAQNOkAAAAAABgETToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA06QAAAAAAGARNOgAAAAAABkGTDgAAAACAQdCkAwAAAABgEP7eLgAAAACo7DIyMpSZmentMhzS0tK8XQJ+h+cIXEWTDgAAAJRDRkaGmjePU05OtrdL+R2Tjp67JCnc24X4PJ4jKA2adAAAAKAcMjMzlZOTrcS/TFVYZIy3y5Eknfx5r75d8ZTOZud7uxSI5whKhyYdAAAAcIOwyBjVim7m7TIkSTkXjfaNLSSeI3ANJ44DAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAIQzTpixYtUkxMjIKDg5WYmKjt27dfdt6XX35ZXbt2Vc2aNVWzZk317NnzivMDAADvI+sBAHCN15v0N998U6mpqZo6daq+/vprtW7dWr1799aJEydKnH/Dhg0aPHiwPvvsM23dulVRUVG6+eabdfjwYQ9XDgAAXEHWAwDgOq836XPnztWIESM0fPhwxcfHa/HixQoJCdGSJUtKnP+NN97QqFGjlJCQoObNm+uVV16RzWbT+vXrPVw5AABwBVkPAIDr/L05eF5ennbu3KlJkyY5ppnNZvXs2VNbt251aR3Z2dmyWq2qVatWiffn5uYqNzfXcTsrK0uSZLVaZbVay1G9ZLPZZLFYFGCW/E22cq3LqAL9TLJYLJJ/kKwK8MiYReN4ajy7X6AsFosC/QLlb/fqS6LCBJgCZLFYZLPZyv28r2i8rtzP068piddVaRn9dVkensh6ybfyPsAstz/3qvJz0BOM9hyR3Jc17soQI+aCJ98f8Ry5uqr+HCnN8ia73W4v12jlcOTIETVs2FBbtmxRUlKSY/qECRP0+eefa9u2bVddx6hRo7R27Vr98MMPCg4OLnb/tGnTNH369GLTV6xYoZCQkPI9AAAA3CA7O1tDhgzRuXPnFBYW5u1y3MoTWS+R9wAAYytN1hvjI4oymj17tlatWqUNGzZcNrQnTZqk1NRUx+2srCzHsW3lfSO0a9cudevWTTeMf0E1o5qUa11GdTT9O219YZxeHt5KAztEemRMqwK0rubd6nXmDQWo4j/Z35p+VH0WfKfOYzurcbfGFT6eN5z68ZQ+evgjbdy4Ua1bt/Z2OVfE68r9PP2aknhdlVbRt74ozpWsl3wr788c2q/Pnhnlluee1WrVunXr1KtXLwUEeG5vm6rGaM8RyX1Z464MMWIuePL9Ec+Rq6vqz5HSZL1Xm/SIiAj5+fnp+PHjTtOPHz+u+vXrX3HZZ555RrNnz9Z///tftWrV6rLzBQUFKSgoqNj0gICAcoeR2WxWTk6OrDYp3+71w/srRF6BXTk5OVJ+rsfe3BcJkNUjY5oK8pSTk6O8gjzlm/IrfDxvsNqtysnJkdlsNvybMF5XFcdTrymJ11VpGf11WR6eyHrJt/LeapPb/6a7Yzv5MqM9RyT3Z015M8SIueDJ90c8R66uqj9HSrO8V58hgYGBateundOJYIpODPPbXeJ+7+mnn9bMmTP18ccfq3379p4oFQAAlAFZDwBA6Xh9d/fU1FQNGzZM7du3V8eOHTV//nxdvHhRw4cPlyQNHTpUDRs21KxZsyRJTz31lKZMmaIVK1YoJiZGx44dkySFhoYqNDTUa48DAACUjKwHAMB1Xm/SBw0apJMnT2rKlCk6duyYEhIS9PHHH6tevXqSpIyMDJnNv37h/+KLLyovL09//vOfndYzdepUTZs2zZOlAwAAF5D1AAC4zutNuiSlpKQoJSWlxPs2bNjgdPvgwYMVXxAAAHArsh4AANcYokkHAABA6aSlpZV7HTZb4fWad+3a5bQ3Q1nk5uaWePI+b4qIiFB0dLS3ywCAUqFJBwAAqESsuXmSpHvuuafc67JYLFq5cqW6detWeJbncjCbJJu93CW5lSXEor1pe2nUAVQqNOkAAACVSH5+4aWJZt7eVH1b1i3XumzmQB2WtHFiksy2vDKv5+ufTmrEa+lqM7SNGnVoVK6a3OXcoXPa+PRGZWZm0qQDqFRo0gEAACqh2IgQtY0JL9c6rArQYUmto8PKdX3ji9kXJUmh9UMV0SSiXDUBgK/z6nXSAQAAAADAr2jSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIAzRpC9atEgxMTEKDg5WYmKitm/ffsX533rrLTVv3lzBwcFq2bKlPvzwQw9VCgAAyoKsBwDANV5v0t98802lpqZq6tSp+vrrr9W6dWv17t1bJ06cKHH+LVu2aPDgwbrvvvv0zTffaMCAARowYIC+//57D1cOAABcQdYDAOA6rzfpc+fO1YgRIzR8+HDFx8dr8eLFCgkJ0ZIlS0qcf8GCBerTp48efvhhxcXFaebMmWrbtq0WLlzo4coBAIAryHoAAFzn783B8/LytHPnTk2aNMkxzWw2q2fPntq6dWuJy2zdulWpqalO03r37q3Vq1eXOH9ubq5yc3Mdt8+dOydJOn36tKxWa7nqz8rKUnBwsC4c3idZc8q1LqPKOfaTgoODlZ6Zpw37zntkTJs5UNl/yNYXBy7IbMur8PG+P5Kn4OBgZR/JVubuzAofzxvOHz2v4OBgZWVl6dSpU94u54p4Xbmfp19TEq+rUq/rfOHzwG63u6M0Q/FE1ku+lffu/Bvirr8PRnzNezL7jPYckdz3POE54h48R66uqj9HSpX1di86fPiwXZJ9y5YtTtMffvhhe8eOHUtcJiAgwL5ixQqnaYsWLbLXrVu3xPmnTp1ql8QPP/zwww8/hv85dOiQewLWQDyR9XY7ec8PP/zww0/l+HEl6736TbonTJo0yenTeJvNptOnT6t27doymUxerAyXk5WVpaioKB06dEhhYWHeLgeo9HhNGZ/dbtf58+fVoEEDb5dSaZH3ZcPfB1wNzxFcDc8R15Qm673apEdERMjPz0/Hjx93mn78+HHVr1+/xGXq169fqvmDgoIUFBTkNK1GjRplLxoeExYWxgsdcCNeU8YWHh7u7RIqhCeyXiLvy4u/D7ganiO4Gp4jV+dq1nv1xHGBgYFq166d1q9f75hms9m0fv16JSUllbhMUlKS0/yStG7dusvODwAAvIesBwCgdLy+u3tqaqqGDRum9u3bq2PHjpo/f74uXryo4cOHS5KGDh2qhg0batasWZKkMWPGqHv37nr22Wf1xz/+UatWrdKOHTv00ksvefNhAACAyyDrAQBwndeb9EGDBunkyZOaMmWKjh07poSEBH388ceqV6+eJCkjI0Nm869f+Hfu3FkrVqzQY489pkcffVRNmjTR6tWr1aJFC289BLhZUFCQpk6dWmy3RQBlw2sK3kbWGxd/H3A1PEdwNTxH3M9kt1fB670AAAAAAFAJefWYdAAAAAAA8CuadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSYSiLFi1STEyMgoODlZiYqO3bt3u7JKBS27hxo/r166cGDRrIZDJp9erV3i4JgEGQubgS8gNXM2vWLHXo0EHVq1dX3bp1NWDAAKWnp3u7rCqBJh2G8eabbyo1NVVTp07V119/rdatW6t37946ceKEt0sDKq2LFy+qdevWWrRokbdLAWAgZC6uhvzA1Xz++ecaPXq0vvzyS61bt05Wq1U333yzLl686O3SKj0uwQbDSExMVIcOHbRw4UJJks1mU1RUlB544AFNnDjRy9UBlZ/JZNK///1vDRgwwNulAPAyMhelQX7AFSdPnlTdunX1+eefq1u3bt4up1Ljm3QYQl5ennbu3KmePXs6ppnNZvXs2VNbt271YmUAAFQtZC6AinDu3DlJUq1atbxcSeVHkw5DyMzMVEFBgerVq+c0vV69ejp27JiXqgIAoOohcwG4m81m09ixY9WlSxe1aNHC2+VUev7eLgAAAAAAUHmNHj1a33//vTZt2uTtUqoEmnQYQkREhPz8/HT8+HGn6cePH1f9+vW9VBUAAFUPmQvAnVJSUvT+++9r48aNatSokbfLqRLY3R2GEBgYqHbt2mn9+vWOaTabTevXr1dSUpIXKwMAoGohcwG4g91uV0pKiv7973/r008/VWxsrLdLqjL4Jh2GkZqaqmHDhql9+/bq2LGj5s+fr4sXL2r48OHeLg2otC5cuKADBw44bv/888/69ttvVatWLUVHR3uxMgDeRObiasgPXM3o0aO1YsUK/ec//1H16tUd57QIDw+XxWLxcnWVG5dgg6EsXLhQc+bM0bFjx5SQkKDnnntOiYmJ3i4LqLQ2bNigG264odj0YcOGadmyZZ4vCIBhkLm4EvIDV2MymUqcvnTpUiUnJ3u2mCqGJh0AAAAAAIPgmHQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0ABUmOTlZAwYM8HYZAABUGT169NDYsWPLvPyyZctUo0YNt9VzOTExMZo/f36FjwNURTTpAAAAgI8YNGiQ9u3b5+0yAFwBTToAw7Lb7crPz/d2GQAAVBkWi0V169a97P15eXkerObyjFIH4A006YAPOH/+vO6++25Vq1ZNkZGRmjdvntPucrm5uRo/frwaNmyoatWqKTExURs2bHAsX7Rr3Nq1axUXF6fQ0FD16dNHR48edcxTUFCg1NRU1ahRQ7Vr19aECRNkt9ud6rDZbJo1a5ZiY2NlsVjUunVrvf322477N2zYIJPJpI8++kjt2rVTUFCQNm3aVKHbBgCAysZms2nChAmqVauW6tevr2nTpjnumzt3rlq2bKlq1aopKipKo0aN0oULFxz3/35392nTpikhIUGvvPKKYmNjFRwcLEk6e/as/va3v6levXoKDg5WixYt9P777zuWe+edd/SHP/xBQUFBiomJ0bPPPnvFmjMyMtS/f3+FhoYqLCxMAwcO1PHjx69aB+CLaNIBH5CamqrNmzdrzZo1Wrdunb744gt9/fXXjvtTUlK0detWrVq1St99953uvPNO9enTR/v373fMk52drWeeeUavvfaaNm7cqIyMDI0fP95x/7PPPqtly5ZpyZIl2rRpk06fPq1///vfTnXMmjVLy5cv1+LFi/XDDz/ooYce0j333KPPP//cab6JEydq9uzZSktLU6tWrSpoqwAAUDm9+uqrqlatmrZt26ann35aM2bM0Lp16yRJZrNZzz33nH744Qe9+uqr+vTTTzVhwoQrru/AgQN655139O677+rbb7+VzWbTLbfcos2bN+v111/Xnj17NHv2bPn5+UmSdu7cqYEDB+quu+7S7t27NW3aNE2ePFnLli0rcf02m039+/fX6dOn9fnnn2vdunX66aefNGjQoCvWAfgsO4AqLSsryx4QEGB/6623HNPOnj1rDwkJsY8ZM8b+yy+/2P38/OyHDx92Wu6mm26yT5o0yW632+1Lly61S7IfOHDAcf+iRYvs9erVc9yOjIy0P/30047bVqvV3qhRI3v//v3tdrvdfunSJXtISIh9y5YtTuPcd9999sGDB9vtdrv9s88+s0uyr1692j0PHgCAKqZ79+7266+/3mlahw4d7I888kiJ87/11lv22rVrO24vXbrUHh4e7rg9depUe0BAgP3EiROOaWvXrrWbzWZ7enp6iescMmSIvVevXk7THn74YXt8fLzj9jXXXGOfN2+e3W632z/55BO7n5+fPSMjw3H/Dz/8YJdk3759+2XrAHyVv5c/IwBQwX766SdZrVZ17NjRMS08PFzNmjWTJO3evVsFBQVq2rSp03K5ubmqXbu243ZISIiuvfZax+3IyEidOHFCknTu3DkdPXpUiYmJjvv9/f3Vvn17xy7vBw4cUHZ2tnr16uU0Tl5entq0aeM0rX379uV5yAAAVGm/38vst5n83//+V7NmzdLevXuVlZWl/Px8Xbp0SdnZ2QoJCSlxfddcc43q1KnjuP3tt9+qUaNGxd4bFElLS1P//v2dpnXp0kXz589XQUGB4xv3384fFRWlqKgox7T4+HjVqFFDaWlp6tChQ4l1AL6KJh3wcRcuXJCfn5927txZLFRDQ0MdvwcEBDjdZzKZih1zfrVxJOmDDz5Qw4YNne4LCgpyul2tWjWX1wsAgK8pKZNtNpsOHjyoW2+9Vffff7+eeOIJ1apVS5s2bdJ9992nvLy8yzbpv89di8VSYbVfCfkPFOKYdKCKa9y4sQICAvTVV185pp07d85x+ZU2bdqooKBAJ06c0HXXXef0U79+fZfGCA8PV2RkpLZt2+aYlp+fr507dzpux8fHKygoSBkZGcXG+e0n6wAAoGx27twpm82mZ599Vp06dVLTpk115MiRUq+nVatW+t///nfZS7XFxcVp8+bNTtM2b96spk2bFvvAv2j+Q4cO6dChQ45pe/bs0dmzZxUfH1/q+oCqjm/SgSquevXqGjZsmB5++GHVqlVLdevW1dSpU2U2m2UymdS0aVPdfffdGjp0qJ599lm1adNGJ0+e1Pr169WqVSv98Y9/dGmcMWPGaPbs2WrSpImaN2+uuXPn6uzZs051jB8/Xg899JBsNpuuv/56nTt3Tps3b1ZYWJiGDRtWQVsAAADfcN1118lqter5559Xv379tHnzZi1evLjU6+nevbu6deumO+64Q3PnztV1112nvXv3ymQyqU+fPho3bpw6dOigmTNnatCgQdq6dasWLlyoF154ocT19ezZUy1bttTdd9+t+fPnKz8/X6NGjVL37t05xA0oAd+kAz5g7ty5SkpK0q233qqePXuqS5cuiouLc1zeZOnSpRo6dKjGjRunZs2aacCAAfrqq68UHR3t8hjjxo3Tvffeq2HDhikpKUnVq1fXbbfd5jTPzJkzNXnyZM2aNUtxcXHq06ePPvjgA8XGxrr18QIA4Itat26tuXPn6qmnnlKLFi30xhtvaNasWWVa1zvvvKMOHTpo8ODBio+P14QJE1RQUCBJatu2rf71r39p1apVatGihaZMmaIZM2YoOTm5xHWZTCb95z//Uc2aNdWtWzf17NlTjRs31ptvvlnWhwpUaSZ7aQ4qBVAlXLx4UQ0bNtSzzz6r++67z9vlAAAAAPj/2N0d8AHffPON9u7dq44dO+rcuXOaMWOGJBU7MysAAAAA76JJB3zEM888o/T0dAUGBqpdu3b64osvFBER4e2yAAAAAPwGu7sDAAAAAGAQnDgOAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAiadAAAAAAADIImHQAAAAAAg6BJBwAAAADAIGjSAQAAAAAwCJp0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAg/L1dgKfZbDYdOXJE1atXl8lk8nY5AADIbrfr/PnzatCggcxmPj93B/IeAGAkpcl6n2vSjxw5oqioKG+XAQBAMYcOHVKjRo28XUaVQN4DAIzIlaz3uSa9evXqkgo3TlhYmJercZ3VatUnn3yim2++WQEBAd4ux2vYDr9iWxRiOxRiOxSqrNshKytLUVFRjoxC+VXWvPcVlfW1ChgZrytjK03W+1yTXrTLW1hYWKUKbavVqpCQEIWFhfn0i47t8Cu2RSG2QyG2Q6HKvh3YLdt9Kmve+4rK/loFjIjXVeXgStZz4BsAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBA+d0w6AN9WUFAgq9Xq7TLczmq1yt/fX5cuXVJBQYG3y/Eao26HgIAA+fn5ebsMAPAJVTXrr8aoGehLAgMD3XIpVZp0AD7Bbrfr2LFjOnv2rLdLqRB2u13169fXoUOHfPrkY0beDjVq1FD9+vUNVxcAVBVVPeuvxsgZ6CvMZrNiY2MVGBhYrvXQpAPwCUWhXbduXYWEhFS58LLZbLpw4YJCQ0Pd8gluZWXE7WC325Wdna0TJ05IkiIjI71cEQBUTVU966/GiBnoS2w2m44cOaKjR48qOjq6XM8/mnQAVV5BQYEjtGvXru3tciqEzWZTXl6egoODfTqYjbodLBaLJOnEiROqW7cuu74DgJv5QtZfjVEz0JfUqVNHR44cUX5+frkug8f/HoAqr+i4tJCQEC9XAl9W9PzzxeMkAaCikfUwgqLd3Mt7TgCadAA+w9d2e4Ox8PwDgIrH31p4k7uefzTpAAAAAAAYBMekAwCuqEePHkpISND8+fMNsR7AGzIyMpSZmentMipURESEoqOjvV0GAC8h742DJh0A4FYbNmzQDTfcoDNnzqhGjRqO6e+++265TqICeEtGRoaaN49TTk62t0upUBZLiPbuTaNRB+AS8r7i0KQDADyiVq1a3i4BKJPMzEzl5GQr8S9TFRYZ4+1yKkTW0YPatmS6MjMzadIBlAt5X34ckw4ABtWjRw+lpKQoJSVF4eHhioiI0OTJk2W32yVJZ86c0dChQ1WzZk2Fhobqz3/+s/bv3+9YftmyZapRo4ZWr16tJk2aKDg4WL1799ahQ4cc8yQnJ2vAgAFO444dO1Y9evS4bF2vvfaa2rdvr+rVq6t+/foaMmSI4xrgBw8e1A033CBJqlmzpkwmk5KTkx2PZ+zYsY71/Lb+kJAQ3XLLLSXWv3btWsXFxSk0NFR9+vTR0aNHy7I5gXILi4xRrehmVfKnqn74AFQGpcn7K+Xl6tWr1a5dO4WEhJD3lRxNOgAY2Kuvvip/f39t375dCxYs0Ny5c/XKK69IKgzcHTt2aM2aNdq8ebMk6dZbb3W6xFd2draeeOIJLV++XJs3b9bZs2d11113lasmq9WqmTNnateuXVq9erUOHjzoCOaoqCi98847kqT09HQdPXpUCxYsKHE9v61/69atstvt6tu3b7H6n3nmGb322mvauHGjMjIyNH78+HLVDwCA0bia91fKy1mzZunFF1/UF198Qd5XcuzuDgAGFhUVpXnz5slkMqlZs2bavXu35s2bpx49ejia886dO8tms+mll15SixYttHr1at15552SCgN24cKFSkxMlFT4JiAuLk7bt29Xx44dy1TTX/7yF8fvjRs31nPPPacOHTrowoULCg0NdezmVrduXadj1H5r//79TvVL0htvvKGoqKhi9S9evFjXXnutJCklJUUzZswoU90AABiVq3kvXT4vn3vuOcXFxSksLIy8r+T4Jh0ADKxTp05O19xMSkrS/v37tWfPHvn7+zuab6nwGLBmzZopLS3NMc3f318dOnRw3G7evLlq1KjhNE9p7dy5U/369VN0dLSqV6+u7t27Syo8uZar0tLSitVfu3btYvWHhIQ4AluSIiMjHbvaAQBQVZQm70vKS/K+aqFJBwAfZjabHce8Ffnt7me/d/HiRfXu3VthYWF644039NVXX+nf//63JCkvL8/t9f3+7LAmk6lYvQAA4MrI+8qFJh0ADGzbtm1Ot7/88ks1adJE8fHxys/Pd7r/9OnTSk9PV3x8vGNafn6+duzY4bidnp6us2fPKi4uTpJUp06dYidm+fbbby9bz969e3Xq1CnNnj1bXbt2VfPmzYt90h0YGChJKigouOx64uLiitV/6tSpYvUDAOALSpP3JeUleV+10KQDgIFlZGQoNTVV6enpWrlypZ5//nmNGTNGTZo0Uf/+/TVixAht2rRJu3bt0siRI9WwYUP179/fsXxAQIAeeOABbdu2TTt37lRycrI6derkOD7txhtv1I4dO7R8+XLt379fU6dO1ffff3/ZeqKjoxUYGKjnn39eP/30k9asWaOZM2c6zXPNNdfIZDLp/fff18mTJ3XhwoVi6ymp/nvuuadY/QAA+ILS5H1JeRkQEKAxY8Zox44d5H0VQJMOAAY2dOhQ5eTkqGPHjho9erTGjBmjkSNHSpKWLl2qdu3a6dZbb1WXLl0kSe+//77TLmMhISF65JFHNGTIEHXp0kWhoaF68803Hff37t1bkydP1oQJE9ShQwedP39eQ4cOvWw9derU0bJly/TWW28pPj5es2fP1jPPPOM0T8OGDTV9+nRNnDhR9erVU0pKSonr+m39SUlJstvt+vDDD4vt8gYAQFXnat5fLi9DQkL08MMPa8SIEeratSt5X8mZ7D62s39WVpbCw8N17tw5hYWFebscl1mtVn344Yfq27evTz+h2Q6/YlsUcmU7XLp0ST///LNiY2MVHBzs4QrLrkePHkpISND8+fOvOq/NZlNWVpbCwsJkNhd+/rps2TKNHTtWZ8+erdhCDaSk7WAUV3oeVtZsMjJ3btOvv/5a7dq1U6//W6pa0c3cVKGxnM5I17onhmvnzp1q27ZthY9HhsHdKmvWS6XL+5IU5f3p06cNm4G+wl1Zz/8eAAAAAAAGQZMOAAAAAIBB+Hu7AABAyTZs2FCu5ZOTk5WcnOyWWgAAQMVwV97bbDb3FASv45t0AAAAAAAMgiYdAAAAAACDoEkHAAAAAMAgaNIBAAAAADAImnQAAAAAAAyCJh0AAAAAAIPgEmwAfFpGRoYyMzM9Nl5ERISio6M9Np6rYmJiNHbsWI0dO/ay8+Tl5Sk+Pl7Lly9X586dPVecAZhMJv373//WgAEDSrx/z549uvnmm5Wenq5q1ap5tjgAwBWR9YXI+iszUtbTpAPwWRkZGWrePE45OdkeG9NiCdHevWmGDO+rWbx4sWJjYyt1aB88eFCxsbH65ptvlJCQ4Lb1xsfHq1OnTpo7d64mT57stvUCAMqHrC8dsv7yPJn1NOkAfFZmZqZycrKV+JepCouMqfDxso4e1LYl05WZmVnpgttut2vhwoWaMWNGuddTUFAgf/+qFz/Dhw/XiBEjNGnSpCr5+ACgMiLrXUfWX52nsp5j0gH4vLDIGNWKblbhP2V5c9CjRw+lpKQoJSVF4eHhioiI0OTJk2W32x3znDlzRsOGDVNMTIxCQ0N1yy23aP/+/U7reeedd/SHP/xBQUFBiomJ0bPPPluqOnbu3Kkff/xRf/zjHx3TDh48KJPJpFWrVqlz584KDg5WixYt9Pnnnzvm2bBhg0wmkz766CO1a9dOQUFB2rRpk2w2m2bNmqXY2FhZLBa1bt1ab7/9drHl1q5dqzZt2shisejGG2/UiRMn9NFHHykuLk5hYWEaMmSIsrN//Xbk448/Vp8+fVSrVi3Vrl1bt956q3788UfH/bGxsZKkNm3ayGQyqUePHo77lixZ4thGkZGRSklJcdoGmZmZuu222xQSEqImTZpozZo1Tvf36tVLp0+fdnr8AABjqApZP3ToUNWsWVMhISGXzfqkpCRZLJYqn/XXX3+9atSoUWWzniYdAAzu1Vdflb+/v7Zv364FCxZo7ty5euWVVxz3Jycna+fOnVqxYoU2b94su92uvn37ymq1SioM3YEDB+quu+7S7t27NW3aNE2ePFnLli1zuYYvvvhCTZs2VfXq1Yvd9/DDD2vcuHH65ptvlJSUpH79+unUqVNO80ycOFGzZ89WWlqaWrVqpVmzZmn58uVavHixfvjhBz300EO65557ioXetGnTtHDhQm3ZskWHDh3SwIEDNX/+fK1YsUIffPCBPvnkEz3//POO+S9evKjRo0dr+/btWr9+vcxms2677TbZbDZJ0vbt2yVJ//3vf3X06FG9++67kqQXX3xRo0eP1siRI7V7926tWbNG1113nVMt06dP18CBA/Xdd9+pb9++uvvuu3X69GnH/YGBgUpISNAXX3zh8nYFAEByLet37NihNWvWaOvWrSVm/V133aXbb79du3btqvJZn5qaqh07dlTZrK96+yAAQBUTFRWlefPmyWQyqVmzZtq9e7fmzZunESNGaP/+/VqzZo2++OILtWjRQmFhYXrjjTcUFRWl1atX684779TcuXN10003OY6fatq0qfbs2aM5c+YoOTnZpRp++eUXNWjQoMT7UlJSdMcdd0gqDMCPP/5Y//znPzVhwgTHPDNmzFCvXr0kSbm5uXryySf13//+V0lJSZKkxo0ba9OmTfrHP/6h7t27O5Z7/PHH1aVLF0nSfffdp0mTJunHH39U48aNJUl//vOf9dlnn+mRRx6RJN1xxx3KyspSWFiYzGazlixZojp16mjPnj1q0aKF6tSpI0mqXbu26tev7zTOuHHjNGbMGMe0Dh06OD3O5ORkDR48WJL05JNP6rnnntP27dvVp08fxzwNGjTQL7/84tI2BQCgiCtZv3nzZsex4iVl/Y033qiHH35YYWFhat68eZXO+t+qilnv9W/SFy1apJiYGAUHBysxMdHxycflzJ8/X82aNZPFYlFUVJQeeughXbp0yUPVAoDnderUSSaTyXE7KSlJ+/fvV0FBgdLS0uTv76/ExETH/bVr11azZs2UlpYmSUpLS3OEX5EuXbo41uGKnJwcBQcHl3hfUfhKkr+/v9q3b+8Yu0j79u0dvx84cEDZ2dnq1auXQkNDHT/Lly932l1Nklq1auX4vV69egoJCXGEdtG0EydOOG7v379f9913n6677jqFhYUpJiZGUuGJgy7nxIkTOnLkiG666aYrbAHnWqpVq6awsDCnsSXJYrE47ZKHX5H3AHB5ZH0hV7N+8ODBaty4cZXNeq9+k/7mm28qNTVVixcvVmJioubPn6/evXsrPT1ddevWLTb/ihUrNHHiRC1ZskSdO3fWvn37lJycLJPJpLlz53rhEQCAb4iIiNDu3bvLvPxvL1Vy4cIFSdIHH3yghg0bOs0XFBTkdDsgIMDxu8lkcrpdNK1o9zZJ6t+/vxo2bKh//OMfatSokWw2m1q0aKG8vLzL1maxWFx6DFcbW5JOnz6ta6+91qX1+RLyHgCMr7Jkfb9+/XTNNdfo5ZdfVoMGDapk1nv1m/S5c+dqxIgRGj58uOLj47V48WKFhIRoyZIlJc6/ZcsWdenSRUOGDFFMTIxuvvlmDR48+KqfxgNAZbZt2zan219++aWaNGkiPz8/xcXFKT8/32meU6dOKT09XfHx8ZKkuLg4bd682WkdmzdvVtOmTeXn5+dSDW3atNHevXudTmLz23qK5Ofna+fOnYqLi7vsuuLj4xUUFKSMjAxdd911Tj9RUVEu1VOSosc9btw43XTTTYqLi9OZM2ec5gkMDJQkp28VqlevrpiYGK1fv77MYxf5/vvv1aZNm3Kvp6oh7wHgysh61xQ97scee6xKZ73XvknPy8vTzp07NWnSJMc0s9msnj17auvWrSUu07lzZ73++uvavn27OnbsqJ9++kkffvih7r333suOk5ubq9zcXMftrKwsSZLVanWcaKEyKKq1MtVcEdgOv2JbFHJlO1itVtntdtlsNqdPQx2/2///T0Wz/zru7z+VvZKMjAw99NBDGjlypL7++ms9//zzmjNnjmw2m6699lr96U9/0t/+9jc988wzqlevnh599FE1bNhQ/fr1k81m00MPPaTExETNmDFDAwcO1NatW7Vw4UItXLjQqY6ibVSS7t2768KFC9q9e7datGjheBxS4W7M1157reLi4jR//nydOXNGycnJTo/zt79Xq1ZN48aN00MPPaT8/Hxdf/31OnfunLZs2aLq1atr2LBhJS73+3+Lai6aFh4ertq1a+vVV1/Vtddeq0OHDunRRx91Wk9ERIQsFos++ugjNWjQQMHBwQoPD9eUKVM0atQo1alTR3369NH58+e1ZcsWp7O+lvT/9ttpBw8e1OHDh3XjjTeWuB1tNpvsdrusVmuxN0xV+XVcFfLeZrPJYrEowCz5m1x/7VYmAebCb5psNptHno9kGNzNF7J+xIgRevHFF1W9enVNmjSpxKyfM2eO7rnnHn355ZdVOuv/8Y9/qF69esrIyKiSWe+1Jj0zM1MFBQWqV6+e0/R69epp7969JS4zZMgQZWZm6vrrr5fdbld+fr7+/ve/O/5jSjJr1ixNnz692PRPPvlEISEh5XsQXrBu3Tpvl2AIbIdfsS0KXWk7+Pv7q379+rpw4YLTrlAXL16UJJ09/KMKCvIrvMbzx35xjFvUQFxNfn6+Bg0apHPnzikxMVF+fn7629/+prvuusuxjgULFmjixIm66667ZLVa1blzZ61atUo5OTnKycnRddddp6VLl2rWrFl6/PHHVa9ePU2aNEm33367Yx02m02XLl26bF0BAQG69dZbtXTpUk2dOlXSr7uyTZ48WbNmzdLu3bvVuHFjrVixQoGBgcrKynIcs3X+/HmZzb/uvDV+/HhVr15ds2bN0sGDBxUeHq7WrVvroYceuuxyly5dkt1ud6oxNzdXBQUFjmmvvPKKJk6cqNatW+u6667TU089pVtvvVU5OTmOeWbPnq2nn35aU6dOVVJSkt5//33ddtttOnv2rBYtWqSHH35YtWvX1p/+9CensX67DqnwTcNvt9myZct04403qmbNmiVux7y8POXk5Gjjxo3Kz3d+vlXl49irSt6vXLny//+WWe51GVLdmhq5cqUOHz6sw4cPe2xYMgzu4itZ369fv6tm/Zw5c3wi61u1alVls95kL2l/Bg84cuSIGjZsqC1btjidiGDChAn6/PPPi+3yIRVeS++uu+7S448/rsTERB04cEBjxozRiBEjHGct/r2SPlmPiopSZmamwsLC3P/AKojVatW6devUq1evYsdK+BK2w6/YFoVc2Q6XLl3SoUOHHCetKpKRkaH4+D8oJ8dzDZLFEqI9e35QdHS0S/PfeOONat26tebNm3fF+ex2u86fP6/q1as7nXjGnb777jv17t1b+/fvV2hoqA4ePKhrr71WO3fuVEJCQoWMWVqe2A4lycvLU7NmzfT6668XO3FPkUuXLungwYOKiooqdmKerKwsRURE6Ny5c5Uqm1xRFfJ+165d6tatm24Y/4JqRjUp17qM6syh/frsmVHauHGjWrduXeHjkWFwN1/I+qtxRwZWhqz3Fk9mvde+SY+IiJCfn5+OHz/uNP348eNOp8r/rcmTJ+vee+/VX//6V0lSy5YtdfHiRY0cOVL/93//5/TJTZGgoKBiJyeQCj8pqoyhUFnrdje2w6/YFoWutB0KCgpkMplkNpud/k7ExMRo7940ZWZ67puxiIgIl0O7SFHtV1K0y5Ur85ZVQkKCnnrqKf3yyy9q2bKlY5zfb1dv8sR2KMn//vc/Pfroo+ratetl5zGbzY4T4vz+uVqVX8NVIe/NZrNycnJktUn5dmM8193Naiv8BslsNnv0+UiGwV18Ieuvxh0ZWBmy3ls8mfVea9IDAwPVrl07rV+/XgMGDJBU+MRav36903EBv5WdnV3syVG0r7+XdggAUMlFR0eXOkh9mavXWvU1RSfDQXHkPQBvI+tLh6wvmSez3quXYEtNTdWwYcPUvn17dezYUfPnz9fFixc1fPhwSdLQoUPVsGFDzZo1S1Lh6fbnzp2rNm3aOHZ/mzx5svr16+fyWQsBoDLZsGGDt0u4rJiYGBomuIS8B4DLI+vxe15t0gcNGqSTJ09qypQpOnbsmBISEvTxxx87Ti6TkZHh9En6Y489JpPJpMcee0yHDx9WnTp11K9fPz3xxBPeeggAAOAqyHsAAFzn1SZdklJSUi67u9vvP1Xy9/fX1KlTHWcbBAAAlQN5DwCAa3z76H8AAAAAAAyEJh0AAAAAAIOgSQcAAAAAwCBo0gEAAAAAMAivnzgOALwpIyNDmZmZHhsvIiLCcNdqjYmJ0dixYzV27FhvlwIAgNuR9WR9ZUOTDsBnZWRkKK55M2XnXPLYmCGWYKXtTTdceAMAUBWR9aiMaNIB+KzMzExl51zS6yMTFBcZWuHjpR29oHte+laZmZkENwAAHkDWozKiSQfg8+IiQ9U2JtzbZZSoR48eatGihSTptddeU0BAgO6//37NmDFDJpNJZ86c0ZgxY/Tee+8pNzdX3bp10/PPP68mTZo41vHOO+9oypQpOnDggCIjI/XAAw9o3Lhx3npIAAB4XFXK+u7du+u5554j66swThwHAAb36quvyt/fX9u3b9eCBQs0d+5cvfLKK5Kk5ORk7dixQ6tXr9batWtlt9vVt29fWa1WSdLOnTs1cOBA3XXXXdq9e7emTZumyZMna9myZV58RAAA4Ldcyfo1a9Zo69atl836QYMGafPmzZoyZQpZX8nxTToAGFxUVJTmzZsnk8mkZs2aaffu3Zo3b5569OihNWvWaPPmzerUqZOysrL0+uuv65prrtHq1at15513au7cubrppps0efJkSVLTpk21Z88ezZkzR8nJyd59YAAAQJJrWd+5c2dJ0htvvKGoqKhiWf/YY48pKytLbdu21d69e8n6Soxv0gHA4Dp16iSTyeS4nZSUpP3792vPnj3y9/dXYmKi477atWurWbNmSktLkySlpaWpS5cuTuvr0qWL9u/fr4KCAs88AAAAcEVkPX6LJh0AAAAAAIOgSQcAg9u2bZvT7S+//FJNmjRRfHy88vPzne4/deqU0tPTFR8fL0mKi4vT5s2bnZbfvHmzmjZtKj8/v4ovHgAAXBVZj9+iSQcAg8vIyFBqaqrS09O1cuVKPf/88xozZoyaNGmi/v37a8SIEdq0aZN2796te++9Vw0bNlT//v0lSePGjdP69es1c+ZM7du3T6+++qoWLlyo8ePHe/lRAQCAIq5m/a5du3TPPfeUmPWPP/64Dhw4QNZXAZw4DoDPSzt6wdDjDB06VDk5OerYsaP8/Pw0ZswYjRw5UpK0dOlSjRkzRn/605+Ul5enrl276sMPP1RAQIAkqW3btvrXv/6lKVOmaObMmYqMjNSMGTM4kQwAwKdUhay/9dZblZeXp27dul026x9//HGyvgqgSQfgsyIiIhRiCdY9L33rsTFDLMGKiIgo1TIBAQGaP3++XnzxxWL31axZU8uXL5fNZlNWVpbCwsJkNjvvJHXHHXfojjvuuOz6Dx48WKp6AACoLKpS1l/JHXfcodtuu+2y7wXI+sqFJh2Az4qOjlba3nRlZmZ6bMyIiAhFR0d7bDwAAHwZWY/KiCYdgE+Ljo4mSAEAqMLIelQ2NOkAYGAbNmzwdgkAAKACkfX4Pc7uDgAAAACAQdCkAwAAAABgEDTpAAAAAAAYBE06AAAAAAAGQZMOAAAAAIBB0KQDAAAAAGAQXIINgE/LyMhQZmamx8aLiIjgWq0AAHgQWY/KhiYdgM/KyMhQ87jmysnO8diYlhCL9qbtdTm8e/TooYSEBM2fP79iC3OR0eoBAOBKyPrSM1o9vogmHYDPyszMVE52jrpN6KbwqPAKH+/coXPa+PRGZWZmevQT9ry8PAUGBnpsPAAAjMKXst7fn9auquCYdAA+LzwqXBFNIir8p7RvDpKTk/X5559rwYIFMplMMplM+vHHH3XfffcpNjZWFotFzZo104IFC4otN2DAAD3xxBNq0KCBmjVrJknasmWLEhISFBwcrPbt22v16tUymUz69ttvHct+//33uuWWWxQaGqp69erp3nvvdewiWFI9Bw8eLNe2BwDAE3wl67dt26a2bduS9ZUcH7cAgEEtWLBA+/btU4sWLTRjxgxJUs2aNdWoUSO99dZbql27trZs2aKRI0eqXr166tOnj2PZ9evXKywsTOvWrZMkZWVlqV+/furbt69WrFihX375RWPHjnUa7+zZs7rxxhv117/+VfPmzVNOTo4eeeQRDRw4UJ9++mmJ9dSpU8czGwMAgCqoNFkfGRmpgQMHOpYtKesHDx5M1lcBNOkAYFDh4eEKDAxUSEiI6tev75g+ffp0x++xsbHaunWr3nrrLacmvVq1anrllVccu7kvXrxYJpNJL7/8soKDgxUfH6/Dhw9rxIgRjmUWLlyoNm3a6Mknn3RMW7JkiaKiorRv3z41bdq0xHoAVB1paWkeGcdms0mSdu3aJbPZczt25ubmKigoyGPjeQMnLatcSpP1//rXv5ya9N9n/QsvvCCTyaSXXnpJISEhZH0lRpMOAJXMokWLtGTJEmVkZCgnJ0d5eXlKSEhwmqdly5ZOx6Gnp6erVatWCg4Odkzr2LGj0zK7du3SZ599ptDQ0GJj/vjjj2ratKl7HwgAw7Dm5kmS7rnnHo+MZ7FYtHLlSnXr1k05OZ47oZfZJNnsHhvOK0p70jIYU1myft++ffrDH/5A1lcBNOkAUImsWrVK48eP17PPPqukpCRVr15dc+bM0bZt25zmq1atWqnXfeHCBfXr109PPfVUsfsiIyPLXDMA48vPz5ckzby9qfq2rFvh49nMgTosaePEJJlteRU+niR9/dNJjXgtXW2GtlGjDo08MqaneeukZXAvsh406QBgYIGBgSooKHDc3rx5szp37qxRo0Y5pv34449XXU+zZs30+uuvO+3q+dVXXznN07ZtW73zzjuKiYm57Blif18PgKolNiJEbWMq/gzYVgXosKTW0WEKkLXCx5Oki9kXJUmh9UMV0STCI2MCrnBX1jdt2tSR9RaLRRJZX1nRpAPweecOnTPsODExMdq2bZsOHjyo0NBQNWnSRMuXL9fatWsVGxur1157TV999ZViY2OvuJ4hQ4bo//7v/zRy5EhNnDhRGRkZeuaZZyRJJpNJkjR69Gi9/PLLGjx4sCZMmKBatWrpwIEDWrVqlV555RX5+fkVq6dWrVoePZ4UAICy8JWsf+yxx/S3v/1NkyZNIusrMZp0AD4rIiJClhCLNj690WNjWkIsiohw/Ruc8ePHa9iwYYqPj1dOTo727t2rb775RoMGDZLJZNLgwYM1atQoffTRR1dcT1hYmN577z3df//9SkhIUMuWLTVlyhQNGTLEcexagwYNtHnzZj3yyCO6+eablZubq2uuuUZ9+vRxhPPv6/n5558VExNT5u0BAEBF8rWsX7lypSZMmEDWV3I06QB8VnR0tPam7XVcG9QTSnvW3aZNm2rr1q1O05YuXaqlS5c6TXviiSeUlZUlSVq2bFmJ6+rcubN27drluP3GG28oICDAqZ4mTZro3XffLVU9AAAYVVXK+lmzZjl+v1zWJyYm6ptvvnE03GR95USTDsCnRUdH+8zJdZYvX67GjRurYcOG2rVrl+O6qEXHrQEAUBX5UtavWrVK8fHxioqKIusrMZp0APARx44d05QpU3Ts2DFFRkbqzjvv1BNPPOHtsgAAgJscP35cs2fPJusrOZp0APAREyZM0IQJE7xdBgAAqCBjxozR5MmTOdFbJcf/HgAAAAAABkGTDsBn2O12b5cAH8bzDwAqHn9r4U3uev7RpAOo8gICAiRJ2dnZXq4Evqzo+Vf0fAQAuA9ZDyPIy8uTJPn5+ZVrPRyTDqDK8/PzU40aNXTixAlJUkhIiEwmk5erci+bzaa8vDxdunTJp49DM+J2sNvtys7O1okTJ1SjRo1yBzcAoDhfyPqrMWIG+hKbzaaTJ08qJCRE/v7la7Np0gH4hPr160uSI7yrGrvdrpycHFksFp97U/JbRt4ONWrUcDwPAQDuV9Wz/mqMnIG+wmw2Kzo6utzbnyYdgE8wmUyKjIxU3bp1ZbVavV2O21mtVm3cuFHdunXz6d2pjbodAgIC+AYdACpYVc/6qzFqBvqSwMBAt+zFQJMOwKf4+flVyWbJz89P+fn5Cg4O9ulgZjsAAKpq1l8NGVh1cLACAAAAAAAGQZMOAAAAAIBB0KQDAAAAAGAQNOkAAAAAABgETToAAAAAAAZBkw4AAAAAgEHQpAMAAAAAYBBeb9IXLVqkmJgYBQcHKzExUdu3b7/i/GfPntXo0aMVGRmpoKAgNW3aVB9++KGHqgUAAGVB3gMA4Bp/bw7+5ptvKjU1VYsXL1ZiYqLmz5+v3r17Kz09XXXr1i02f15ennr16qW6devq7bffVsOGDfXLL7+oRo0ani8eAAC4hLwHAMB1Xm3S586dqxEjRmj48OGSpMWLF+uDDz7QkiVLNHHixGLzL1myRKdPn9aWLVsUEBAgSYqJifFkyQAAoJTIewAAXOe1Jj0vL087d+7UpEmTHNPMZrN69uyprVu3lrjMmjVrlJSUpNGjR+s///mP6tSpoyFDhuiRRx6Rn59ficvk5uYqNzfXcTsrK0uSZLVaZbVa3fiIKlZRrZWp5orAdvgV26IQ26EQ26FQZd0Ola3e0qgKeW+z2WSxWBRglvxNtnKty6gC/UyyWCySf5CsCqjw8YrG8MRYRex+gbJYLAr0C5S/3avfU1WYAFOALBaLbDZblf67gpJV1gz0FaX5f/HaX6jMzEwVFBSoXr16TtPr1aunvXv3lrjMTz/9pE8//VR33323PvzwQx04cECjRo2S1WrV1KlTS1xm1qxZmj59erHpn3zyiUJCQsr/QDxs3bp13i7BENgOv2JbFGI7FGI7FKps2yE7O9vbJVSYqpL3K1eu/P+/ZZZ7XYZUt4Ee7Fr4GD155P+6mnd7brBO0spO///33CvOWXk1koauHKrDhw/r8OHD3q4GXlLZMtBXlCbrK9XHiDabTXXr1tVLL70kPz8/tWvXTocPH9acOXMuG9qTJk1Samqq43ZWVpaioqJ08803KywszFOll5vVatW6devUq1cvx65/vojt8Cu2RSG2QyG2Q6HKuh2KvvVFIaPl/a5du9StWzfdMP4F1YxqUq51GdXR9O+09YVxenl4Kw3sEFnh41kVoHU171avM28oQJ751m9r+lH1WfCdOo/trMbdGntkTE879eMpffTwR9q4caNat27t7XLgYZU1A31FabLea016RESE/Pz8dPz4cafpx48fV/369UtcJjIyUgEBAU67usXFxenYsWPKy8tTYGBgsWWCgoIUFBRUbHpAQEClfPJW1rrdje3wK7ZFIbZDIbZDocq2HSpTraVVFfLebDYrJydHVpuUb/f6hXEqRF6BXTk5OVJ+rseaZkkKkNVj45kK8pSTk6O8gjzlm/I9MqanWe1W5eTkyGw2V+m/K7iyypaBvqI0/ydeS5rAwEC1a9dO69evd0yz2Wxav369kpKSSlymS5cuOnDggGy2X48H27dvnyIjI0sMbAAA4F3kPQAApePVj4NTU1P18ssv69VXX1VaWpruv/9+Xbx40XH216FDhzqdaOb+++/X6dOnNWbMGO3bt08ffPCBnnzySY0ePdpbDwEAAFwFeQ8AgOu8ekz6oEGDdPLkSU2ZMkXHjh1TQkKCPv74Y8fJZTIyMmQ2//o5QlRUlNauXauHHnpIrVq1UsOGDTVmzBg98sgj3noIAADgKsh7AABc5/UTx6WkpCglJaXE+zZs2FBsWlJSkr788ssKrgoAALgTeQ8AgGuq5tlPAAAAAACohMrUpH/22WfurgMAABgMeQ8AgOeVqUnv06ePrr32Wj3++OM6dOiQu2sCAAAGQN4DAOB5ZWrSDx8+rJSUFL399ttq3LixevfurX/961/Ky8tzd30AAMBLyHsAADyvTE16RESEHnroIX377bfatm2bmjZtqlGjRqlBgwZ68MEHtWvXLnfXCQAAPIy8BwDA88p94ri2bdtq0qRJSklJ0YULF7RkyRK1a9dOXbt21Q8//OCOGgEAgJeR9wAAeEaZm3Sr1aq3335bffv21TXXXKO1a9dq4cKFOn78uA4cOKBrrrlGd955pztrBQAAHkbeAwDgWWW6TvoDDzyglStXym63695779XTTz+tFi1aOO6vVq2annnmGTVo0MBthQIAAM8i7wEA8LwyNel79uzR888/r9tvv11BQUElzhMREcGlWwAAqMTIewAAPK9Mu7tPnTpVd955Z7HAzs/P18aNGyVJ/v7+6t69e/krBAAAXkHeAwDgeWVq0m+44QadPn262PRz587phhtuKHdRAADA+8h7AAA8r0xNut1ul8lkKjb91KlTqlatWrmLAgAA3kfeAwDgeaU6Jv3222+XJJlMJiUnJzvt/lZQUKDvvvtOnTt3dm+FAADAo8h7AAC8p1RNenh4uKTCT9arV68ui8XiuC8wMFCdOnXSiBEj3FshAADwKPIeAADvKVWTvnTpUklSTEyMxo8fz65uAABUQeQ9AADeU6ZLsE2dOtXddQAAAIMh7wEA8DyXm/S2bdtq/fr1qlmzptq0aVPiiWSKfP31124pDgAAeBZ5DwCAd7ncpPfv399x4pgBAwZUVD0AAMCLyHsAALzL5Sb9t7u8sfsbAABVE3kPAIB3lek66QAAAAAAwP1c/ia9Zs2aVzwu7bdOnz5d5oIAAID3kPcAAHiXy036/PnzK7AMAABgBOQ9AADe5XKTPmzYsIqsAwAAGAB5DwCAd7ncpGdlZSksLMzx+5UUzQcAACoX8h4AAO8q1THpR48eVd26dVWjRo0Sj1ez2+0ymUwqKChwa5EAAMAzyHsAALzL5Sb9008/Va1atSRJn332WYUVBAAAvIe8BwDAu1xu0rt3717i7wAAoOog7wEA8C6Xm/TfO3PmjP75z38qLS1NkhQfH6/hw4c7Pn0HAACVH3kPAIBnmcuy0MaNGxUTE6PnnntOZ86c0ZkzZ/Tcc88pNjZWGzdudHeNAADAC8h7AAA8r0zfpI8ePVqDBg3Siy++KD8/P0lSQUGBRo0apdGjR2v37t1uLRIAAHgeeQ8AgOeV6Zv0AwcOaNy4cY7AliQ/Pz+lpqbqwIEDbisOAAB4D3kPAIDnlalJb9u2rePYtN9KS0tT69aty10UAADwPvIeAADPc3l39++++87x+4MPPqgxY8bowIED6tSpkyTpyy+/1KJFizR79mz3VwkAADyCvAcAwLtcbtITEhJkMplkt9sd0yZMmFBsviFDhmjQoEHuqQ4AAHgUeQ8AgHe53KT//PPPFVkHAAAwAPIeAADvcrlJv+aaayqyDgAAYADkPQAA3lWmS7AV2bNnjzIyMpSXl+c0/U9/+lO5igIAAMZB3gMA4DllatJ/+ukn3Xbbbdq9e7fTcWsmk0lS4TVUAQBA5UbeAwDgeWW6BNuYMWMUGxurEydOKCQkRD/88IM2btyo9u3ba8OGDW4uEQAAeAN5DwCA55Xpm/StW7fq008/VUREhMxms8xms66//nrNmjVLDz74oL755ht31wkAADyMvAcAwPPK9E16QUGBqlevLkmKiIjQkSNHJBWebCY9Pd191QEAAK8h7wEA8LwyfZPeokUL7dq1S7GxsUpMTNTTTz+twMBAvfTSS2rcuLG7awQAAF5A3gMA4HllatIfe+wxXbx4UZI0Y8YM3Xrrreratatq166tN998060FAgAA7yDvAQDwvDI16b1793b8ft1112nv3r06ffq0atas6TjjKwAAqNzIewAAPK9c10mXpEOHDkmSoqKiyl0MAAAwJvIeAADPKNOJ4/Lz8zV58mSFh4crJiZGMTExCg8P12OPPSar1eruGgEAgBeQ9wAAeF6Zvkl/4IEH9O677+rpp59WUlKSpMLLtEybNk2nTp3Siy++6NYiAQCA55H3AAB4Xpma9BUrVmjVqlW65ZZbHNNatWqlqKgoDR48mNAGAKAKIO8BAPC8Mu3uHhQUpJiYmGLTY2NjFRgYWN6aAACAAZD3AAB4Xpma9JSUFM2cOVO5ubmOabm5uXriiSeUkpLituIAAID3kPcAAHiey7u733777U63//vf/6pRo0Zq3bq1JGnXrl3Ky8vTTTfd5N4KAQCAx5D3AAB4l8tNenh4uNPtO+64w+k2l2QBAKDyI+8BAPAul5v0pUuXVmQdAADAAMh7AAC8q0zHpBc5efKkNm3apE2bNunkyZNlXs+iRYsUExOj4OBgJSYmavv27S4tt2rVKplMJg0YMKDMYwMAgCtzR96T9QAAuKZMTfrFixf1l7/8RZGRkerWrZu6deumBg0a6L777lN2dnap1vXmm28qNTVVU6dO1ddff63WrVurd+/eOnHixBWXO3jwoMaPH6+uXbuW5SEAAICrcFfek/UAALiuTE16amqqPv/8c7333ns6e/aszp49q//85z/6/PPPNW7cuFKta+7cuRoxYoSGDx+u+Ph4LV68WCEhIVqyZMlllykoKNDdd9+t6dOnq3HjxmV5CAAA4CrclfdkPQAArnP5mPTfeuedd/T222+rR48ejml9+/aVxWLRwIED9eKLL7q0nry8PO3cuVOTJk1yTDObzerZs6e2bt162eVmzJihunXr6r777tMXX3xxxTFyc3OdLh2TlZUlSbJarbJarS7VaQRFtVammisC2+FXbItCbIdCbIdClXU7GLVed+S9J7Jeqti8t9lsslgsCjBL/iZbudZlVIF+JlksFsk/SFYFVPh4RWN4Yqwidr9AWSwWBfoFyt9eprfAhhdgCpDFYpHNZjPs3xVUnMqagb6iNP8vZfoLlZ2drXr16hWbXrdu3VLt/paZmamCgoJi66pXr5727t1b4jKbNm3SP//5T3377bcujTFr1ixNnz692PRPPvlEISEhLtdqFOvWrfN2CYbAdvgV26IQ26EQ26FQZdsOpT1UzFPckfeeyHqp4vN+5cqV//+3zHKvy5DqNtCDXQsf44ceHHZdzbs9N1gnaWWn//977hXnrLwaSUNXDtXhw4d1+PBhb1cDL6lsGegrSpP1ZWrSk5KSNHXqVC1fvlzBwcGSpJycHE2fPl1JSUllWaVLzp8/r3vvvVcvv/yyIiIiXFpm0qRJSk1NddzOyspSVFSUbr75ZoWFhVVUqW5ntVq1bt069erVSwEBnvvU2WjYDr9iWxRiOxRiOxSqrNuh6Ftfo/FG3pcl66WKzftdu3apW7duumH8C6oZ1aRc6zKqo+nfaesL4/Ty8FYa2CGywsezKkDrat6tXmfeUIA8863f1vSj6rPgO3Ue+//Yu/O4KOv1/+PvGdZBQE3chdBExOOCuSBWZuaWJ7/Zalop1tHOVzlHo0375damZSmWlpVHzXJpOeXxtGjGySwld80STS3D446WqCAMzPz+8MvkBOoAw9w38Ho+HvOAubfPdd8z91z3NXPfn7urmnWrmpdQnNh3Qp89+pnWrFmjdu3aGR0OfKyy5sDqojS5vkxFempqqvr27asmTZq4PgC2b9+u4OBgrVy50uPlREREyM/PT0ePHnUbfvToUTVo0KDY9Pv27dP+/fvVv39/1zCH4/xpZ/7+/tq9e7euuuoqt3mCgoIUFBRUbFkBAQGV8s1bWeP2NrbD79gW57EdzmM7nFfZtoNZY/VGvvdFrpcqNt9brVbl5ubK7pAKnOW6MY5p5Rc6lZubKxXk+axolqQA2X3WnqUwX7m5ucovzFeBpcAnbfqa3WlXbm6urFaraT9XUPEqWw6sLkrzmpSpSG/Tpo327NmjRYsWuU5VGzRokO65557z1zN5KDAwUB06dFBaWprr1ioOh0NpaWlKTk4uNn3Lli21Y8cOt2FPPvmkTp8+rZkzZyoyMrIsqwMAAErgjXxPrgcAoHRKXaTb7Xa1bNlSH3/8sYYPH17uAFJSUjR06FB17NhRnTt3Vmpqqs6ePathw4ZJkoYMGaLGjRtrypQpCg4OVuvWrd3mr1WrliQVGw4AAMrOm/meXA8AgOdKXaQHBATo3LlzXgtg4MCBOn78uCZMmKAjR44oPj5eK1ascHUwk5mZKau1ap5aBgCAWXkz35PrAQDwXJlOdx81apSef/55zZ07V/7+5b+FRXJycomnvEnS6tWrLznvggULyt0+AAAozpv5nlwPAIBnypRxN27cqLS0NH3++edq06aNatSo4Tb+ww8/9EpwAADAOOR7AAB8r0xFeq1atXT77bd7OxYAAGAi5HsAAHyvVEW6w+HQtGnT9OOPPyo/P189evTQpEmTStWjOwAAMDfyPQAAxilVLy3PPvusnnjiCYWGhqpx48Z6+eWXNWrUqIqKDQAAGIB8DwCAcUpVpC9cuFCvvvqqVq5cqWXLlunf//63Fi1aJIfDUVHxAQAAHyPfAwBgnFIV6ZmZmerXr5/rec+ePWWxWHTo0CGvBwYAAIxBvgcAwDilKtILCgoUHBzsNiwgIEB2u92rQQEAAOOQ7wEAME6pOo5zOp1KSkpSUFCQa9i5c+f017/+1e22LNySBQCAyot8DwCAcUpVpA8dOrTYsHvvvddrwQAAAOOR7wEAME6pivT58+dXVBwAAMAkyPcAABinVNekAwAAAACAikORDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACbhb3QAAAAAAFDVZGZmKisry2ftORwOSdL27dtltfrmt9i8vDwFBQX5pC2jREREKCoqyqdtUqQDAAAAgBdlZmYqrmWscnLP+axNm82mJUuWqFu3bsrNzfVJm1aL5HD6pCnD2EJs2pWxy6eFOkU6AAAAAHhRVlaWcnLP6Z0R8YprGOqTNh3WQB2UtGZsoqyO/Apvb8tPxzX87d1qP6S9mnRqUuHtGeHUgVNa88IaZWVlUaQDAAAAQGUX1zBUV0fX9ElbdgXooKR2UeEKkL3C2zubc1aSFNogVBExERXeXnVCkQ4AFcwb16QZcT0UAAAAfI8iHUCF8FZnKZW9OM3MzFTLlnHKzc0p13JsthDt2pVRqbcFAAAALo8iHYDXeaswlSp/cZqVlaXc3Bwl3D9R4Q2jy7SM7MP7tX7eZJ9fDwUAAADfo0gH4HXeKEylqlWchjeM1hVRsUaHAQAAAJOjSAdQYShMAQAAgNLxzV3uAQAAAADAZVGkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJkGRDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBL+RgcAXCgzM1NZWVkXHe9wOCRJ27dvl9V68e+Y8vLyFBQUVO54IiIiFBUVVe7lAAAAAIAnKNJhGpmZmYprGauc3HMXncZms2nJkiXq1q2bcnNzLzqd1SI5nOWPyRZi066MXRTqBsvIyLjoOE+/uOELFwAAAFQGFOkwjaysLOXkntM7I+IV1zC0xGkc1kAdlLRmbKKsjvwSp9ny03ENf3u32g9pryadmpQ5nlMHTmnNC2uUlZVFcWcQe9751/jee++96DSefnETYgtWxq7dvJYAAAAwNVMU6bNnz9a0adN05MgRtWvXTq+88oo6d+5c4rRvvvmmFi5cqO+//16S1KFDBz333HMXnR6VT1zDUF0dXbPEcXYF6KCkdlHhCpC9xGnO5pyVJIU2CFVETERFhQkfKCgokCQ9fVsL9WtTr8RpPPniJuPwGd37xja+cAEMRK4HAMAzhhfp7777rlJSUjRnzhwlJCQoNTVVffr00e7du1WvXvGD8tWrV2vQoEHq2rWrgoOD9fzzz6t379764Ycf1LhxYwPWAEBFaxoRUq4vbgAYi1wPAIDnDO/dffr06Ro+fLiGDRumVq1aac6cOQoJCdG8efNKnH7RokUaOXKk4uPj1bJlS82dO1cOh0NpaWk+jhwAAHiCXA8AgOcM/SU9Pz9fmzdv1rhx41zDrFarevbsqfT0dI+WkZOTI7vdriuuuKLE8Xl5ecrLy3M9z87OliTZ7XbZ7ZXnV7eiWCtTzKXlcDhks9nksAbKroASpykafrHxkuT0C5TNZlOgX6D8nWV/iwdYAs7H43CUarv/97//1YkTJ8rcbpE6deqoSZOLX1Nv5vdE0WsZYJX8LY4yLyfQzyKbzSb5B5XrPeGwBpbptfQGb2yLAKsuG7+Z3w++VFm3Q2WLtzR8keulis333vpMMzNPPm+9yZPPbm/z1vGBmZX12AXe58lxrbf5er9inyqd0sxvcTqdXugDu2wOHTqkxo0ba926dUpMTHQNf+yxx/TVV19p/fr1l13GyJEjtXLlSv3www8KDg4uNn7SpEmaPHlyseGLFy9WSEhI+VYAAAAvyMnJ0eDBg3Xq1CmFh4cbHY5X+SLXS+R7AIC5lSbXV+qvPKZOnaqlS5dq9erVF03a48aNU0pKiut5dna2IiMj1bt370p1IGS327Vq1Sr16tVLAQG++9bZl7Zv365u3bppzdhEtYsq+bWxK0Crat+jXr8uuuj1x+m7D6vvzO/UdUxXNevWrMzxnNh3Qp89+pnWrFmjdu3alWodOt43VmH1y95B2emjmdr09lS9+eabio2NLXEah8Ohw4cPq2HDhhe99Zi37hd/uV/1/6hoO9zwyKuqHRlT5nYP7/5O6a8+rDeHtdVdnRqWOI0n74ntmdnqNjW9VK+lt3hjW/x6YI++fHHkJeOvDp8R0uXPVPFkv5CM2zcupuhXXxTnSa6XKjbfe+szzcw8+bz1Jk8+u73NW8cHZlaWYxdUDE+Oa73N1/sV+1TplCbXG1qkR0REyM/PT0ePHnUbfvToUTVo0OCS87744ouaOnWqvvjiC7Vt2/ai0wUFBZV4IBYQEFApD2Qra9yesFqtys3NldWRf9kPlgDZLzqNpTBfubm5yi/MV4GloMzx2J328/FYrR5v86J1CK4bpbAmJRfXnsjJPb8Ontx6rHv37he99ZhR94sv2g52h1TgLHvXF/mFzvPrVpBXrveE1ZFf6tfSW7yxLewOeRx/Vf6MyMzMVOs/tVJO7rmLTuPJfiEZt29cTFV9zSTf5HqpYvO9tz7TzKw0n7fedKnPbm/z1vGBmZXl2AUVozTHtd7mq/2Kfap0SjO/oUV6YGCgOnTooLS0NA0YMECSXB3DJCcnX3S+F154Qc8++6xWrlypjh07+ihawHe8cesx7hePqiYrK0s5uef0zoh4xTUMLXEaT27Jx77hW+R6AABKx/DT3VNSUjR06FB17NhRnTt3Vmpqqs6ePathw4ZJkoYMGaLGjRtrypQpkqTnn39eEyZM0OLFixUdHa0jR45IkkJDQxUaWvJBG1BZlefWY9wvHlVVXMPQct2Sj33D98j1AAB4zvAifeDAgTp+/LgmTJigI0eOKD4+XitWrFD9+vUlnT+98cLrCl977TXl5+frjjvucFvOxIkTNWnSJF+GDgAAPECuBwDAc4YX6ZKUnJx80VPeVq9e7fZ8//79FR8QAADwKnI9AACeMUWRDgC4vIyMjIuOczjO37t5+/btPunVPCIiguuwAQAAKgBFOgCYnD3vfAdonvT2361bt0rVqzkAAADcUaQDgMl5o7d/iV7NAQAAKgOKdACoJMrT279Er+YAAACVwcUvXAQAAAAAAD5FkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJkGRDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACbhb3QA8K7MzExlZWWVaxkRERGKioryUkQAAAAAAE9RpFchmZmZahnXUrk5ueVaji3Epl0ZuyjUAQAAAMDHKNKrkKysLOXm5KrbY91UM7JmmZZx6sAprXlhjbKysijSAQAAAMDHKNKroJqRNRURE2F0GAAAAACAUqLjOAAAAAAATIJf0gEAAAD4lDc6OzazjIwMo0NAJUaRDgAAAMBnMjMz1bJlnHJzc4wOpYJZdPjUOUll6ysK1RdFOrymvN+I8o0jAABA1ZeVlaXc3Bwl3D9R4Q2jjQ6nQhz/eZe2LX5ev+UUGB0KKiGKdHiF974R5RtHAACA6iC8YbSuiIo1OowKkXu2qp8lgIpEkQ6v8MY3onzjCFRtnG0DAABweRTp8KryfCPKN46oaOUt8iIiIhQVFeWlaKoXzrYBAADwDEU6gCovLz9PknTvvfeWazm2EJt2ZeyiUC8DzrYBAADwDEU6gCqvoOB8Udd+SHs16dSkTMs4deCU1rywRllZWRTp5cDZNgAAAJdGkQ6g2ghtEKqImAijwwAAAAAuymp0AAAAAAAA4DyKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEzCFEX67NmzFR0dreDgYCUkJGjDhg2XnP79999Xy5YtFRwcrDZt2ujTTz/1UaQAAKAsyPUAAHjG8CL93XffVUpKiiZOnKgtW7aoXbt26tOnj44dO1bi9OvWrdOgQYP0wAMPaOvWrRowYIAGDBig77//3seRAwAAT5DrAQDwnOFF+vTp0zV8+HANGzZMrVq10pw5cxQSEqJ58+aVOP3MmTPVt29fPfroo4qLi9PTTz+tq6++WrNmzfJx5AAAwBPkegAAPOdvZOP5+fnavHmzxo0b5xpmtVrVs2dPpaenlzhPenq6UlJS3Ib16dNHy5YtK3H6vLw85eXluZ6fOnVKknTy5EnZ7fZyroF07NgxHT16tNzLsVqtcjgcFx3vcDiUk5Ojr7/+WlZryd+t7NmzR8HBwTr982npXNniOH34tIKDg5Wdna0TJ054PF92draCg4N15uCPkj23TG3nHvlJwcHB2p2Vr9U/ni5xGoc1UDl/ytHXe8/I6sgvcZrvD+UrODhYOYdylLUjq0yxSGXbFt7YDpJ3tgXb4Xfe2BbsG78z6j1RFbbDRZd1+vz6OJ3Oci3HjHyR66WKzffe+kwzM0/2L2/yZF/1Nm/t+2bmzc+lisQ+VTF8vV+xT5VyWaXJ9U4DHTx40CnJuW7dOrfhjz76qLNz584lzhMQEOBcvHix27DZs2c769WrV+L0EydOdEriwYMHDx48TP84cOCAdxKsifgi1zud5HsePHjw4FE5Hp7kekN/SfeFcePGuX0b73A4dPLkSdWpU0cWi8XAyEonOztbkZGROnDggMLDw40OxzBsh9+xLc5jO5zHdjivsm4Hp9Op06dPq1GjRkaHUmlVlXxfXVTWfRUwM/YrcytNrje0SI+IiJCfn1+x08WPHj2qBg0alDhPgwYNSjV9UFCQgoKC3IbVqlWr7EEbLDw8nJ1ObIcLsS3OYzucx3Y4rzJuh5o1axodQoXwRa6Xql6+ry4q474KmB37lXl5musN7TguMDBQHTp0UFpammuYw+FQWlqaEhMTS5wnMTHRbXpJWrVq1UWnBwAAxiHXAwBQOoaf7p6SkqKhQ4eqY8eO6ty5s1JTU3X27FkNGzZMkjRkyBA1btxYU6ZMkSSNHj1a119/vV566SX9+c9/1tKlS7Vp0ya98cYbRq4GAAC4CHI9AACeM7xIHzhwoI4fP64JEyboyJEjio+P14oVK1S/fn1JUmZmpltv5l27dtXixYv15JNP6oknnlBMTIyWLVum1q1bG7UKPhEUFKSJEycWO5WvumE7/I5tcR7b4Ty2w3lsB3Mi1+OP2FcB72O/qjosTmcVvN8LAAAAAACVkKHXpAMAAAAAgN9RpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJkGRDgAAAACASVCkVwKzZ89WdHS0goODlZCQoA0bNhgdks+tWbNG/fv3V6NGjWSxWLRs2TKjQzLElClT1KlTJ4WFhalevXoaMGCAdu/ebXRYPvfaa6+pbdu2Cg8PV3h4uBITE/XZZ58ZHZbhpk6dKovFojFjxhgdis9NmjRJFovF7dGyZUujwwJwERzbAN7DcXLVQ5Fucu+++65SUlI0ceJEbdmyRe3atVOfPn107Ngxo0PzqbNnz6pdu3aaPXu20aEY6quvvtKoUaP07bffatWqVbLb7erdu7fOnj1rdGg+1aRJE02dOlWbN2/Wpk2b1KNHD91yyy364YcfjA7NMBs3btTrr7+utm3bGh2KYf70pz/p8OHDrsc333xjdEgASsCxDeBdHCdXPdwn3eQSEhLUqVMnzZo1S5LkcDgUGRmpv/3tbxo7dqzB0RnDYrHoo48+0oABA4wOxXDHjx9XvXr19NVXX6lbt25Gh2OoK664QtOmTdMDDzxgdCg+d+bMGV199dV69dVX9cwzzyg+Pl6pqalGh+VTkyZN0rJly7Rt2zajQwFwGRzbABWH4+SqgV/STSw/P1+bN29Wz549XcOsVqt69uyp9PR0AyODWZw6dUrS+QK1uiosLNTSpUt19uxZJSYmGh2OIUaNGqU///nPbp8V1dGePXvUqFEjNWvWTPfcc48yMzONDgnAH3BsAwCX5290ALi4rKwsFRYWqn79+m7D69evr127dhkUFczC4XBozJgxuuaaa9S6dWujw/G5HTt2KDExUefOnVNoaKg++ugjtWrVyuiwfG7p0qXasmWLNm7caHQohkpISNCCBQsUGxurw4cPa/Lkybruuuv0/fffKywszOjwAPwfjm0A4PIo0oFKatSoUfr++++r7XW3sbGx2rZtm06dOqUPPvhAQ4cO1VdffVWtCvUDBw5o9OjRWrVqlYKDg40Ox1A33XST6/+2bdsqISFBV155pd57771qeQkEAACovCjSTSwiIkJ+fn46evSo2/CjR4+qQYMGBkUFM0hOTtbHH3+sNWvWqEmTJkaHY4jAwEA1b95cktShQwdt3LhRM2fO1Ouvv25wZL6zefNmHTt2TFdffbVrWGFhodasWaNZs2YpLy9Pfn5+BkZonFq1aqlFixbau3ev0aEAuADHNgBweVyTbmKBgYHq0KGD0tLSXMMcDofS0tKq7bW31Z3T6VRycrI++ugj/ec//1HTpk2NDsk0HA6H8vLyjA7Dp2688Ubt2LFD27Ztcz06duyoe+65R9u2bau2Bbp0vjO9ffv2qWHDhkaHAuACHNsAwOXxS7rJpaSkaOjQoerYsaM6d+6s1NRUnT17VsOGDTM6NJ86c+aM2y9iP//8s7Zt26YrrrhCUVFRBkbmW6NGjdLixYv1r3/9S2FhYTpy5IgkqWbNmrLZbAZH5zvjxo3TTTfdpKioKJ0+fVqLFy/W6tWrtXLlSqND86mwsLBi/RHUqFFDderUqXb9FDzyyCPq37+/rrzySh06dEgTJ06Un5+fBg0aZHRoAP6AYxvAuzhOrnoo0k1u4MCBOn78uCZMmKAjR44oPj5eK1asKNbhSlW3adMm3XDDDa7nKSkpkqShQ4dqwYIFBkXle6+99pokqXv37m7D58+fr6SkJN8HZJBjx45pyJAhOnz4sGrWrKm2bdtq5cqV6tWrl9GhwSD//e9/NWjQIJ04cUJ169bVtddeq2+//VZ169Y1OjQAf8CxDeBdHCdXPdwnHQAAAAAAk+CadAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAACASqJ79+4aM2bMRcdHR0crNTXVZ/EA8D6KdAAVZv/+/bJYLNq2bZvRoQAAUC1s3LhRI0aMMDoMj7z//vtq2bKlgoOD1aZNG3366adGhwSYAkU6AMPl5+cbHQIAAFVC3bp1FRISUqFteCNvr1u3ToMGDdIDDzygrVu3asCAARowYIC+//57L0QIVG4U6UAV5nA49MILL6h58+YKCgpSVFSUnn32WUnSjh071KNHD9lsNtWpU0cjRozQmTNnXPOWdDrdgAEDlJSU5HoeHR2t5557Tvfff7/CwsIUFRWlN954wzW+adOmkqT27dvLYrGoe/fukqSkpCQNGDBAzz77rBo1aqTY2Fg99dRTat26dbF1iI+P1/jx4720RQAAqPwKCgqUnJysmjVrKiIiQuPHj5fT6ZRU/HR3i8WiuXPn6tZbb1VISIhiYmK0fPly1/jCwkI98MADatq0qWw2m2JjYzVz5ky39ioib8+cOVN9+/bVo48+qri4OD399NO6+uqrNWvWrDJuFaDqoEgHqrBx48Zp6tSpGj9+vHbu3KnFixerfv36Onv2rPr06aPatWtr48aNev/99/XFF18oOTm51G289NJL6tixo7Zu3aqRI0fqf//3f7V7925J0oYNGyRJX3zxhQ4fPqwPP/zQNV9aWpp2796tVatW6eOPP9b999+vjIwMbdy40TXN1q1b9d1332nYsGHl3BIAAFQdb731lvz9/bVhwwbNnDlT06dP19y5cy86/eTJk3XXXXfpu+++U79+/XTPPffo5MmTks5/od+kSRO9//772rlzpyZMmKAnnnhC7733ntsyvJ2309PT1bNnT7dhffr0UXp6emk2BVAl+RsdAICKcfr0ac2cOVOzZs3S0KFDJUlXXXWVrr32Wr355ps6d+6cFi5cqBo1akiSZs2apf79++v5559X/fr1PW6nX79+GjlypCTp8ccf14wZM/Tll18qNjZWdevWlSTVqVNHDRo0cJuvRo0amjt3rgIDA13D+vTpo/nz56tTp06SpPnz5+v6669Xs2bNyr4hAACoYiIjIzVjxgxZLBbFxsZqx44dmjFjhoYPH17i9ElJSRo0aJAk6bnnntPLL7+sDRs2qG/fvgoICNDkyZNd0zZt2lTp6el67733dNddd7mGeztvHzlypNjxRv369XXkyBHPNwRQRfFLOlBFZWRkKC8vTzfeeGOJ49q1a+cq0CXpmmuukcPhcP0K7qm2bdu6/rdYLGrQoIGOHTt22fnatGnjluglafjw4VqyZInOnTun/Px8LV68WPfff3+p4gEAoKrr0qWLLBaL63liYqL27NmjwsLCEqe/MFfXqFFD4eHhbrl69uzZ6tChg+rWravQ0FC98cYbyszMdFsGeRvwHX5JB6oom81WrvmtVqvr+rYidru92HQBAQFuzy0WixwOx2WXf+EXBEX69++voKAgffTRRwoMDJTdbtcdd9xRysgBAMCFLpWrly5dqkceeUQvvfSSEhMTFRYWpmnTpmn9+vVu83g7bzdo0EBHjx51G3b06NFiZ94B1RG/pANVVExMjGw2m9LS0oqNi4uL0/bt23X27FnXsLVr18pqtSo2NlbS+d5hDx8+7BpfWFhY6h5Xi75xv9g3+3/k7++voUOHav78+Zo/f77uvvvucn/ZAABAVfPHAvrbb79VTEyM/Pz8Sr2stWvXqmvXrho5cqTat2+v5s2ba9++fR7NW568nZiYWOwYZdWqVUpMTCz1OgBVDb+kA1VUcHCwHn/8cT322GMKDAzUNddco+PHj+uHH37QPffco4kTJ2ro0KGaNGmSjh8/rr/97W+67777XNeH9ejRQykpKfrkk0901VVXafr06frtt99KFUO9evVks9m0YsUKNWnSRMHBwapZs+Yl5/nLX/6iuLg4SecPHAAAgLvMzEylpKTowQcf1JYtW/TKK6/opZdeKtOyYmJitHDhQq1cuVJNmzbV22+/rY0bN7ru0HI5Zc3bo0eP1vXXX6+XXnpJf/7zn7V06VJt2rTJ7S4xQHXFL+lAFTZ+/Hg9/PDDmjBhguLi4jRw4EAdO3ZMISEhWrlypU6ePKlOnTrpjjvu0I033uh225P7779fQ4cO1ZAhQ1ydwNxwww2lat/f318vv/yyXn/9dTVq1Ei33HLLZeeJiYlR165d1bJlSyUkJJR6nQEAqOqGDBmi3Nxcde7cWaNGjdLo0aM1YsSIMi3rwQcf1G233aaBAwcqISFBJ06ccHUI64my5u2uXbtq8eLFeuONN9SuXTt98MEHWrZsWYm3dQOqG4vzjxedAoCBnE6nYmJiNHLkSKWkpBgdDgAAuATyNuB9nO4OwDSOHz+upUuX6siRI9wbHQAAkyNvAxWDIh2AadSrV08RERF64403VLt2baPDAQAAl3CpvB0aGnrR+T777DNdd911FR0eUGlxujsAAAAAr9q7d+9FxzVu3Ji7twCXQJEOAAAAAIBJ0Ls7AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJkGRDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJ+BsdgK85HA4dOnRIYWFhslgsRocDAICcTqdOnz6tRo0ayWrl+3NvIN8DAMykNLm+2hXphw4dUmRkpNFhAABQzIEDB9SkSROjw6gSyPcAADPyJNdXuyI9LCxM0vmNEx4ebnA0KIndbtfnn3+u3r17KyAgwOhwgEqPfcr8srOzFRkZ6cpRKD/yvbnxuQR4H/uVuZUm11e7Ir3olLfw8HCStknZ7XaFhIQoPDycDxjAC9inKg9Oy/Ye8r258bkEeB/7VeXgSa7nwjcAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCSq3TXpAKovp9OpgoICFRYWGh2KT9ntdvn7++vcuXPVbt3Nws/PT/7+/lxzDgAVrLrmeol8bwYBAQHy8/Mr93Io0gFUC/n5+Tp8+LBycnKMDsXnnE6nGjRooAMHDlAkGigkJEQNGzZUYGCg0aEAQJVUnXO9RL43A4vFoiZNmig0NLRcy6FIB1DlORwO/fzzz/Lz81OjRo0UGBhYrZKXw+HQmTNnFBoaKquVq5x8zel0Kj8/X8ePH9fPP/+smJgYXgcA8LLqnusl8r3RnE6njh8/rv/+97+KiYkp1y/qFOkAqrz8/Hw5HA5FRkYqJCTE6HB8zuFwKD8/X8HBwSRtg9hsNgUEBOiXX35xvRYAAO+p7rleIt+bQd26dbV//37Z7fZyFem8egCqDRIWjMT7DwAqHp+1MJK3zt7gXQwAAAAAgElQpAMAAAAAYBIU6QCAS+revbvGjBljmuUAAADvI9+bBx3HAQC8avXq1brhhhv066+/qlatWq7hH374oQICAowLDAAAeA35vuJQpAMAfOKKK64wOgQAAFDByPflx+nuAGBS3bt3V3JyspKTk1WzZk1FRERo/PjxcjqdkqRff/1VQ4YMUe3atRUSEqKbbrpJe/bscc2/YMEC1apVS8uWLVOHDh0UEhKiPn366MCBA65pkpKSNGDAALd2x4wZo+7du180rrffflsdO3ZUWFiYGjRooMGDB+vYsWOSpP379+uGG26QJNWuXVsWi0VJSUmu9bnw9DdP41+5cqXi4uIUGhqqvn376vDhw2XZnAAAmBL5nnz/RxTpAGBib731lvz9/bVhwwbNnDlT06dP19y5cyWdT7ibNm3S8uXLlZ6eLqfTqX79+slut7vmz8nJ0ZQpU/Taa6/p66+/1m+//aa77767XDHZ7XY9/fTT2r59u5YtW6b9+/e7EnNkZKT++c9/SpJ2796tw4cPa+bMmSUux9P4X3zxRb399ttas2aNMjMz9cgjj5QrfgAAzIZ8T76/EKe7A4CJRUZGasaMGbJYLIqNjdWOHTs0Y8YMde/eXcuXL9fatWvVtWtXSdKiRYsUGRmpZcuW6c4775R0PsG+/PLLiouLU3h4uN566y3FxcVpw4YN6ty5c5liuv/++13/N2vWTC+//LI6deqkM2fOKDQ01HWaW7169dyuUbvQnj17PI5/zpw5uuqqqyRJycnJeuqpp8oUNwAAZkW+J99fiF/SAcDEunTpIovF4nqemJioPXv2aOfOnfL391dCQoJrXJ06dRQbG6uMjAzXMH9/f3Xq1Mn1vGXLlqpVq5bbNKW1efNm9e/fX1FRUQoLC9P1118vScrMzPR4GRkZGR7FHxIS4krYktSwYUPXqXYAAFQV5Hvy/YUo0gGgGrNara5r3opcePrZH509e1Z9+vRReHi4Fi1apI0bN+qjjz6SJOXn53s9vj/2DmuxWIrFCwAALo18X7lQpAOAia1fv97t+bfffquYmBi1atVKBQUFbuNPnDih3bt3q1WrVq5hBQUF2rRpk+v57t279dtvvykuLk6SVLdu3WIds2zbtu2i8ezatUsnTpzQ1KlTdd1116lly5bFvukODAyUJBUWFl50OXFxcR7FDwBAdUC+x4Uo0gHAxDIzM5WSkqLdu3dryZIleuWVVzR69GjFxMTolltu0fDhw/XNN99o+/btuvfee9W4cWPdcsstrvkDAgI0evRobdq0SZs3b1ZSUpK6dOniuj6tR48e2rRpkxYuXKg9e/Zo4sSJ+v777y8aT1RUlAIDA/XKK6/op59+0vLly/X000+7TXPllVfKYrHo448/1vHjx3XmzJliy/E0fgAAqgPyPS5EkQ4AJjZkyBDl5uaqc+fOGjVqlEaPHq0RI0ZIkubPn68OHTro5ptvVmJiopxOpz799FO3U8ZCQkL06KOPavjw4bruuusUGhqqd9991zW+T58+Gj9+vB577DF16tRJp0+f1pAhQy4aT926dbVgwQK9//77atWqlaZOnaoXX3zRbZrGjRtr8uTJGjt2rOrXr6/k5OQSl+VJ/AAAVAfke1zI4qxmJ/tnZ2erZs2aOnXqlMLDw40OByWw2+369NNP1a9fP3ZeeMW5c+f0888/q2nTpgoODjY6HI91795d8fHxSk1NLdP8CxYs0JgxY3Ty5EllZ2crPDxcVivfzRrlUu9DcpP3sU3NjVwPb6usuV4i31cl3sr1vHoAAAAAAJgERToAAAAAACbhb3QAAICSrV69ulzzJyUlKSkpSQ6HwzsBAQAAryPf44/4JR0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6B3dwDVWmZmprKysnzWXkREhKKionzWHgAA1R25HpUNRTqAaiszM1MtW8YpNzfHZ23abCHatSvDdMk7OjpaY8aM0ZgxYy46TX5+vlq1aqWFCxeqa9euvgvOBCwWiz766CMNGDCgxPE7d+5U7969tXv3btWoUcO3wQEALopc/zty/aWZKddTpAOotrKyspSbm6OE+ycqvGF0hbeXfXi/1s+brKysLNMlbk/MmTNHTZs2rdRJe//+/WratKm2bt2q+Ph4ry23VatW6tKli6ZPn67x48d7bbkAgPIh15cOuf7ifJnrKdIBVHvhDaN1RVSs0WGYmtPp1KxZs/TUU0+VezmFhYXy96966WfYsGEaPny4xo0bVyXXDwAqM3L95ZHrL89XuZ6O4wDAxLp3767k5GQlJyerZs2aioiI0Pjx4+V0Ol3T/PrrrxoyZIhq166tkJAQ3XTTTdqzZ4/bcpYvX642bdooKChI0dHReumll0oVx+bNm7Vv3z79+c9/dg3bv3+/LBaLli5dqq5duyo4OFitW7fWV1995Zpm9erVslgs+uyzz9ShQwcFBQXpm2++kcPh0JQpU9S0aVPZbDa1a9dOH3zwQbH5Vq5cqfbt28tms6lHjx46duyYPvvsM8XFxSk8PFyDBw9WTs7vpzCuWLFC1157rWrVqqU6dero5ptv1r59+1zjmzZtKklq3769LBaLunfv7ho3b948/elPf1JQUJAaNmyo5ORkt22QlZWlW2+9VSEhIYqJidHy5cvdxvfq1UsnT550W38AAC7HW7n+n//8pxITE2Wz2cj1qty5niIdAEzurbfekr+/vzZs2KCZM2dq+vTpmjt3rmt8UlKSNm3apOXLlys9PV1Op1P9+vWT3W6XdD7pDhs2TAMHDtSOHTs0adIkjR8/XgsWLPA4hq+//lotWrRQWFhYsXGPPvqoHn74YW3dulWJiYnq37+/Tpw44TbN2LFjNXXqVGVkZKht27aaMmWKFi5cqDlz5uiHH37QQw89pHvvvbdY0ps0aZJmzZqldevW6cCBA7rrrruUmpqqxYsX65NPPtHnn3+uV155xTX92bNnlZKSok2bNiktLU1Wq1W33nqrHA6HJGnDhg2SpC+++EKHDx/Whx9+KEl67bXXNGrUKI0YMUI7duzQ8uXL1bx5c7dYJk+erLvuukvfffed+vXrp3vuuUcnT550jQ8MDFR8fLy+/vprj7crAACSd3L93Xffrdtuu03bt28n16ty5/qqdw4CAFQxkZGRmjFjhiwWi2JjY7Vjxw7NmDFDw4cP1549e7R8+XKtXbvWdf3YokWLFBkZqWXLlunOO+/UjBkzdP311+vJJ5+U1WpVixYttHPnTk2bNk1JSUkexfDLL7+oUaNGJY5LTk7W7bffLul8AlyxYoX+8Y9/6LHHHnNN89RTT6lXr16SpLy8PD333HP64osvlJiYKElq1qyZvvnmG73++uu6/vrrXfM988wzuuaaayRJDzzwgMaNG6d9+/apWbNmkqQ77rhDX375pR5//HFJcsVRZN68eapbt6527typ1q1bq27dupKkOnXqqEGDBm7tPPzwwxo9erRrWKdOndyWlZSUpEGDBkmSnnvuOb388svasGGD+vbt65qmUaNG+uWXXy69MQEA+IPy5vrp06erR48eevTRRxUeHq6WLVuS6ytxrjf8l/TZs2crOjpawcHBSkhIcH3zcTGpqamKjY2VzWZTZGSkHnroIZ07d85H0QKA73Xp0kUWi8X1PDExUXv27FFhYaEyMjLk7++vhIQE1/g6deooNjZWGRkZkqRdu3a5jZeka665xrUMT+Tm5io4OLjEcUXJV5L8/f3VsWNHV9tFOnbs6Pp/7969ysnJUa9evRQaGup6LFy40O10NUlq27at6//69esrJCTElbSLhh07dsz1fM+ePRo0aJCaNWum8PBwRUdHSzrfu+/FHDt2TIcOHdKNN954iS3gHkuNGjUUHh7u1rYk2Ww2t1Py8DvyPQBcXHlzfUZGhqvQLUKu/11ly/WG/pL+7rvvKiUlRXPmzFFCQoJSU1PVp08f7d69W/Xq1Ss2/eLFizV27FjNmzdPXbt21Y8//qikpCRZLBZNnz7dgDUAgOohIiJCO3bsKPP8F96q5MyZM5KkTz75RI0bN3abLigoyO15QECA63+LxeL2vGhY0eltktS/f39deeWVevPNN9WoUSM5HA61bt1a+fn5F43NZrN5tA6Xa1uSTp48qauuusqj5VUn5HsAMD9yvXlyvaG/pE+fPl3Dhw/XsGHD1KpVK82ZM0chISGaN29eidOvW7dO11xzjQYPHqzo6Gj17t1bgwYNuuy38QBQma1fv97t+bfffquYmBj5+fkpLi5OBQUFbtOcOHFCu3fvVqtWrSRJLVu2LLaMtWvXqkWLFvLz8/Mohvbt22vXrl1undhcGE+RgoICbd68WXFxcRddVqtWrRQUFKTMzEw1b97c7REZGelRPCUpWu8nn3xSN954o+Li4vTrr7+6TRMYGChJbr8qhIWFKTo6WmlpaWVuu8j333+v9u3bl3s5VQ35HgAurby5Pi4uTmvXrnVbBrm+8uZ6w35Jz8/P1+bNmzVu3DjXMKvVqp49eyo9Pb3Eebp27ap33nlHGzZsUOfOnfXTTz/p008/1X333XfRdvLy8pSXl+d6np2dLUmy2+2ujhZgLkWvC68PvMVut8vpdMrhcLh9G1r0f/ah/VLxfOR12Yf3u9r947eyl5KZmamHHnpII0aM0JYtW/TKK69o2rRpcjgcuuqqq/Q///M/Gj58uF577TWFhYVp3Lhxaty4sfr37y+Hw6GHHnpIXbp00dNPP62BAwcqPT1ds2bN0qxZs9ziKNpGJbn++ut15swZ7dixQ61bt3ath3T+NOarrrpKcXFxSk1N1a+//qqkpCS39bzw/xo1aujhhx/WQw89pIKCAl177bU6deqU1q1bp7CwMA0dOrTE+f74tyjmomE1a9ZUnTp19Prrr6t+/frKzMzUE0884baciIgI2Ww2ffbZZ2rUqJGCg4NVs2ZNTZgwQSNHjlTdunXVt29fnT59WuvWrXPr9bWk1+3CYfv379fBgwfVo0ePErejw+GQ0+mU3W4vdsBUlT/vyPcoCbke3kauf0gJCQmaNm2a7r33Xn377bfk+kqc6w0r0rOyslRYWKj69eu7Da9fv7527dpV4jyDBw9WVlaWrr32WjmdThUUFOivf/2r64UpyZQpUzR58uRiwz///HOFhISUbyVQoVatWmV0CKgi/P391aBBA505c8btVKigoCAF22xaP7/4Z0RFCbbZFBQU5CogLqegoEADBw7UqVOnlJCQID8/Pz344IO6++67XcuYOXOmxo4dq/79+8tut6tr165aunSpcnNzlZubq5iYGM2fP19TpkzRs88+q/r162vcuHG67bbbXMtwOBw6d+7cReMKCAjQzTffrPnz52vixImSfj+Vbfz48ZoyZYp27NihZs2aafHixQoMDFR2drbrmq3Tp0/Lav395K1HHnlEYWFhmjJlivbv36+aNWuqXbt2euihhy4637lz5+R0Ot1izMvLU2FhoWvY3LlzNXbsWLVt21bNmzfX888/r5tvvlm5ubmuaaZOnaoXXnhBEydOVGJioj7++GPdeuut+u233zR79mw9+uijqlOnjv7nf/7Hra0LlyGdP2i4cJstWLBAPXr0UO3atUvcjvn5+crNzdWaNWtUUFDgNq4qX8dOvselkOvhLdU91zdv3tyV66dNm0aur+S53uIs6XwGHzh06JAaN26sdevWuXVE8Nhjj+mrr74qdsqHdP5eenfffbeeeeYZJSQkaO/evRo9erSGDx+u8ePHl9hOSd+sR0ZGKisrS+Hh4d5fMZSb3W7XqlWr1KtXr2LXhQBlce7cOR04cMDVadWFMjMzlZWV5bNYIiIiFBUV5fH0PXr0ULt27TRjxowyt+l0OnX69GmFhYW5dUpTWt9995369OmjPXv2KDQ0VPv379dVV12lzZs3Kz4+vszLrQry8/MVGxurd955p1jHPUXOnTun/fv3KzIystj7MDs7WxERETp16lSVy03ke5SEXA9vq+65XvJOvifXX5wvc71hv6RHRETIz89PR48edRt+9OhRt67yLzR+/Hjdd999+stf/iJJatOmjc6ePasRI0bo//2//+f2zU2RoKCgYp0TSOe/KSIpmBuvEbylsLBQFotFVqu12OdEdHS0q1dQsyqKvayKTscq73Li4+P1/PPP65dfflGbNm1cyyppu1Y3//3vf/XEE0/ouuuuu+g0VqvV1SHOHz/bqvJnHfkel8LrA2+p7rle8k6+J9dfnC9zvWFbOjAwUB06dHC7eN/hcCgtLc3tm/YL5eTkFHtzFJ3rb9AJAQBQrSQlJalNmzZGh2E6zZs314MPPmh0GKZEvgeAyoVcXzJf5npDb8GWkpKioUOHqmPHjurcubNSU1N19uxZDRs2TJI0ZMgQNW7cWFOmTJF0vrv96dOnq3379q7T38aPH6/+/ft73GshAFQmq1evNjqEi4qOjqZggkfI9wBwceR6/JGhRfrAgQN1/PhxTZgwQUeOHFF8fLxWrFjh6lwmMzPT7Zv0J598UhaLRU8++aQOHjyounXrqn///nr22WeNWgUAAHAZ5HsAADxnWMdxRsnOzlbNmjWrZOc8VYXdbtenn36qfv36cZ0avOLcuXP6+eef1bRp02KdeFQHDodD2dnZCg8Pr/bXkxnpUu9DcpP3sU3NjVwPb6vuuV4i35uBt3I9rx4AAAAAACZBkQ4AAAAAgElQpAMAAAAAYBKGdhwHAEbLzMxUVlaWz9qLiIhQVFSUz9oDAKC6I9ejsqFIB1BtZWZmKq5lrHJyz/mszRBbsDJ27TZV8o6OjtaYMWM0ZswYo0MBAMCryPXnkesrF4p0ANVWVlaWcnLP6Z0R8YprGFrh7WUcPqN739imrKwsUyVuAACqKnI9KiOKdADVXlzDUF0dXdPoMAAAQAUh16MyoeM4ADCx7t27Kzk5WcnJyapZs6YiIiI0fvx4OZ1OSdKvv/6qIUOGqHbt2goJCdFNN92kPXv2uC3jn//8pxITE2Wz2RQdHa2XXnrJiFUBAAAl8Faub9OmjerXr69mzZqR6ys5inQAMLm33npL/v7+2rBhg2bOnKnp06dr7ty5kqSkpCRt2rRJy5cvV3p6upxOp/r16ye73S5J2rx5s+6++27ddttt2r59uyZNmqTx48drwYIFBq4RAAC4UHlz/V133aWBAwdq7dq1mjBhArm+kuN0dwAwucjISM2YMUMWi0WxsbHasWOHZsyYoe7du2v58uVau3atunbtKklatGiRIiMjtWzZMt15552aPn26evTooUcffVTh4eFq2bKldu7cqWnTpikpKcnYFQMAAJLKn+tvvPFGPfnkk8rOztbVV1+tXbt2kesrMX5JBwCT69KliywWi+t5YmKi9uzZo507d8rf318JCQmucXXq1FFsbKwyMjIkSRkZGbrmmmvclnfNNddoz549Kiws9M0KAACASyLX40IU6QAAAAAAmARFOgCY3Pr1692ef/vtt4qJiVGrVq1UUFDgNv7EiRPavXu3WrVqJUmKi4vT2rVr3eZfu3atWrRoIT8/v4oPHgAAXBa5HhfimnQA1V7G4TOmbiczM1MpKSl68MEHtWXLFr3yyit66aWXFBMTo1tuuUXDhw/X66+/rrCwMI0dO1aNGzfWLbfcIkl6+OGH1alTJ02bNk333Xef1q9fr1mzZunVV1/15qoBAGBq1SHXP/PMM+rXr5927NhBrq/kKNIBVFsREREKsQXr3je2+azNEFuwIiIiSjXPkCFDlJubq86dO8vPz0+jR4/WiBEjJEnz58/X6NGjdfPNNys/P1/dunXTp59+qoCAAEnS1VdfraVLl2rChAmaNm2aGjZsqKeeeoqOZAAA1UJ1yfXvvfeeJkyYoGeeeYZcXwVQpAOotqKiopSxa7eysrJ81mZERISioqJKNU9AQIBSU1P12muvFRtXu3ZtLVy48JLz33777erVq5fCw8NltRa/ymn//v2ligcAgMqiOuX6W2+9VdnZ2SXme3J95UKRDqBai4qKKnUiBQAAlQe5HpUNHccBAAAAAGAS/JIOACa2evVqo0MAAAAViFyPP+KXdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCTqOAwAAgDIzM312L2mHwyFJ2r59e7H7OVekvLw8BQUF+aw9I5TlHt0AzIUiHUC15suDUomDJwDmlJmZqbiWscrJPeeT9mw2m5YsWaJu3bopNzfXJ21KktUiOZw+a84QthCbdmXsItdcgFyPyoYiHUC1lZmZqZZxLZWb47sDxNIePHXv3l3x8fFKTU2t2MA8ZLZ4AHhHVlaWcnLP6Z0R8YprGFrh7TmsgTooac3YRFkd+RXeniRt+em4hr+9W+2HtFeTTk180qavnTpwSmteWKOsrCyKxP9Dri89s8VTHVGkA6i2srKylJuTq26PdVPNyJoV3p5RB0/5+b45AAZQ+cU1DNXV0RX/eWhXgA5KahcVrgDZK7w9STqbc1aSFNogVBExET5pE8arTrne35/SrqrglSwnX58+YwRO2UFVVzOypikP2JKSkvTVV1/pq6++0syZMyVJe/fu1XPPPaf//Oc/OnLkiKKiojRy5EiNHj3abb7ffvtNnTp10uzZsxUUFKStW7dq3bp1Sk5O1q5du9S6dWs9+eSTuvXWW7V161bFx8dLkr7//ns9+uij+vrrr1WjRg317t1bM2bMUERERInx/Pzzz4qOjvb1pgEAoFSqQ67ft2+f1q9fr8cff5xcX8lRpJdDZmamWraMU25ujtGhVCibLUS7dmVQqAM+NnPmTP34449q3bq1nnrqKUlS7dq11aRJE73//vuqU6eO1q1bpxEjRqhhw4a66667XPOmpaUpPDxcq1atksPhUHZ2tm655Rb169dPixcv1i+//KIxY8a4tffbb7+pR48e+stf/qIZM2YoNzdXjz/+uO666y795z//KTGeunXr+mx7AABQ1Xgr10tSdna2Bg0aRK6vAijSyyErK0u5uTlKuH+iwhtGGx1Ohcg+vF/r503m2ibAADVr1lRgYKBCQkLUoEED1/DJkye7/m/atKnS09P13nvvuSXuGjVqaO7cuQoMDJTD4VBqaqosFovefPNNBQcHq1WrVjp48KCGDx/ummfWrFlq3769nnvuOdewefPmKTIyUj/++KNatGhRYjwAAKBsvJXrJenVV1+VxWLRG2+8oZCQEHJ9JUaR7gXhDaN1RVSs0WEAqCZmz56tefPmKTMzU7m5ucrPz3edwlakTZs2rqQtnT91rm3btgoODnYN69y5s9s827dv15dffqnQ0OKdRu3bt08tWrTw7ooAAIASlSXX//jjj/rTn/5Erq8CKNIBoBJZunSpHnnkEb300ktKTExUWFiYpk2bpvXr17tNV6NGjVIv+8yZM+rfv7+ef/75YuMaNmxY5pgBAIDnyPWgSAcAEwsMDFRhYaHr+dq1a9W1a1eNHDnSNWzfvn2XXU7z5s31/vvvKy8vT0FBQZKkjRs3uk1z9dVX65///Keio6Mv2kPsH+MBAADl461c36JFC73zzjvKy8uTzWaTRK6vrKxGBwAAuLjo6GitX79e+/fvV1ZWlmJiYrRp0yatXLlSP/74o8aPH18sAZfkjjvukMPh0IgRI5SRkaGVK1fqxRdflCRZLBZJ0qhRo3Ty5EkNGjRIGzdu1L59+7Ry5UoNGzbMlaz/GI/D4ai4lQcAoBrwVq4fPHiwHA6HHnzwQXJ9Jccv6QCqvVMHTpm2nUceeURDhw5Vq1atlJubq127dmnr1q0aOHCgLBaLBg0apJEjR+qzzz675HLCw8P1r3/9S6NGjVJ8fLzatGmjCRMmaPDgwa5r1xo1aqS1a9fq8ccfV+/evZWXl6crr7xSffv2ldVqLTEebssCAKgMqkuuX7JkiR577DFyfSVHkQ6g2oqIiJAtxKY1L6zxWZu2EJsiIjy/T2uLFi2Unp7uNmz+/PmaP3++27ApU6a4/l+wYEGJy+ratau2b9/uer5o0SIFBAS43bkhJiZGH374YaniAQDArKpbrk9ISNDWrVtdBTe5vnKiSAdQbUVFRWlXxi5lZWX5rM2IiAjDbme4cOFCNW/eXI0bN9b27dtd90Utum4NAICqprrl+qVLl6pVq1aKjIwk11diFOkAqrWoqCjDEqmvHT16VJMmTdKRI0fUsGFD3XnnnXr22WeNDgsAgApV3XL91KlTyfWVHEU6AFQTjz76qB5//HGjwwAAABVk9OjRGj9+vOt0d1ROvHoAAAAAAJgERToAAAAAACZBkQ6g2nA6nUaHgGqM9x8AVDw+a2Ekb73/KNIBVHkBAQGSpJycHIMjQXVW9P4rej8CALyHXA8zyM/PlyT5+fmVazl0HAegyvPz81OtWrV07NgxSVJISIgsFovBUfmOw+FQfn6+zp07R0cyBnA6ncrJydGxY8dUq1atciduAEBx1T3XS+R7ozkcDh0/flwhISHy9y9fmU2RDqBaaNCggSS5knd14nQ6lZubK5vNVu0OWMykVq1arvchAMD7qnOul8j3ZmC1WhUVFVXu7U+RDqBasFgsatiwoerVqye73W50OD5lt9u1Zs0adevWjVOtDRIQEMAv6ABQwapzrpfI92YQGBjolbMYKNIBVCt+fn7Vrljy8/NTQUGBgoODSdoAgCqvOuZ6iXxflXCxAgAAAAAAJkGRDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJGF6kz549W9HR0QoODlZCQoI2bNhwyel/++03jRo1Sg0bNlRQUJBatGihTz/91EfRAgCAsiDfAwDgGUPvk/7uu+8qJSVFc+bMUUJCglJTU9WnTx/t3r1b9erVKzZ9fn6+evXqpXr16umDDz5Q48aN9csvv6hWrVq+Dx4AAHiEfA8AgOcMLdKnT5+u4cOHa9iwYZKkOXPm6JNPPtG8efM0duzYYtPPmzdPJ0+e1Lp16xQQECBJio6O9mXIAACglMj3AAB4zrAiPT8/X5s3b9a4ceNcw6xWq3r27Kn09PQS51m+fLkSExM1atQo/etf/1LdunU1ePBgPf744/Lz8ytxnry8POXl5bmeZ2dnS5Lsdrvsdnu51sHhcMhmsynAKvlbHOVallkFWCWbzSaHw1Hu7eWponZ81R5Q1bFPmV9Vfm2qQr6vDoqOaRzWQNkVUOHtFbXhi7aKOP0CZbPZFOgXKH+nob9TVZgAS4DPj9tgHuR7cyvN62LYJ1RWVpYKCwtVv359t+H169fXrl27Spznp59+0n/+8x/dc889+vTTT7V3716NHDlSdrtdEydOLHGeKVOmaPLkycWGf/755woJCSn3eixZsuT//ssq97JMqV5tjViyRAcPHtTBgwd92vSqVat82h5Q1bFPmVdOTo7RIVSYqpLvq4MlS5booCRfZvtVte/xXWNdpCVd/u//vEtOWXk1kYYsGWLIcRvMg3xvTqXJ9ZXqa0SHw6F69erpjTfekJ+fnzp06KCDBw9q2rRpF03a48aNU0pKiut5dna2IiMj1bt3b4WHh5crnu3bt6tbt2664ZFXVTsyplzLMqtfD+zRly+O1Jo1a9SuXTuftGm327Vq1Sr16tXLdZojgLJjnzK/ol99cZ7Z8n11UHRMs2ZsotpFVfz2sitAq2rfo16/LlKAfPOrX/ruw+o78zt1HdNVzbo180mbvnZi3wl99uhnPj1ug3mQ782tNLnesCI9IiJCfn5+Onr0qNvwo0ePqkGDBiXO07BhQwUEBLid6hYXF6cjR44oPz9fgYGBxeYJCgpSUFBQseEBAQHlfvNarVbl5ubK7pAKnIZ3lF8h7A4pNzdXVqvV5zu7N14jAL9jnzKvqvy6VIV8Xx0UHdNYHfk+K5olKUB2n7VnKcxXbm6u8gvzVWAp8EmbvmZ32g07boN58LlnTqV5TQyrLAMDA9WhQwelpaW5hjkcDqWlpSkxMbHEea655hrt3btXDsfv13//+OOPatiwYYkJGwAAGIt8DwBA6Rj6829KSorefPNNvfXWW8rIyND//u//6uzZs67eX4cMGeLW0cz//u//6uTJkxo9erR+/PFHffLJJ3ruuec0atQoo1YBAABcBvkeAADPGXpN+sCBA3X8+HFNmDBBR44cUXx8vFasWOHqXCYzM1NW6+/fI0RGRmrlypV66KGH1LZtWzVu3FijR4/W448/btQqAACAyyDfAwDgOcM7jktOTlZycnKJ41avXl1sWGJior799tsKjgoAAHgT+R4AAM9Uzd7OAAAAAACohCjSAQAAAAAwiTIV6V9++aW34wAAACZDvgcAwPfKVKT37dtXV111lZ555hkdOHDA2zEBAAATIN8DAOB7ZSrSDx48qOTkZH3wwQdq1qyZ+vTpo/fee0/5+fnejg8AABiEfA8AgO+VqUiPiIjQQw89pG3btmn9+vVq0aKFRo4cqUaNGunvf/+7tm/f7u04AQCAj5HvAQDwvXJ3HHf11Vdr3LhxSk5O1pkzZzRv3jx16NBB1113nX744QdvxAgAAAxGvgcAwDfKXKTb7XZ98MEH6tevn6688kqtXLlSs2bN0tGjR7V3715deeWVuvPOO70ZKwAA8DHyPQAAvuVflpn+9re/acmSJXI6nbrvvvv0wgsvqHXr1q7xNWrU0IsvvqhGjRp5LVAAAOBb5HsAAHyvTEX6zp079corr+i2225TUFBQidNERERw6xYAACox8j0AAL5XptPdJ06cqDvvvLNYwi4oKNCaNWskSf7+/rr++uvLHyEAADAE+R4AAN8rU5F+ww036OTJk8WGnzp1SjfccEO5gwIAAMYj3wMA4HtlKtKdTqcsFkux4SdOnFCNGjXKHRQAADAe+R4AAN8r1TXpt912myTJYrEoKSnJ7fS3wsJCfffdd+ratat3IwQAAD5FvgcAwDilKtJr1qwp6fw362FhYbLZbK5xgYGB6tKli4YPH+7dCAEAgE+R7wEAME6pivT58+dLkqKjo/XII49wqhsAAFUQ+R4AAOOU6RZsEydO9HYcAADAZMj3AAD4nsdF+tVXX620tDTVrl1b7du3L7EjmSJbtmzxSnAAAMC3yPcAABjL4yL9lltucXUcM2DAgIqKBwAAGIh8DwCAsTwu0i885Y3T3wAAqJrI9wAAGKtM90kHAAAAAADe5/Ev6bVr177kdWkXOnnyZJkDAgAAxiHfA/CFzMxMZWVlGR1GhYqIiFBUVJTRYaAS8rhIT01NrcAwAACAGZDvAVS0zMxMtWwZp9zcHKNDqVA2W4h27cqgUEepeVykDx06tCLjgMllZGT4rC2HwyFJ2r59u6xW31yRkZeX5+ooqari21wAniDfA6hoWVlZys3NUcL9ExXeMNrocCpE9uH9Wj9vsrKysjj+Qql5XKRnZ2crPDzc9f+lFE2Hys+ely9Juvfee33Wps1m05IlS9StWzfl5ub6pE2rRXI4fdKUYWwhNu3K2EWiAHBJ5HsAvhLeMFpXRMUaHQZgOqW6Jv3w4cOqV6+eatWqVeL1ak6nUxaLRYWFhV4NEsYpKCiQJD19Wwv1a1PPJ206rIE6KGnN2ERZHfkV3t6Wn45r+Nu71X5IezXp1KTC2zPCqQOntOaFNXybC+CyyPcAABjL4yL9P//5j6644gpJ0pdffllhAcGcmkaE6Oromj5py64AHZTULipcAbJXeHtnc85KkkIbhCoiJqLC2wMk33aYY8QlJBKXkVRW5HsAAIzlcZF+/fXXl/g/AKB0MjMzFdcyVjm553zSnhGXkEhcRlJZke9LVtV7ovZl3zMAgEvzuEj/o19//VX/+Mc/XB/qrVq10rBhw1zfvgMASpaVlaWc3HN6Z0S84hqGVnh7vr6EROIykqqEfF99eqKWLDp86pwk35w5BwAoWZmK9DVr1qh///6qWbOmOnbsKEl6+eWX9dRTT+nf//63unXr5tUgAaAqimsY6pPLSHx9CYnEZSRVBfn+vOrQE/Xxn3dp2+Ln9VtOgdGhAEC1V6YifdSoURo4cKBee+01+fn5SZIKCws1cuRIjRo1Sjt27PBqkAAAwPfI9+6qck/UuWer+lkCAFB5lKkHob179+rhhx92JWxJ8vPzU0pKivbu3eu14AAAgHHI9wAA+F6ZivSrr766xA5GMjIy1K5du3IHBQAAjEe+BwDA9zw+3f27775z/f/3v/9do0eP1t69e9WlSxdJ0rfffqvZs2dr6tSp3o8SAAD4BPkeAABjeVykx8fHy2KxyOn8/X46jz32WLHpBg8erIEDB3onOgAA4FPkewAAjOVxkf7zzz9XZBwAAMAEyPcAABjL4yL9yiuvrMg4AACACZDvAQAwVpluwVZk586dyszMVH5+vtvw//mf/ylXUAAAwDzI9wAA+E6ZivSffvpJt956q3bs2OF23ZrFYpF0/h6qAACgciPfAwDge2W6Bdvo0aPVtGlTHTt2TCEhIfrhhx+0Zs0adezYUatXr/ZyiAAAwAjkewAAfK9Mv6Snp6frP//5jyIiImS1WmW1WnXttddqypQp+vvf/66tW7d6O04AAOBj5HsAAHyvTL+kFxYWKiwsTJIUERGhQ4cOSTrf2czu3bu9Fx0AADAM+R4AAN8r0y/prVu31vbt29W0aVMlJCTohRdeUGBgoN544w01a9bM2zECAAADkO8BAPC9MhXpTz75pM6ePStJeuqpp3TzzTfruuuuU506dfTuu+96NUAAAGAM8j0AAL5XpiK9T58+rv+bN2+uXbt26eTJk6pdu7arx1cAAFC5ke8BAPC9ct0nXZIOHDggSYqMjCx3MAAAwJzI9wAA+EaZOo4rKCjQ+PHjVbNmTUVHRys6Olo1a9bUk08+Kbvd7u0YAQCAAcj3AAD4Xpl+Sf/b3/6mDz/8UC+88IISExMlnb9Ny6RJk3TixAm99tprXg0SAAD4HvkeAADfK1ORvnjxYi1dulQ33XSTa1jbtm0VGRmpQYMGkbQBAKgCyPcAAPhemU53DwoKUnR0dLHhTZs2VWBgYHljAgAAJkC+BwDA98pUpCcnJ+vpp59WXl6ea1heXp6effZZJScney04AABgHPI9AAC+5/Hp7rfddpvb8y+++EJNmjRRu3btJEnbt29Xfn6+brzxRu9GCAAAfIZ8DwCAsTwu0mvWrOn2/Pbbb3d7zi1ZAACo/Mj3AAAYy+Miff78+RUWxOzZszVt2jQdOXJE7dq10yuvvKLOnTtfdr6lS5dq0KBBuuWWW7Rs2bIKiw8AgOqiovI9uR4AAM+U6Zr0IsePH9c333yjb775RsePHy/TMt59912lpKRo4sSJ2rJli9q1a6c+ffro2LFjl5xv//79euSRR3TdddeVqV0AAOCZ8uZ7cj0AAJ4rU5F+9uxZ3X///WrYsKG6deumbt26qVGjRnrggQeUk5NTqmVNnz5dw4cP17Bhw9SqVSvNmTNHISEhmjdv3kXnKSws1D333KPJkyerWbNmZVkFAABwGd7K9+R6AAA8V6YiPSUlRV999ZX+/e9/67ffftNvv/2mf/3rX/rqq6/08MMPe7yc/Px8bd68WT179vw9IKtVPXv2VHp6+kXne+qpp1SvXj098MADZQkfAAB4wBv5nlwPAEDpeHxN+oX++c9/6oMPPlD37t1dw/r16yebzaa77rpLr732mkfLycrKUmFhoerXr+82vH79+tq1a1eJ83zzzTf6xz/+oW3btnnURl5entutY7KzsyVJdrtddrvdo2VcjMPhkM1mU4BV8rc4yrUsswr0s8hms0n+QbIrwCdtFrXjq/acfoGy2WwK9AuUv7NMu4TpBVgCZLPZ5HA4yv2+R/kVfXY4rIE+eZ/7ep+S2K9Ky6z7pTfyvS9yvUS+Ly9f53s+lypGZcn31WGfCrDK569FUTtmfu2rs9K8LmX6hMrJySmWbCWpXr16pT7dvTROnz6t++67T2+++aYiIiI8mmfKlCmaPHlyseGff/65QkJCyh3TkiVL/u+/rHIvy5TqNdLfrzu/jp/6uOlVte/xTUNdpCVd/u//vEtOWXk1kYYsGaKDBw/q4MGDRkcDnf/sOCjJl6+Gz/Ypif2qlCoyd5aHEfm+LLleIt+Xm0H5ns8lL6tE+b7q71O1NWLJEkNei1WrVvm0PXimNHnT4nQ6naVt4MYbb1SdOnW0cOFCBQcHS5Jyc3M1dOhQnTx5Ul988YVHy8nPz1dISIg++OADDRgwwDV86NChrlPqLrRt2za1b99efn5+rmEOx/lv36xWq3bv3q2rrrrKbZ6SvlmPjIxUVlaWwsPDS7Xef7R9+3Z169ZNNzzyqmpHxpRrWWZ1ePd3Sn/1Yb05rK3u6tTQJ23aFaBVte9Rr18XKUAV/01g+u7D6jvzO3Ud01XNulXN6x5P7Duhzx79TGvWrHHd6xjGKfrsWDM2Ue2iyvc55Alf71MS+1VpZWdnKyIiQqdOnSp3bvImb+R7X+R6iXxfXr7O93wuVYzKku+rwz7164E9+vLFkT59Lex2u1atWqVevXopIMB3Z6nAM6XJ9WX6JT01NVV9+/ZVkyZNXG+67du3Kzg4WCtXrvR4OYGBgerQoYPS0tJcidvhcCgtLU3JycnFpm/ZsqV27NjhNuzJJ5/U6dOnNXPmzBLv3RoUFKSgoKBiwwMCAsr95rVarcrNzZXdIRU4y9VRvmnlFzqVm5srFeT5LIkWCZDdJ21aCvOVm5ur/MJ8FVgKKrw9I9idduXm5spqtfKhbQJFnx1WR75P9ytf7VMS+1VpmXW/9Ea+90Wul8j35WVUvudzybsqS76vDvuU3SHDXgtvfO7B+0rzmpSpSG/Tpo327NmjRYsWua4nGzRokO65557z1zOVQkpKioYOHaqOHTuqc+fOSk1N1dmzZzVs2DBJ0pAhQ9S4cWNNmTJFwcHBat26tdv8tWrVkqRiwwEAQPl4K9+T6wEA8Fypi3S73a6WLVvq448/1vDhw8sdwMCBA3X8+HFNmDBBR44cUXx8vFasWOG6Bi4zM1NWa9X8hg0AALPyZr4n1wMA4LlSF+kBAQE6d+6cV4NITk4u8ZQ3SVq9evUl512wYIFXYwEAAN7P9+R6AAA8U6avrUeNGqXnn39eBQVV83oeAABAvgcAwAhluiZ948aNSktL0+eff642bdqoRo0abuM//PBDrwQHAACMQ74HAMD3ylSk16pVS7fffru3YwEAACZCvgcAwPdKVaQ7HA5NmzZNP/74o/Lz89WjRw9NmjSp1D26AwAA8yLfAwBgnFJdk/7ss8/qiSeeUGhoqBo3bqyXX35Zo0aNqqjYAACAAcj3AAAYp1RF+sKFC/Xqq69q5cqVWrZsmf79739r0aJFcjgcFRUfAADwMfI9AADGKVWRnpmZqX79+rme9+zZUxaLRYcOHfJ6YAAAwBjkewAAjFOqIr2goEDBwcFuwwICAmS3270aFAAAMA75HgAA45Sq4zin06mkpCQFBQW5hp07d05//etf3W7Lwi1ZAACovMj3AAAYp1RF+tChQ4sNu/fee70WDAAAMB75HgAA45SqSJ8/f35FxQEAAEyCfA8AgHFKdU06AAAAAACoOBTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJuFvdAAA8EeZmZnKysoyOowKk5GRYXQIAAAAMCmKdACmkpmZqZYt45Sbm2N0KBXMosOnzkmqaXQgAAAAMBGKdACmkpWVpdzcHCXcP1HhDaONDqdCHP95l7Ytfl6/5RQYHQoAAABMhiIdgCmFN4zWFVGxRodRIXLPVvWzBAAAAFBWFOkAAAAAUAF82Q+Nw+GQJG3fvl1Wq2/6B8/Ly1NQUJBP2jJKRESEoqKifNomRToAAAAAeJE9L1+SdO+99/qsTZvNpiVLlqhbt27Kzc31SZtWi+Rw+qQpw9hCbNqVscunhTpFOgAAAAB4UUHB+X5nnr6thfq1qeeTNh3WQB2UtGZsoqyO/Apvb8tPxzX87d1qP6S9mnRqUuHtGeHUgVNa88IaZWVlUaQDAAAAQGXXNCJEV0f75k4udgXooKR2UeEKkL3C2zubc1aSFNogVBExERXeXnXim4sVAAAAAADAZVGkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJkGRDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ4AAAAAgElQpAMAAAAAYBIU6QAAAAAAmARFOgAAAAAAJmGKIn327NmKjo5WcHCwEhIStGHDhotO++abb+q6665T7dq1Vbt2bfXs2fOS0wMAAOOR6wEA8IzhRfq7776rlJQUTZw4UVu2bFG7du3Up08fHTt2rMTpV69erUGDBunLL79Uenq6IiMj1bt3bx08eNDHkQMAAE+Q6wEA8JzhRfr06dM1fPhwDRs2TK1atdKcOXMUEhKiefPmlTj9okWLNHLkSMXHx6tly5aaO3euHA6H0tLSfBw5AADwBLkeAADP+RvZeH5+vjZv3qxx48a5hlmtVvXs2VPp6ekeLSMnJ0d2u11XXHFFiePz8vKUl5fnep6dnS1Jstvtstvt5YhecjgcstlsCrBK/hZHuZZlVoF+FtlsNsk/SHYF+KTNonZ81Z7TL1A2m02BfoHydxq6S1SYAEuAbDabHA5Hud/3FY39yvt8vU9J7FelZfb9sjx8kesl8n158blUNVSWfM8+VTE4hvY+o3K9xel0OsvVWjkcOnRIjRs31rp165SYmOga/thjj+mrr77S+vXrL7uMkSNHauXKlfrhhx8UHBxcbPykSZM0efLkYsMXL16skJCQ8q0AAABekJOTo8GDB+vUqVMKDw83Ohyv8kWul8j3AABzK02ur9RfeUydOlVLly7V6tWrL5q0x40bp5SUFNfz7Oxs17Vt5T0Q2r59u7p166YbHnlVtSNjyrUsszq8+zulv/qw3hzWVnd1auiTNu0K0Kra96jXr4sUoIr/Fjh992H1nfmduo7pqmbdmlV4e0Y4se+EPnv0M61Zs0bt2rUzOpxLYr/yPl/vUxL7VWkV/eqL4jzJ9RL5vrz4XKoaKku+Z5+qGBxDe59Rud7QIj0iIkJ+fn46evSo2/CjR4+qQYMGl5z3xRdf1NSpU/XFF1+obdu2F50uKChIQUFBxYYHBAQoIKB8p4JYrVbl5ubK7pAKnIZf3l8h8gudys3NlQryfJZEiwTI7pM2LYX5ys3NVX5hvgosBRXenhHsTrtyc3NltVrL/b6vaOxXFcdX+5TEflVaZt8vy8MXuV4i35cXn0tVQ2XJ9+xTFYtjaO8xKtcbulcEBgaqQ4cObh3BFHUMc+EpcX/0wgsv6Omnn9aKFSvUsWNHX4QKAADKgFwPAEDpGH66e0pKioYOHaqOHTuqc+fOSk1N1dmzZzVs2DBJ0pAhQ9S4cWNNmTJFkvT8889rwoQJWrx4saKjo3XkyBFJUmhoqEJDQw1bDwAAUDJyPQAAnjO8SB84cKCOHz+uCRMm6MiRI4qPj9eKFStUv359SVJmZqas1t9/8H/ttdeUn5+vO+64w205EydO1KRJk3wZOgAA8AC5HgAAzxlepEtScnKykpOTSxy3evVqt+f79++v+IAAAIBXkesBAPBM1eypAQAAAACASogiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMwhRF+uzZsxUdHa3g4GAlJCRow4YNl5z+/fffV8uWLRUcHKw2bdro008/9VGkAACgLMj1AAB4xvAi/d1331VKSoomTpyoLVu2qF27durTp4+OHTtW4vTr1q3ToEGD9MADD2jr1q0aMGCABgwYoO+//97HkQMAAE+Q6wEA8JzhRfr06dM1fPhwDRs2TK1atdKcOXMUEhKiefPmlTj9zJkz1bdvXz366KOKi4vT008/rauvvlqzZs3yceQAAMAT5HoAADznb2Tj+fn52rx5s8aNG+caZrVa1bNnT6Wnp5c4T3p6ulJSUtyG9enTR8uWLStx+ry8POXl5bmenzp1SpJ08uRJ2e32csWfnZ2t4OBgnTn4o2TPLdeyzCr3yE8KDg7W7qx8rf7xtE/adFgDlfOnHH2994ysjvwKb+/7Q/kKDg5WzqEcZe3IqvD2jHD68GkFBwcrOztbJ06cMDqcS2K/8j5f71MS+1Wpl3X6/PvA6XR6IzRT8UWul8j35cXnUtVQWfI9+1TF4Bja+wzL9U4DHTx40CnJuW7dOrfhjz76qLNz584lzhMQEOBcvHix27DZs2c769WrV+L0EydOdEriwYMHDx48TP84cOCAdxKsifgi1zud5HsePHjw4FE5Hp7kekN/SfeFcePGuX0b73A4dPLkSdWpU0cWi8XAyHAx2dnZioyM1IEDBxQeHm50OEClxz5lfk6nU6dPn1ajRo2MDqXSIt9XLnwuAd7HfmVupcn1hhbpERER8vPz09GjR92GHz16VA0aNChxngYNGpRq+qCgIAUFBbkNq1WrVtmDhs+Eh4fzAQN4EfuUudWsWdPoECqEL3K9RL6vrPhcAryP/cq8PM31hnYcFxgYqA4dOigtLc01zOFwKC0tTYmJiSXOk5iY6Da9JK1ateqi0wMAAOOQ6wEAKB3DT3dPSUnR0KFD1bFjR3Xu3Fmpqak6e/ashg0bJkkaMmSIGjdurClTpkiSRo8ereuvv14vvfSS/vznP2vp0qXatGmT3njjDSNXAwAAXAS5HgAAzxlepA8cOFDHjx/XhAkTdOTIEcXHx2vFihWqX7++JCkzM1NW6+8/+Hft2lWLFy/Wk08+qSeeeEIxMTFatmyZWrdubdQqwMuCgoI0ceLEYqctAigb9ikYjVyPP+JzCfA+9quqw+J0VsH7vQAAAAAAUAkZek06AAAAAAD4HUU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkwldmzZys6OlrBwcFKSEjQhg0bjA4JqNTWrFmj/v37q1GjRrJYLFq2bJnRIQEA+R7wInJ91UORDtN49913lZKSookTJ2rLli1q166d+vTpo2PHjhkdGlBpnT17Vu3atdPs2bONDgUAJJHvAW8j11c93IINppGQkKBOnTpp1qxZkiSHw6HIyEj97W9/09ixYw2ODqj8LBaLPvroIw0YMMDoUABUY+R7oOKQ66sGfkmHKeTn52vz5s3q2bOna5jValXPnj2Vnp5uYGQAAMBbyPcAcHkU6TCFrKwsFRYWqn79+m7D69evryNHjhgUFQAA8CbyPQBcHkU6AAAAAAAmQZEOU4iIiJCfn5+OHj3qNvzo0aNq0KCBQVEBAABvIt8DwOVRpMMUAgMD1aFDB6WlpbmGORwOpaWlKTEx0cDIAACAt5DvAeDy/I0OACiSkpKioUOHqmPHjurcubNSU1N19uxZDRs2zOjQgErrzJkz2rt3r+v5zz//rG3btumKK65QVFSUgZEBqK7I94B3keurHm7BBlOZNWuWpk2bpiNHjig+Pl4vv/yyEhISjA4LqLRWr16tG264odjwoUOHasGCBb4PCABEvge8iVxf9VCkAwAAAABgElyTDgAAAACASVCkAwAAAABgEhTpAAAAAACYBEU6AAAAAAAmQZEOAAAAAIBJUKQDAAAAAGASFOkAAAAAAJgERToAAAAAACZBkQ5UId27d9eYMWMuOj46Olqpqak+iwcAAHgXuR6o+ijSgWpk48aNGjFihNFhXNYPP/yg22+/XdHR0bJYLBxsAADgocqS6998801dd911ql27tmrXrq2ePXtqw4YNRocFmAJFOlCN1K1bVyEhIRXaRn5+frmXkZOTo2bNmmnq1Klq0KCBF6ICAKB6qCy5fvXq1Ro0aJC+/PJLpaenKzIyUr1799bBgwe9ECFQuVGkA1VMQUGBkpOTVbNmTUVERGj8+PFyOp2Sip8CZ7FYNHfuXN16660KCQlRTEyMli9f7hpfWFioBx54QE2bNpXNZlNsbKxmzpzp1l5SUpIGDBigZ599Vo0aNVJsbKyeeuoptW7dulhs8fHxGj9+/GXXoVOnTpo2bZruvvtuBQUFlXFLAABQNVWFXL9o0SKNHDlS8fHxatmypebOnSuHw6G0tLQybhWg6qBIB6qYt956S/7+/tqwYYNmzpyp6dOna+7cuRedfvLkybrrrrv03XffqV+/frrnnnt08uRJSZLD4VCTJk30/vvva+fOnZowYYKeeOIJvffee27LSEtL0+7du7Vq1Sp9/PHHuv/++5WRkaGNGze6ptm6dau+++47DRs2rGJWHACAaqIq5vqcnBzZ7XZdccUVpZ4XqGr8jQ4AgHdFRkZqxowZslgsio2N1Y4dOzRjxgwNHz68xOmTkpI0aNAgSdJzzz2nl19+WRs2bFDfvn0VEBCgyZMnu6Zt2rSp0tPT9d577+muu+5yDa9Ro4bmzp2rwMBA17A+ffpo/vz56tSpkyRp/vz5uv7669WsWbOKWG0AAKqNqpjrH3/8cTVq1Eg9e/Ys9bxAVcMv6UAV06VLF1ksFtfzxMRE7dmzR4WFhSVO37ZtW9f/NWrUUHh4uI4dO+YaNnv2bHXo0EF169ZVaGio3njjDWVmZroto02bNm5JW5KGDx+uJUuW6Ny5c8rPz9fixYt1//33e2MVAQCo1qparp86daqWLl2qjz76SMHBwaWeH6hq+CUdqOYCAgLcnlssFjkcDknS0qVL9cgjj+ill15SYmKiwsLCNG3aNK1fv95tnho1ahRbbv/+/RUUFKSPPvpIgYGBstvtuuOOOypuRQAAQInMnOtffPFFTZ06VV988YXblwlAdUaRDlQxf0yq3377rWJiYuTn51fqZa1du1Zdu3bVyJEjXcP27dvn0bz+/v4aOnSo5s+fr8DAQN19992y2WyljgEAALirKrn+hRde0LPPPquVK1eqY8eOpY4dqKoo0oEqJjMzUykpKXrwwQe1ZcsWvfLKK3rppZfKtKyYmBgtXLhQK1euVNOmTfX2229r48aNatq0qUfz/+Uvf1FcXJyk8wcBnsrPz9fOnTtd/x88eFDbtm1TaGiomjdvXvoVAQCgCqkKuf7555/XhAkTtHjxYkVHR+vIkSOSpNDQUIWGhpZ+RYAqhCIdqGKGDBmi3Nxcde7cWX5+fho9erRGjBhRpmU9+OCD2rp1qwYOHCiLxaJBgwZp5MiR+uyzzzyaPyYmRl27dtXJkyeVkJDgcbuHDh1S+/btXc9ffPFFvfjii7r++uu1evXq0q4GAABVSlXI9a+99pry8/OLnR4/ceJETZo0qTSrAFQ5FmfRTRUBwMucTqdiYmI0cuRIpaSkGB0OAADwMnI94H38kg6gQhw/flxLly7VkSNHuDc6AABVELkeqBgU6QAqRL169RQREaE33nhDtWvXdht3qWvNPvvsM1133XUVHR4AACgncj1QMTjdHYDP7d2796LjGjduTC/wAABUcuR6oOwo0gEAAAAAMAmr0QEAAAAAAIDzKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCQo0gEAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6BIBwAAAADAJCjSAQAAAAAwCYp0AAAAAABMgiIdAAAAAACToEgHAAAAAMAk/I0OwNccDocOHTqksLAwWSwWo8MBAEBOp1OnT59Wo0aNZLXy/TkAANVZtSvSDx06pMjISKPDAACgmAMHDqhJkyZGhwEAAAxU7Yr0sLAwSecPhMLDww2OBiWx2+36/PPP1bt3bwUEBBgdDlDpsU+ZX3Z2tiIjI105CgAAVF/VrkgvOsU9PDycIt2k7Ha7QkJCFB4eTkEBeAH7VOXBZVgAAIAL3wAAAAAAMAmKdAAAAAAATIIiHQAAAAAAk6h216R7qrCwUHa73egwqiW73S5/f3+dO3dOhYWFRofjUwEBAfLz8zM6DAAAAAAGoUj/A6fTqSNHjui3334zOpRqy+l0qkGDBjpw4EC17ESpVq1aatCgQbVcdwAAAKC6o0j/g6ICvV69egoJCaFQMoDD4dCZM2cUGhoqq7X6XJHhdDqVk5OjY8eOSZIaNmxocEQAAAAAfI0i/QKFhYWuAr1OnTpGh1NtORwO5efnKzg4uFoV6ZJks9kkSceOHVO9evU49R0AAACoZqpXBXQZRdegh4SEGBwJqrOi9x99IgAAAADVD0V6CTjFHUbi/QcAAABUXxTpAAAAAACYBEU6vKZ79+4aM2ZMuZfTo0cPjRs3rvwBAQAAAEAlQ8dxMMzq1at1ww036Ndff1WtWrVcwz/44APl5uYaFxgAAAAAGIRf0mE6V1xxhcLCwowOAwAAAAB8jiK9CujevbuSk5OVnJysmjVrKiIiQuPHj5fT6ZQk/frrrxoyZIhq166tkJAQ3XTTTdqzZ49r/gULFqhWrVpatmyZYmJiFBwcrD59+ujAgQOuaZKSkjRgwAC3dseMGaPu3btfNK63335bHTt2VFhYmBo0aKDBgwe77gG+f/9+3XDDDZKk2rVry2KxKCkpSVLx0909jX/lypWKi4tTaGio+vbtq8OHD5dpewIAAACAUSjSq4i33npL/v7+2rBhg2bOnKnp06dr7ty5ks4X2Js2bdLy5cuVnp4up9Opfv36ud3iKycnR88++6wWLlyotWvX6rffftPdd99drpjsdruefvppbd++XcuWLdP+/ftdhXhkZKT++c9/SpJ2796tw4cPa+bMmSUux9P4X3zxRb399ttas2aNMjMz9cgjj5QrfgAAAADwNa5JryIiIyM1Y8YMWSwWxcbGaseOHZoxY4a6d++u5cuXa+3aterataskadGiRYqMjNSyZct05513SjpfUM+aNUsJCQmSzhf9cXFx2rBhgzp37lymmO6//37X/82aNdPLL7+sTp066cyZMwoNDdUVV1whSapXr57bNekX2rNnj8fxz5kzR1dddZUkKTk5WU899VSZ4gYAAAAAo/BLehXRpUsXt/trJyYmas+ePdq5c6f8/f1dxbck1alTR7GxscrIyHAN8/f3V6dOnVzPW7ZsqVq1arlNU1qbN29W//79FRUVpbCwMF1//fWSpMzMTI+XkZGR4VH8ISEhrgJdkho2bOg6tR4AAAAAKguKdHjEarW6rnEvcuHp5n909uxZ9enTR+Hh4Vq0aJE2btyojz76SJKUn5/v9fgCAgLcnlsslmLxAgAAAIDZUaRXEevXr3d7/u233yomJkatWrVSQUGB2/gTJ05o9+7datWqlWtYQUGBNm3a5Hq+e/du/fbbb4qLi5Mk1a1bt1hHbNu2bbtoPLt27dKJEyc0depUXXfddWrZsmWxX7YDAwMlSYWFhRddTlxcnEfxAwAAAEBVQJFeRWRmZiolJUW7d+/WkiVL9Morr2j06NGKiYnRLbfcouHDh+ubb77R9u3bde+996px48a65ZZbXPMHBATob3/7m9avX6/NmzcrKSlJXbp0cV2P3qNHD23atEkLFy7Unj17NHHiRH3//fcXjScqKkqBgYF65ZVX9NNPP2n58uV6+umn3aa58sorZbFY9PHHH+v48eM6c+ZMseV4Gj8AAAAAVAUU6VXEkCFDlJubq86dO2vUqFEaPXq0RowYIUmaP3++OnTooJtvvlmJiYlyOp369NNP3U4RDwkJ0eOPP67BgwfrmmuuUWhoqN59913X+D59+mj8+PF67LHH1KlTJ50+fVpDhgy5aDx169bVggUL9P7776tVq1aaOnWqXnzxRbdpGjdurMmTJ2vs2LGqX7++kpOTS1yWJ/EDAAAAQFVgcVazC3ezs7NVs2ZNnTp1SuHh4W7jzp07p59//llNmzZVcHCwQRGWXvfu3RUfH6/U1NQyzb9gwQKNGTNGv/32m1fjKiuHw6Hs7GyFh4fLaq1+3yNV1vchzMtut+vTTz9Vv379+HLLpC6VmwAAQPVS/SogAAAAAABMiiIdAAAAAACT8Dc6AJTf6tWryzV/UlKSkpKSvBILAAAAAKDs+CUdAAAAAACToEgHAAAAAMAkKNIBAAAAADAJinQAAAAAAEyCIh0AAAAAAJOgSAcAAAAAwCS4BZuHMjMzlZWV5bP2IiIiFBUV5bP2PBUdHa0xY8ZozJgxF50mPz9frVq10sKFC9W1a1ffBWcCFotFH330kQYMGFDi+J07d6p3797avXu3atSo4dvgAAAAAJgeRboHMjMz1bJlnHJzc3zWps0Wol27MkxZqF/OnDlz1LRp00pdoO/fv19NmzbV1q1bFR8f77XltmrVSl26dNH06dM1fvx4ry0XAAAAQNVAke6BrKws5ebmKOH+iQpvGF3h7WUf3q/18yYrKyur0hXpTqdTs2bN0lNPPVXu5RQUFCgwMNBLkZnHsGHDNHz4cI0bN07+/uyCAAAAAH7HNemlEN4wWldExVb4oyxfBHTv3l3JyclKTk5WzZo1FRERofHjx8vpdLqm+fXXXzVkyBDVrl1bISEhuummm7Rnzx635fzzn//Un/70JwUFBSk6OlovvfRSqeLYvHmz9u3bpz//+c+uYfv375fFYtHSpUvVtWtXBQcHq3Xr1vrqq69c06xevVoWi0WfffaZOnXqpPr16+ubb76Rw+HQlClT1LRpU9lsNrVr104ffPBBsflWrlyp9u3by2azqUePHjp27Jg+++wzxcXFKTw8XIMHD1ZOzu9nQqxYsULXXnutatWqpTp16ujmm2/Wvn37XOObNm0qSWrfvr0sFou6d+/uGjdv3jzXNmrYsKGSk5PdtkFWVpZuvfVWhYSEKCYmRsuXL3cb36tXL508edJt/QEAAABAokivUt566y35+/trw4YNmjlzpqZPn665c+e6xiclJWnTpk1avny50tPT5XQ61a9fP9ntdknnC+y77rpLd999t3bs2KFJkyZp/PjxWrBggccxfP3112rRooXCwsKKjXv00Uf18MMPa+vWrUpMTFT//v114sQJt2nGjh2r5557TuvXr1fbtm01ZcoULVy4UHPmzNEPP/yghx56SPfee2+xAnfSpEmaNWuW1q1bpwMHDuiuu+5SamqqFi9erE8++USff/65XnnlFdf0Z8+eVUpKijZt2qS0tDRZrVbdeuutcjgckqQNGzZIkr744gsdPnxYH374oSTptdde06hRozRixAjt2LFDy5cvV/Pmzd1imTx5su666y5999136tevn+655x6dPHnSNT4wMFDx8fH6+uuvPd6uAAAAAKoHzrWtQiIjIzVjxgxZLBbFxsZqx44dmjFjhoYPH649e/Zo+fLlWrt2reta8UWLFikyMlLLli3TnXfeqenTp+vGG290XSvdokUL7dy5U9OmTVNSUpJHMfzyyy9q1KhRieOSk5N1++23Szpf7K5YsUL/+Mc/9Nhjj7mmeeqpp9SrVy9lZ2crKChIzz33nL744gslJiZKkpo1a6ZvvvlGr7/+uq6//nrXfM8884yuueYaSdIDDzygcePGad++fWrWrJkk6Y477tCXX36pxx9/XJJccRSZN2+e6tatq507d6p169aqW7euJKlOnTpq0KCBWzsPP/ywRo8e7RrWqVMnt2UlJSVp0KBBkqTnnntOL7/8sjZs2KC+ffu6pmnUqJF++eWXy25PAAAAANULv6RXIV26dJHFYnE9T0xM1J49e1RYWKiMjAz5+/srISHBNb5OnTqKjY1VRkaGJCkjI8NV6Ba55pprXMvwRG5uroKDg0scV1RoS5K/v786duzoartIx44dXf/v3btXOTk56tWrl0JDQ12PhQsXup2aLklt27Z1/V+/fn2FhIS4CvSiYceOHXM937NnjwYNGqRmzZopPDxc0dHRks53Engxx44d06FDh3TjjTdeYgu4x1KjRg2Fh4e7tS1JNpvN7fR7AAAAAJBMUKTPnj1b0dHRCg4OVkJCgus044tJTU1VbGysbDabIiMj9dBDD+ncuXM+ihaXExERoV9//bXM8194W7IzZ85Ikj755BNt27bN9di5c6fbdemSFBAQ4PrfYrG4PS8aVnQquyT1799fJ0+e1Jtvvqn169dr/fr1ks7fPu5ibDabR+twubYl6eTJk65f6wEAAACgiKFF+rvvvquUlBRNnDhRW7ZsUbt27dSnT59ivzoWWbx4scaOHauJEycqIyND//jHP/Tuu+/qiSee8HHk5lRUaBb59ttvFRMTIz8/P8XFxamgoMBtmhMnTmj37t1q1aqVJCkuLk5r1651W8batWvVokUL+fn5eRRD+/bttWvXLrcO6y6Mp0hBQYE2b96suLi4iy6rVatWCgoKUmZmppo3b+72iIyM9CiekhSt95NPPqkbb7xRcXFxxb5YKOpV/sIzCMLCwhQdHa20tLQyt13k+++/V/v27cu9HAAAAABVi6HXpE+fPl3Dhw/XsGHDJJ2/v/Ynn3yiefPmaezYscWmX7duna655hoNHjxYkhQdHa1BgwYVK06rq8zMTKWkpOjBBx/Uli1b9Morr7h6Z4+JidEtt9yi4cOH6/XXX1dYWJjGjh2rxo0b65ZbbpEkPfzww+rUqZOefvppDRw4UOnp6Zo1a5ZeffVVj2O44YYbdObMGf3www9q3bq127jZs2crJiZGcXFxmjFjhn799Vfdf//9F11WWFiYHnnkET300ENyOBy69tprderUKa1du1bh4eEaOnRoGbaSVLt2bdWpU0dvvPGGGjZsqMzMzGLvt3r16slms2nFihVq0qSJgoODVbNmTU2aNEl//etfVa9ePd100006ffq01q5dq7/97W8et79//34dPHhQPXv2LFP8AAAAAKouw4r0/Px8bd68WePGjXMNs1qt6tmzp9LT00ucp2vXrnrnnXe0YcMGde7cWT/99JM+/fRT3XfffRdtJy8vT3l5ea7n2dnZkiS73e7q1byI3W6X0+mUw+FwOz256P/sQ/ul4j8Qe1324f2udv94mvSl3HfffcrJyVHnzp3l5+env//97/rLX/7iWsY//vEPjRkzRjfffLPy8/N13XXX6eOPP5afn58cDofi4+O1dOlSTZo0SU8//bQaNmyoyZMna8iQIW5xFG2jktSuXVsDBgzQO++8o+eee861HtL5TtSmTp2qbdu2qXnz5lq2bJmuuOIKt/V0OByuX+GdTqcmT56siIgITZkyRT/99JNq1aql9u3ba9y4ccXmu/D/C/8WLevCYYsXL9aYMWPUunVrxcbGKjU1VT169HAtx2q1KjU1Vc8884wmTJig6667Tv/5z39c23jmzJl65JFHFBERodtvv73Y++WP2+fCYYsXL1avXr0UGRlZ4nYs2gZ2u93jMxiqmv/+97/Fev6vaurUqaMmTZr4pK2iz7o/fubBPHhtAABAEYuzpPOSfeDQoUNq3Lix1q1b59ah2GOPPaavvvrqor+Ov/zyy3rkkUfkdDpVUFCgv/71r3rttdcu2s6kSZM0efLkYsMXL16skJAQt2H+/v5q0KCBIiMjXac7S9KBAwfUOSFB53JzS7uaZRZss2nD+vUen9Z98803q02bNpoyZUoFR3Z533//vW677TZt2bJFoaGhyszMVLt27bRmzRq1adPG6PAMlZ+frw4dOujNN99Uly5dLjrNgQMHdOTIERUUFPg4QgBGyMnJ0eDBg3Xq1CmFh4cbHQ4AADBQpboF2+rVq/Xcc8/p1VdfVUJCgvbu3avRo0fr6aefdt027I/GjRunlJQU1/Ps7GxFRkaqd+/exQ6Ezp07pwMHDig0NNSth/I//elPyti5U1lZWRWzYiWIiIhQVFSUx9P7+/srMDDQFAd3Xbt21dSpU3XixAk1atRIoaGhkn7v6fxynE6nTp8+rbCwMLfe6quCvXv36oknnlDv3r0vOs25c+dks9nUrVu3i/aUX5Vt375d3bp1U8f7xiqsvuf7QGVy+mimNr09VWvWrFG7du0qvD273a5Vq1apV69exTo2hDkUneUFAABgWJEeEREhPz8/HT161G340aNH3e5LfaHx48frvvvu01/+8hdJUps2bXT27FmNGDFC/+///T9ZrcX7wQsKClJQUFCx4QEBAcUOVgsLC2WxWGS1WostKzo62nWbLrMqit0MLrzWvCimkrZrSYpOATfT+nhLixYt1KJFi0tOY7VaXT3UV8eCymq1nr+VX90ohTWJNTqcCmF3nL9dodVq9elrXF3fU5UBrwsAAChiWJEeGBioDh06KC0tTQMGDJB0vjhLS0tTcnJyifPk5OQUK9qKrtk16Kx901i9evX/b+/e46Ku8/7/P2dgBgbPNR4QMbDF00+FlCTsimzX0vVar6w2TSuVWtwrpGgn17JLwcNlVpaiaXozL+3kqdO61ZauSymbkpomuqWYlourgaIlBciMzHz/6OcUgS7HmY/M4367ebvN5z2f9+f9+jDzvt3m6efk7xIuKioqKuA/HwAAAACoDb+e7u5wODR+/HjFx8dr4MCBysrKUmlpqfdu7+PGjVNERIT3OusRI0Zo/vz5uuaaa7ynu0+fPl0jRowI2BtsAQAAAACaD7+G9NGjR+vUqVPKyMhQYWGh4uLitHHjRnXs2FHSD48U++mR82nTpslkMmnatGk6fvy42rdvrxEjRmjOnDn+2gUAAAAAABqN328cl5aWdtHT239+CndwcLAyMzOVmZnpg8oAAAAAAPCtgjBq8AAAK7NJREFU5nVXLgAAAAAALmOEdAAAAAAADIKQDgAAAACAQfj9mvTLRUFBgYqLi302nt1uV9euXX02Xm1ERUXp4Ycf1sMPP+zvUgAAAACgWSKk10JBQYF69eyhsvJzPhszzBaqAwfzDRfUAQAAAABNh5BeC8XFxSorP6dXJ8apV3jLJh/vwNff657le1VcXExIBwAAAIAAQkivg17hLdU/qo2/y6jR4MGD1adPH0nSK6+8IovFogceeECzZs2SyWTSN998o/T0dL3zzjuqqKjQjTfeqEWLFikmJsa7jTfffFMZGRk6fPiwwsPD9eCDD+qRRx7x1y4BAAAAQMDhxnHNyEsvvaTg4GDt3LlTCxcu1Pz587VixQpJ0oQJE/TJJ5/o7bffVm5urjwej4YPHy6XyyVJ2r17t0aNGqW77rpL+/fv14wZMzR9+nS9+OKLftwjAAAAAAgsHElvRiIjI7VgwQKZTCb16NFD+/fv14IFCzR48GC9/fbb2rZtmwYNGiRJWr16tSIjI7Vhwwbdeeedmj9/vn71q19p+vTpkqTu3bvr888/17x58zRhwgQ/7hUAAAAABA6OpDcj1113nUwmk3c5MTFRX3zxhT7//HMFBwcrISHB+96VV16pHj166MCBA5KkAwcO6Prrr6+yveuvv15ffPGFKisrfbMDAAAAABDgCOkAAAAAABgEIb0Z2bFjR5Xljz/+WDExMerdu7fOnz9f5f3Tp08rPz9fvXv3liT16tVL27Ztq9J/27Zt6t69u4KCgpq+eAAAAAAAIb05KSgokMPhUH5+vtauXavnnntO6enpiomJ0a233qqUlBR99NFHysvL0z333KOIiAjdeuutkqRHHnlE2dnZmj17tg4dOqSXXnpJixcv1uTJk/28VwAAAAAQOLhxXB0c+Pp7Q48zbtw4lZeXa+DAgQoKClJ6eromTpwoSVq1apXS09P1m9/8Rk6nU0lJSXrvvfdksVgkSf3799drr72mjIwMzZ49W+Hh4Zo1axY3jQMAAAAAHyKk14LdbleYLVT3LN/rszHDbKGy2+116mOxWJSVlaWlS5dWe69du3Z6+eWXL9n/jjvu0B133HHR948ePVqnegAAAAAAdUNIr4WuXbvqwMF8FRcX+2xMu92url27+mw8AAAAAID/EdJrqWvXroRmAAAAAECTIqQ3E1u2bPF3CQAAAACABuLu7gAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIHsFWSwUFBSouLvbZeHa7neeyAwAAAECAIaTXQkFBgXr26qnysnKfjWkLs+nggYO1DuqDBw9WXFycsrKymrawWjJaPQAAAABwOSCk10JxcbHKy8qVNCVJbSLbNPl4Z4+dVc7TOSouLvbp0XSn0ymr1eqz8QAAAAAAVXFNeh20iWwje4y9yf/V9T8CJkyYoK1bt2rhwoUymUwymUw6cuSI7r//fkVHR8tms6lHjx5auHBhtX4jR47UnDlz1LlzZ/Xo0UOStH37dsXFxSk0NFTx8fHasGGDTCaT9u7d6+37j3/8Q7/+9a/VsmVLdezYUffee6/3coCa6jl69GiD/vYAAAAAEAg4kt4MLFy4UIcOHVKfPn00a9YsSVK7du3UpUsXvf7667ryyiu1fft2TZw4UeHh4Ro1apS3b3Z2tlq3bq3NmzdLkkpKSjRixAgNHz5ca9as0T//+U89/PDDVcb79ttv9ctf/lK/+93vtGDBApWXl+vRRx/VqFGj9MEHH9RYT/v27X3zxwAAAACAyxghvRlo06aNrFarwsLC1KlTJ2/7zJkzva+jo6OVm5ur1157rUpIb9GihVasWOE9zX3ZsmUymUx64YUXFBoaqt69e+v48eNKSUnx9lm8eLGuueYaPfHEE962lStXKjIyUocOHVL37t1rrAcAAAAAcGmE9GZsyZIlWrlypQoKClReXi6n06m4uLgq6/Tt27fKdej5+fnq16+fQkNDvW0DBw6s0icvL08ffvihWrZsWW3MI0eOqHv37o27IwAAAAAQIAjpzdS6des0efJkPfvss0pMTFSrVq00b9487dixo8p6LVq0qPO2v//+e40YMUJPPfVUtffCw8PrXTMAAAAABDpCejNhtVpVWVnpXd62bZsGDRqk1NRUb9uRI0f+7XZ69OihV199VRUVFQoJCZEk7dq1q8o6/fv315tvvqmoqCgFB9f8Ffp5PQAAAACAf4+7uzcTUVFR2rFjh44ePari4mLFxMTok08+0aZNm3To0CFNnz69WtiuydixY+V2uzVx4kQdOHBAmzZt0jPPPCNJMplMkqRJkybpzJkzGjNmjHbt2qUjR45o06ZNSk5O9gbzn9fjdrubbucBAAAAoJngSHodnD121rDjTJ48WePHj1fv3r1VXl6ugwcP6tNPP9Xo0aNlMpk0ZswYpaam6v3337/kdlq3bq133nlHDzzwgOLi4tS3b19lZGRo7Nix3uvUO3furG3btunRRx/VLbfcooqKCl111VUaNmyYzGZzjfV89dVXioqKqvN+AQAAAEAgIaTXgt1uly3Mppync3w2pi3MJrvdXuv1u3fvrtzc3Cptq1at0qpVq6q0zZ071/v6xRdfrHFbgwYNUl5ennd59erVslgs6tq1q7ctJiZGb731Vp3qAQAAAABcGiG9Frp27aqDBw6quLjYZ2Pa7fYqodiXXn75ZXXr1k0RERHKy8vzPgPdZrP5pR4AAAAACBSE9Frq2rWr30KzrxUWFiojI0OFhYUKDw/XnXfeqTlz5vi7LAAAAABo9gjpqGbKlCmaMmWKv8sAAAAAgIDD3d0BAAAAADAIQnoNPB6Pv0tAAOP7BwAAAAQuQvpPWCwWSVJZWZmfK0Egu/D9u/B9BAAAABA4uCb9J4KCgtS2bVudPHlSkhQWFiaTyeTnqgKP2+2W0+nUuXPnvM9dDwQej0dlZWU6efKk2rZtq6CgIH+XBAAAAMDHCOk/06lTJ0nyBnX4nsfjUXl5uWw2W0D+J0nbtm2930MAAAAAgYWQ/jMmk0nh4eHq0KGDXC6Xv8sJSC6XSzk5OUpKSgq4U74tFgtH0AEAAIAARki/iKCgIMKSnwQFBen8+fMKDQ0NuJAOAAAAILAFzgW/AAAAAAAYHCEdAAAAAACDIKQDAAAAAGAQhHQAAAAAAAyCkA4AAAAAgEEQ0gEAAAAAMAhCOgAAAAAABuH3kL5kyRJFRUUpNDRUCQkJ2rlz5yXX//bbbzVp0iSFh4crJCRE3bt313vvveejagEAAAAAaDrB/hx8/fr1cjgcWrZsmRISEpSVlaWhQ4cqPz9fHTp0qLa+0+nUzTffrA4dOuiNN95QRESE/vnPf6pt27a+Lx4AAAAAgEbm15A+f/58paSkKDk5WZK0bNky/eUvf9HKlSv12GOPVVt/5cqVOnPmjLZv3y6LxSJJioqK8mXJAAAAAAA0Gb+FdKfTqd27d2vq1KneNrPZrCFDhig3N7fGPm+//bYSExM1adIk/fnPf1b79u01duxYPfroowoKCqqxT0VFhSoqKrzLJSUlkiSXyyWXy9WIe4TGcuFz4fMJTG63WzabTRazFGxy+7ucJmExSzabTW632yffc+aU8fHZAACAC/wW0ouLi1VZWamOHTtWae/YsaMOHjxYY58vv/xSH3zwge6++2699957Onz4sFJTU+VyuZSZmVljn7lz52rmzJnV2v/6178qLCys4TuCJrN582Z/lwA/Wbt27f//qtivdTSZDu00ce1aHT9+XMePH/fZsMwp4yorK/N3CQAAwCD8erp7XbndbnXo0EHLly9XUFCQBgwYoOPHj2vevHkXDelTp06Vw+HwLpeUlCgyMlK33HKLWrdu7avSUQcul0ubN2/WzTff7L2sAYEjLy9PSUlJumny82oXGePvcprEN8e+0IfPpConJ0exsbFNPh5zyvgunOUFAADgt5But9sVFBSkoqKiKu1FRUXq1KlTjX3Cw8NlsViqnNreq1cvFRYWyul0ymq1VusTEhKikJCQau0Wi4UfqwbHZxSYzGazysvL5XJL5z1+fwBFk3C5pfLycpnNZp9+x5lTxsXnAgAALvDbL2Cr1aoBAwYoOzvb2+Z2u5Wdna3ExMQa+1x//fU6fPiw3O4fr1M9dOiQwsPDawzoAAAAAABcTvx6mMrhcOiFF17QSy+9pAMHDuiBBx5QaWmp927v48aNq3JjuQceeEBnzpxRenq6Dh06pL/85S964oknNGnSJH/tAgAAAAAAjcav16SPHj1ap06dUkZGhgoLCxUXF6eNGzd6byZXUFAgs/nH/0eIjIzUpk2b9Ic//EH9+vVTRESE0tPT9eijj/prFwAAAAAAaDR+v3FcWlqa0tLSanxvy5Yt1doSExP18ccfN3FVAAAAAAD4XvO8KxMAAAAAAJeheoX0Dz/8sLHrAAAAAAAg4NUrpA8bNkxXX321/vd//1fHjh1r7JoAAAAAAAhI9Qrpx48fV1pamt544w1169ZNQ4cO1WuvvSan09nY9QEAAAAAEDDqFdLtdrv+8Ic/aO/evdqxY4e6d++u1NRUde7cWQ899JDy8vIau04AAAAAAJq9Bt84rn///po6darS0tL0/fffa+XKlRowYIBuuOEGffbZZ41RIwAAAAAAAaHeId3lcumNN97Q8OHDddVVV2nTpk1avHixioqKdPjwYV111VW68847G7NWAAAAAACatXo9J/3BBx/U2rVr5fF4dO+99+rpp59Wnz59vO+3aNFCzzzzjDp37txohQIAAAAA0NzVK6R//vnneu6553T77bcrJCSkxnXsdjuPagMAAAAAoA7qdbp7Zmam7rzzzmoB/fz588rJyZEkBQcH68Ybb2x4hQAAAAAABIh6hfSbbrpJZ86cqdZ+9uxZ3XTTTQ0uCgAAAACAQFSvkO7xeGQymaq1nz59Wi1atGhwUQAAAAAABKI6XZN+++23S5JMJpMmTJhQ5XT3yspK7du3T4MGDWrcCgEAAAAACBB1Cult2rSR9MOR9FatWslms3nfs1qtuu6665SSktK4FQIAAAAAECDqFNJXrVolSYqKitLkyZM5tR0AAAAAgEZUr0ewZWZmNnYdAAAAAAAEvFqH9P79+ys7O1vt2rXTNddcU+ON4y7Ys2dPoxQHAAAAAEAgqXVIv/XWW703ihs5cmRT1QMAAAAAQMCqdUj/6SnunO4OAAAAAEDjq9dz0gEAAAAAQOOr9ZH0du3aXfI69J86c+ZMvQsCAAAAACBQ1TqkZ2VlNWEZAAAAAACg1iF9/PjxTVkHAAAAAAABr9YhvaSkRK1bt/a+vpQL6wEAAAAAgNqr0zXpX3/9tTp06KC2bdvWeH26x+ORyWRSZWVloxYJ/yooKFBxcbHPxnO73ZKkvLw8mc2+ubdhRUWF9xGDzZXdblfXrl39XQZ+4sCBAz4Zxx9zSmJeAQAA1EetQ/oHH3ygK664QpL04YcfNllBMJaCggL16tlDZeXnfDamzWbT2rVrlZSUpPLycp+MaTZJbo9PhvIbW5hNBw8cJFAYgKvCKUm65557fDKeP+aUxLwCAACoj1qH9BtvvLHG12jeiouLVVZ+Tq9OjFOv8JY+GdNttuq4pJzHEmV2O5t8vD1fnlLKK/m6Ztw16nJtlyYfzx/OHjurnKdzVFxcTJgwgPPnz0uSZt/eXcP7dmjy8Xw9pyTmFQAAQH3VOqT/3DfffKP/+7//856u2bt3byUnJ3uPtqN56RXeUv2j2vhkLJcsOi4ptmtrWeRq8vFKy0olSS07tZQ9xt7k4wEXRNvDfDKvfD2nJOYVAABAfdXr4sScnBxFRUVp0aJF+uabb/TNN99o0aJFio6OVk5OTmPXCAAAAABAQKjXkfRJkyZp9OjRWrp0qYKCgiRJlZWVSk1N1aRJk7R///5GLRIAAAAAgEBQryPphw8f1iOPPOIN6JIUFBQkh8Ohw4cPN1pxAAAAAAAEknqF9P79+9f46KADBw4oNja2wUUBAAAAABCIan26+759+7yvH3roIaWnp+vw4cO67rrrJEkff/yxlixZoieffLLxqwQAAAAAIADUOqTHxcXJZDLJ4/nxobdTpkyptt7YsWM1evToxqkOAAAAAIAAUuuQ/tVXXzVlHQAAAAAABLxah/SrrrqqKesAAAAAACDg1esRbBd8/vnnKigokNPprNL+X//1Xw0qCgAAAACAQFSvkP7ll1/qtttu0/79+6tcp24ymST98Mx0AAAAAABQN/V6BFt6erqio6N18uRJhYWF6bPPPlNOTo7i4+O1ZcuWRi4RAAAAAIDAUK8j6bm5ufrggw9kt9tlNptlNpv1H//xH5o7d64eeughffrpp41dJwAAAAAAzV69jqRXVlaqVatWkiS73a4TJ05I+uHmcvn5+Y1XHQAAAAAAAaReR9L79OmjvLw8RUdHKyEhQU8//bSsVquWL1+ubt26NXaNAAAAAAAEhHqF9GnTpqm0tFSSNGvWLP3mN7/RDTfcoCuvvFLr169v1AIBAAAAAAgU9QrpQ4cO9b7+xS9+oYMHD+rMmTNq166d9w7vAAAAAACgbhr0nHRJOnbsmCQpMjKywcUAAAAAABDI6nXjuPPnz2v69Olq06aNoqKiFBUVpTZt2mjatGlyuVyNXSMAAAAAAAGhXkfSH3zwQb311lt6+umnlZiYKOmHx7LNmDFDp0+f1tKlSxu1SAAAAAAAAkG9QvqaNWu0bt06/frXv/a29evXT5GRkRozZgwhHQAAAACAeqjX6e4hISGKioqq1h4dHS2r1drQmgAAAAAACEj1CulpaWmaPXu2KioqvG0VFRWaM2eO0tLSGq04AAAAAAACSa1Pd7/99turLP/tb39Tly5dFBsbK0nKy8uT0+nUr371q8atEAAAAACAAFHrkN6mTZsqy3fccUeVZR7BBgAAAABAw9Q6pK9ataop6wAAAAAAIODV65r0C06dOqWPPvpIH330kU6dOlXv7SxZskRRUVEKDQ1VQkKCdu7cWat+69atk8lk0siRI+s9NgAAAAAARlGvkF5aWqr77rtP4eHhSkpKUlJSkjp37qz7779fZWVlddrW+vXr5XA4lJmZqT179ig2NlZDhw7VyZMnL9nv6NGjmjx5sm644Yb67AIAAAAAAIZTr5DucDi0detWvfPOO/r222/17bff6s9//rO2bt2qRx55pE7bmj9/vlJSUpScnKzevXtr2bJlCgsL08qVKy/ap7KyUnfffbdmzpypbt261WcXAAAAAAAwnFpfk/5Tb775pt544w0NHjzY2zZ8+HDZbDaNGjVKS5curdV2nE6ndu/eralTp3rbzGazhgwZotzc3Iv2mzVrljp06KD7779ff//73y85RkVFRZVHxZWUlEiSXC6XXC5XreoMZG63WzabTW6zVS5ZfDLmhXF8NZ4nyCqbzSZrkFXBnnpNCcOzmCw/fI5ut+G/9xe+cxazFGxy+7ucJmENMslms0nBIT75nvt6TknMq7oy+rwEAAC+Y/J4PJ66dgoLC9Pu3bvVq1evKu2fffaZBg4cqNLS0lpt58SJE4qIiND27duVmJjobZ8yZYq2bt2qHTt2VOvz0Ucf6a677tLevXtlt9s1YcIEffvtt9qwYUONY8yYMUMzZ86s1r5mzRqFhYXVqk4AAJpSWVmZxo4dq7Nnz6p169b+LgcAAPhRvQ5vJCYmKjMzUy+//LJCQ0MlSeXl5Zo5c2aVsN3YvvvuO91777164YUXZLfba9Vn6tSpcjgc3uWSkhJFRkbqlltu4YdQLeTl5SkpKUk5jyUqtqtv/l4uWbS53d26+ZvVsqjpjy7l5n+tYQv3adDDg9QtqXlePnH6yGm9/8f3lZOTo9jYWH+Xc0kXvnM3TX5e7SJj/F1Ok/g6f59yn39ELyT306hrw5t8PF/PKYl5VVcXzvICAACoV0jPysrSsGHD1KVLF+8Pk7y8PIWGhmrTpk213o7dbldQUJCKioqqtBcVFalTp07V1j9y5IiOHj2qESNGeNvc7h9Ohw0ODlZ+fr6uvvrqKn1CQkIUEhJSbVsWi0UWi+9O/bxcmc1mlZeXy+x2+uzH/QUWuXwypqnSqfLycjkrnTpvOt/k4/mDy+P64XM0mw3/vb/wnXO5pfOeBj2AwrCclR6Vl5dL5yt8Oq98Nack5lVdGX1eAgAA36lXSO/bt6+++OILrV69WgcPHpQkjRkzRnffffcP11nWktVq1YABA5Sdne19jJrb7VZ2drbS0tKqrd+zZ0/t37+/Stu0adP03XffaeHChYqMjKzP7gAAAAAAYAh1Dukul0s9e/bUu+++q5SUlAYX4HA4NH78eMXHx2vgwIHKyspSaWmpkpOTJUnjxo1TRESE5s6dq9DQUPXp06dK/7Zt20pStXYAAAAAAC43dQ7pFotF586da7QCRo8erVOnTikjI0OFhYWKi4vTxo0b1bFjR0lSQUGBzObmecorAAAAAAA/Va/T3SdNmqSnnnpKK1asUHBwwx+tk5aWVuPp7ZK0ZcuWS/Z98cUXGzw+AAAAAABGUK+EvWvXLmVnZ+uvf/2r+vbtqxYtWlR5/6233mqU4gAAAAAACCT1Cult27bVHXfc0di1AAAAAAAQ0OoU0t1ut+bNm6dDhw7J6XTql7/8pWbMmFGnO7oDAAAAAICa1emObHPmzNHjjz+uli1bKiIiQosWLdKkSZOaqjYAAAAAAAJKnUL6yy+/rOeff16bNm3Shg0b9M4772j16tVyu91NVR8AAAAAAAGjTiG9oKBAw4cP9y4PGTJEJpNJJ06caPTCAAAAAAAINHUK6efPn1doaGiVNovFIpfL1ahFAQAAAAAQiOp04ziPx6MJEyYoJCTE23bu3Dn993//d5XHsPEINgAAAAAA6q5OIX38+PHV2u65555GKwYAAAAAgEBWp5C+atWqpqoDAAAAAICAV6dr0gEAAAAAQNMhpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOkAAAAAABgEIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADMIQIX3JkiWKiopSaGioEhIStHPnzouu+8ILL+iGG25Qu3bt1K5dOw0ZMuSS6wMAAAAAcLnwe0hfv369HA6HMjMztWfPHsXGxmro0KE6efJkjetv2bJFY8aM0Ycffqjc3FxFRkbqlltu0fHjx31cOQAAAAAAjcvvIX3+/PlKSUlRcnKyevfurWXLliksLEwrV66scf3Vq1crNTVVcXFx6tmzp1asWCG3263s7GwfVw4AAAAAQOMK9ufgTqdTu3fv1tSpU71tZrNZQ4YMUW5ubq22UVZWJpfLpSuuuKLG9ysqKlRRUeFdLikpkSS5XC65XK4GVP+Df/3rXzp9+nSDt2NU+fn5stlscputcsnikzEvjOOr8TxBVtlsNlmDrAr2+HVKNBmLyfLD5+h2N8r3vim53W7ZbDZZzFKwye3vcpqENcgkm80mBYf45Hvu6zklMa/qyujzEgAA+I7J4/F4/DX4iRMnFBERoe3btysxMdHbPmXKFG3dulU7duz4t9tITU3Vpk2b9Nlnnyk0NLTa+zNmzNDMmTOrta9Zs0ZhYWEN2wEAABpBWVmZxo4dq7Nnz6p169b+LgcAAPjRZX1448knn9S6deu0ZcuWGgO6JE2dOlUOh8O7XFJS4r2OvaE/hPLy8pSUlKT4ex9Tq45dG7Qtozr9zy+07/UFeiG5n0ZdG+6TMV2yaHO7u3XzN6tlUdMfXcrN/1rDFu7ToIcHqVtStyYfzx9OHzmt9//4vnJychQbG+vvci7pwry6afLzahcZ4+9ymsTX+fuU+/wjPptXvp5TEvOqri6c5QUAAODXkG632xUUFKSioqIq7UVFRerUqdMl+z7zzDN68skn9be//U39+vW76HohISEKCQmp1m6xWGSxNOzUT7PZrPLycoW276pWXXo0aFtGVfJdmcrLy6XzFT77cX+BRS6fjGmqdKq8vFzOSqfOm843+Xj+4PK4VF5eLrPZ3ODvfVO7MK9cbum8x++3zWgSzkqPX+aVr+aUxLyqK6PPSwAA4Dt+/QVstVo1YMCAKjd9u3ATuJ+e/v5zTz/9tGbPnq2NGzcqPj7eF6UCAAAAANDk/H66u8Ph0Pjx4xUfH6+BAwcqKytLpaWlSk5OliSNGzdOERERmjt3riTpqaeeUkZGhtasWaOoqCgVFhZKklq2bKmWLVv6bT8AAAAAAGgov4f00aNH69SpU8rIyFBhYaHi4uK0ceNGdezYUZJUUFAgs/nHA/5Lly6V0+nUb3/72yrbyczM1IwZM3xZOgAAAAAAjcrvIV2S0tLSlJaWVuN7W7ZsqbJ89OjRpi8IAAAAAAA/aJ53ZQIAAAAA4DJESAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMgpAOAAAAAIBBENIBAAAAADAIQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHQAAAAAAgyCkAwAAAABgEIR0AAAAAAAMwhAhfcmSJYqKilJoaKgSEhK0c+fOS67/+uuvq2fPngoNDVXfvn313nvv+ahSAAAAAACajt9D+vr16+VwOJSZmak9e/YoNjZWQ4cO1cmTJ2tcf/v27RozZozuv/9+ffrppxo5cqRGjhypf/zjHz6uHAAAAACAxuX3kD5//nylpKQoOTlZvXv31rJlyxQWFqaVK1fWuP7ChQs1bNgw/fGPf1SvXr00e/Zs9e/fX4sXL/Zx5QAAAAAANK5gfw7udDq1e/duTZ061dtmNps1ZMgQ5ebm1tgnNzdXDoejStvQoUO1YcOGGtevqKhQRUWFd/ns2bOSpDNnzsjlcjWo/pKSEoWGhur744ckV3mDtmVU5YVfKjQ0VPnFTm059J1PxnSbrSr7/8r098Pfy+x2Nvl4/zjhVGhoqMpOlKl4f3GTj+cP3339nUJDQ1VSUqLTp0/7u5xLYl41Pl/PKYl5VedtfffD98Dj8TRGaQAA4DJm8vjxF8GJEycUERGh7du3KzEx0ds+ZcoUbd26VTt27KjWx2q16qWXXtKYMWO8bc8//7xmzpypoqKiauvPmDFDM2fObJodAACgER07dkxdunTxdxkAAMCP/Hok3RemTp1a5ci72+3WmTNndOWVV8pkMvmxMlxMSUmJIiMjdezYMbVu3drf5QCXPeaU8Xk8Hn333Xfq3Lmzv0sBAAB+5teQbrfbFRQUVO0IeFFRkTp16lRjn06dOtVp/ZCQEIWEhFRpa9u2bf2Lhs+0bt2aQAE0IuaUsbVp08bfJQAAAAPw643jrFarBgwYoOzsbG+b2+1WdnZ2ldPffyoxMbHK+pK0efPmi64PAAAAAMDlwu+nuzscDo0fP17x8fEaOHCgsrKyVFpaquTkZEnSuHHjFBERoblz50qS0tPTdeONN+rZZ5/Vf/7nf2rdunX65JNPtHz5cn/uBgAAAAAADeb3kD569GidOnVKGRkZKiwsVFxcnDZu3KiOHTtKkgoKCmQ2/3jAf9CgQVqzZo2mTZumxx9/XDExMdqwYYP69Onjr11AIwsJCVFmZma1yxQA1A9zCgAA4PLh17u7AwAAAACAH/n1mnQAAAAAAPAjQjoAAAAAAAZBSAcAAAAAwCAI6QAAAAAAGAQhHYayZMkSRUVFKTQ0VAkJCdq5c6e/SwIuazk5ORoxYoQ6d+4sk8mkDRs2+LskAAAAXAIhHYaxfv16ORwOZWZmas+ePYqNjdXQoUN18uRJf5cGXLZKS0sVGxurJUuW+LsUAAAA1AKPYINhJCQk6Nprr9XixYslSW63W5GRkXrwwQf12GOP+bk64PJnMpn0pz/9SSNHjvR3KQAAALgIjqTDEJxOp3bv3q0hQ4Z428xms4YMGaLc3Fw/VgYAAAAAvkNIhyEUFxersrJSHTt2rNLesWNHFRYW+qkqAAAAAPAtQjoAAAAAAAZBSIch2O12BQUFqaioqEp7UVGROnXq5KeqAAAAAMC3COkwBKvVqgEDBig7O9vb5na7lZ2drcTERD9WBgAAAAC+E+zvAoALHA6Hxo8fr/j4eA0cOFBZWVkqLS1VcnKyv0sDLlvff/+9Dh8+7F3+6quvtHfvXl1xxRXq2rWrHysDAABATXgEGwxl8eLFmjdvngoLCxUXF6dFixYpISHB32UBl60tW7bopptuqtY+fvx4vfjii74vCAAAAJdESAcAAAAAwCC4Jh0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAgCOlAMzJ48GA9/PDDF30/KipKWVlZPqsHAAAAQN0Q0oEAsmvXLk2cONHfZfxbb731luLj49W2bVu1aNFCcXFxeuWVV/xdFgAAANDkgv1dAADfad++fZOP4XQ6ZbVaG7SNK664Qv/zP/+jnj17ymq16t1331VycrI6dOigoUOHNlKlAAAAgPFwJB1oZs6fP6+0tDS1adNGdrtd06dPl8fjkVT9dHeTyaQVK1botttuU1hYmGJiYvT2229736+srNT999+v6Oho2Ww29ejRQwsXLqwy3oQJEzRy5EjNmTNHnTt3Vo8ePTRr1iz16dOnWm1xcXGaPn36v92HwYMH67bbblOvXr109dVXKz09Xf369dNHH31Uz78KAAAAcHkgpAPNzEsvvaTg4GDt3LlTCxcu1Pz587VixYqLrj9z5kyNGjVK+/bt0/Dhw3X33XfrzJkzkiS3260uXbro9ddf1+eff66MjAw9/vjjeu2116psIzs7W/n5+dq8ebPeffdd3XfffTpw4IB27drlXefTTz/Vvn37lJycXKf98Xg83u0nJSXVqS8AAABwueF0d6CZiYyM1IIFC2QymdSjRw/t379fCxYsUEpKSo3rT5gwQWPGjJEkPfHEE1q0aJF27typYcOGyWKxaObMmd51o6OjlZubq9dee02jRo3ytrdo0UIrVqyocpr70KFDtWrVKl177bWSpFWrVunGG29Ut27darUfZ8+eVUREhCoqKhQUFKTnn39eN998c53/HgAAAMDlhCPpQDNz3XXXyWQyeZcTExP1xRdfqLKyssb1+/Xr533dokULtW7dWidPnvS2LVmyRAMGDFD79u3VsmVLLV++XAUFBVW20bdv32rXoaekpGjt2rU6d+6cnE6n1qxZo/vuu6/W+9GqVSvt3btXu3bt0pw5c+RwOLRly5Za9wcAAAAuRxxJBwKcxWKpsmwymeR2uyVJ69at0+TJk/Xss88qMTFRrVq10rx587Rjx44qfVq0aFFtuyNGjFBISIj+9Kc/yWq1yuVy6be//W2t6zKbzfrFL34h6Ydr2Q8cOKC5c+dq8ODBddxDAAAA4PJBSAeamZ8H6I8//lgxMTEKCgqq87a2bdumQYMGKTU11dt25MiRWvUNDg7W+PHjtWrVKlmtVt11112y2Wx1ruECt9utioqKevcHAAAALgeEdKCZKSgokMPh0O9//3vt2bNHzz33nJ599tl6bSsmJkYvv/yyNm3apOjoaL3yyivatWuXoqOja9X/d7/7nXr16iXph8BfW3PnzlV8fLyuvvpqVVRU6L333tMrr7yipUuX1ms/AAAAgMsFIR1oZsaNG6fy8nINHDhQQUFBSk9P18SJE+u1rd///vf69NNPNXr0aJlMJo0ZM0apqal6//33a9U/JiZGgwYN0pkzZ5SQkFDrcUtLS5Wamqp//etfstls6tmzp1599VWNHj26XvsBAAAAXC5MngsPUAaARubxeBQTE6PU1FQ5HA5/lwMAAAAYHkfSATSJU6dOad26dSosLKzzs9EBAACAQEVIB9AkOnToILvdruXLl6tdu3ZV3mvZsuVF+73//vu64YYbmro8AAAAwJA43R2Azx0+fPii70VERDToLvAAAADA5YyQDgAAAACAQZj9XQAAAAAAAPgBIR0AAAAAAIMgpAMAAAAAYBCEdAAAAAAADIKQDgAAAACAQRDSAQAAAAAwCEI6AAAAAAAGQUgHAAAAAMAg/h93h652T0Tc2QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x1800 with 7 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "match = matcher.get_best_match()\n",
    "m_data = m.copy().get_population('pool')\n",
    "m_data.loc[:, 'population'] = m_data['population'] + ' (prematch)'\n",
    "match.append(m_data)\n",
    "fig = plot_per_feature_loss(match, beta, 'target', debin=False)\n",
    "fig = plot_numeric_features(match, hue_order=['pool (prematch)', 'pool', 'target', ])\n",
    "fig = plot_categoric_features(match,  hue_order=['pool (prematch)', 'pool', 'target'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dfbdf80b-9391-4bdc-bae7-83ff75a6b56b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pybalance",
   "language": "python",
   "name": "pybalance"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}